JPS61176131A - Measurement of substrate temperature - Google Patents

Measurement of substrate temperature

Info

Publication number
JPS61176131A
JPS61176131A JP1804885A JP1804885A JPS61176131A JP S61176131 A JPS61176131 A JP S61176131A JP 1804885 A JP1804885 A JP 1804885A JP 1804885 A JP1804885 A JP 1804885A JP S61176131 A JPS61176131 A JP S61176131A
Authority
JP
Japan
Prior art keywords
substrate
heater
infrared
diffraction grating
infrared ray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1804885A
Other languages
Japanese (ja)
Inventor
Junji Saito
淳二 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP1804885A priority Critical patent/JPS61176131A/en
Publication of JPS61176131A publication Critical patent/JPS61176131A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Radiation Pyrometers (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PURPOSE:To make it feasible to measure the substrate temperature accurately by means of an infrared ray detector by a method wherein a plate type body with diffraction grating grooves reflecting detection wavelength band of an infrared ray detector is provided between a semiconductor crystal substrate and a heater. CONSTITUTION:Any heat of substrate and specific light of a heater are prevented from entering into an infrared ray thermometer by shielding the infrared rays with a plate type body with diffraction grating grooves between a substrate and a heater. For example, a substrate loading sheet 11 mode of sapphire is formed of diffraction grating grooves 12 to be provided with transmittivity characteristics wherein the transmittivity 1 is attenuated within the range of + or -1mum with maximum wavelength x of 2mum to completely shield the infrared rays from heater side within the wavelength band. Through these procedures, the detecting sensitivity characteristics of infrared ray detector may be represented by the dotted line making it feasible to measure the sub strate temperature accurately within the range of 400-800 deg.C by means of the infrared ray detector.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、真空プロセス装置の基板温度モニタに係わり
、特に化合物半導体単結晶基板の温度を正確に測定する
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a substrate temperature monitor for vacuum process equipment, and particularly to a method for accurately measuring the temperature of a compound semiconductor single crystal substrate.

例えば、基板に分子線エピタキシャル成長法により化合
物半導体単結晶を成長させる場合には、通常、基板の温
度を上げて行なわれ、基板の加熱は基板の裏面に配置さ
れたヒータ線によってなされる。
For example, when a compound semiconductor single crystal is grown on a substrate by molecular beam epitaxial growth, the temperature of the substrate is usually raised, and the substrate is heated by a heater wire placed on the back surface of the substrate.

従って、基板の温度を赤外線検知器で測定する場合は、
基板表面からの赤外線のみが必要であるが、化合物単結
晶半導体基板が例えばガリウム砒素基板であると、ガリ
ウム砒素基板は基板の裏面に配置されたヒータからの赤
外線を透過させるために、赤外線温度計には、基板の裏
面のヒータの温度が入力されて測定されてしまい、基板
の温度を正確に測定することが不可能であり、これの改
善が要望されている。
Therefore, when measuring the temperature of the board with an infrared detector,
Only infrared rays from the surface of the substrate are required, but if the compound single crystal semiconductor substrate is a gallium arsenide substrate, the gallium arsenide substrate transmits infrared rays from a heater placed on the back side of the substrate, so an infrared thermometer is required. In this case, the temperature of the heater on the back side of the substrate is input and measured, making it impossible to accurately measure the temperature of the substrate.Therefore, an improvement is desired.

〔従来の技術〕[Conventional technology]

従来の基板温度の測定方法として、基板の近傍に熱電対
を当接させて測定する方法があるが、この場合には基板
温度の測定が難しい上に、基板表面の温度分布を正確に
測定するには多大の困難が伴う欠点がある。
The conventional method for measuring substrate temperature is to place a thermocouple in contact with the substrate, but in this case it is difficult to measure the substrate temperature and it is difficult to accurately measure the temperature distribution on the substrate surface. has drawbacks that pose great difficulties.

又、赤外線温度計により基板を観測する場合には、基板
が半導体結晶であると、赤外線検知器の検出波長帯の赤
外線を透過してしまうものが多く、このような場合基板
の裏面にあるヒータの温度を測定するとか、或いは基板
に接触している金属面の温度を測定してしまうことにな
る。
Also, when observing a substrate with an infrared thermometer, if the substrate is a semiconductor crystal, it often transmits infrared rays in the detection wavelength range of the infrared detector, and in such cases, the heater on the back side of the substrate or the temperature of the metal surface that is in contact with the substrate.

第3図は、従来例として、分子線結晶成長装置における
基板温度の測定方法を説明するための模式断面図である
FIG. 3 is a schematic cross-sectional view for explaining a method of measuring substrate temperature in a molecular beam crystal growth apparatus as a conventional example.

分子線結晶成長装置の真空容器1があり、容器の内部に
基板2を保持するモリブデン製の基板ホルダ3と、基板
を載置するサファイヤ板4があって、サファイヤ板4の
裏面にヒータ5が配置され、それにより基板2が加熱さ
れる。
There is a vacuum container 1 of a molecular beam crystal growth apparatus, and inside the container there is a substrate holder 3 made of molybdenum that holds a substrate 2, and a sapphire plate 4 on which the substrate is placed.A heater 5 is installed on the back side of the sapphire plate 4. The substrate 2 is thereby heated.

結晶材料を充填した分子線源である坩堝6は、化合物の
種類毎に分類されていて、例えばガリウム砒素の化合物
であれは、ガリウムを充填した坩堝と砒素を充填した坩
堝が別個に設けてあって、それぞれ高温に加熱され、高
真空の容器内で基板上に蒸発が行われて、エピタキシャ
ル成長がなされる。
The crucibles 6, which are molecular beam sources filled with crystalline materials, are classified by type of compound; for example, for a compound of gallium arsenide, a crucible filled with gallium and a crucible filled with arsenic are provided separately. The substrate is then heated to a high temperature and evaporated onto the substrate in a high vacuum container, resulting in epitaxial growth.

基板温度はエピタキシャル成長の膜質に密接な関係があ
り、一般に400℃〜800℃の範囲に加熱されるが、
正確な温度管理が必要であるので、赤外線検知器7で観
測できるように、容器には観測用透過窓8が設けてあり
、基板温度が測定できるようになっている。
The substrate temperature is closely related to the quality of the epitaxially grown film, and is generally heated to a range of 400°C to 800°C.
Since accurate temperature control is required, the container is provided with an observation window 8 so that the temperature of the substrate can be measured using an infrared detector 7.

然しながら、この場合の赤外線温度針の検出領域の波長
は中心波長が約2μmであり、この波長帯の赤外線は、
GaAs基板及びサファイアなどを透過するために、ヒ
ータ又は裏面の加熱体から輻射される赤外線が基板を透
過して赤外線温度計に入射され、そのため赤外線温度計
はヒータの温度を測定していることになってしまい、基
板の温度が正確に測定できないという欠点がある。
However, in this case, the wavelength of the detection area of the infrared temperature needle has a center wavelength of about 2 μm, and infrared rays in this wavelength band are
In order to pass through the GaAs substrate and sapphire, the infrared rays radiated from the heater or the heating element on the back side pass through the substrate and enter the infrared thermometer, which means that the infrared thermometer measures the temperature of the heater. This has the disadvantage that the temperature of the substrate cannot be measured accurately.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記の化合物単結晶半導体の基板温度を赤外線検知器で
温度測定をする場合には、化合物単結晶半導体基板が、
裏面にある加熱用ヒータ、又は加熱板からの赤外線の輻
射波長を透過することが問題点であり、そのために基板
の温度が正確に測定出来ないという不具合を生ずる。
When measuring the substrate temperature of the above compound single crystal semiconductor with an infrared detector, the compound single crystal semiconductor substrate is
The problem is that the wavelength of infrared radiation from the heater or heating plate on the back side is transmitted, which causes the problem that the temperature of the substrate cannot be measured accurately.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、上記問題点を解消した基板の温度を正確に測
定する装置を提供するもので、その手段は、真空又は反
応ガス雰囲気中等で、半導体単結晶基板を裏面からヒー
タで加熱し、その表面に半導体単結晶をエピタキシャル
成長をさせる分子線結晶成長装置において、半導体単結
晶基板温度を赤外線温度計で測定する際に、半導体単結
晶基板温度に対応する赤外線波長帯のみを反射する回折
格子溝を設けた板状体を、該半導体単結晶基板と加熱ヒ
ータ間に配置した基板温度モニタによって達成できる。
The present invention provides an apparatus for accurately measuring the temperature of a substrate that solves the above-mentioned problems. In molecular beam crystal growth equipment that epitaxially grows semiconductor single crystals on the surface, when measuring the semiconductor single crystal substrate temperature with an infrared thermometer, a diffraction grating groove that reflects only the infrared wavelength band corresponding to the semiconductor single crystal substrate temperature is used. This can be achieved by a substrate temperature monitor placed between the semiconductor single crystal substrate and the heater.

〔作用〕[Effect]

本発明は、赤外線温度計の検出波長帯に限定して、その
波長帯の輻射赤外線の透過を遮断する遮蔽板を、基板と
加熱ヒータ間に配置することにより、ヒータ側の温度的
影響を除去するものであって、その遮蔽板として、遮断
波長帯に対応する回折格子溝を設けた遮蔽板によって、
赤外線検知器から見た、基板の後方のヒータ温度の赤外
線波長を遮断し、正確な基板温度を赤外線検知器により
測定できるように考慮されたものである。
The present invention eliminates the temperature influence on the heater side by placing a shielding plate between the substrate and the heater that blocks the transmission of infrared rays in the wavelength range detected by the infrared thermometer. As the shielding plate, a shielding plate provided with a diffraction grating groove corresponding to the cutoff wavelength band,
This is designed to block the infrared wavelength of the heater temperature at the rear of the substrate as seen by the infrared detector so that the infrared detector can accurately measure the substrate temperature.

〔実施例〕〔Example〕

本発明は回折格子溝(グレーティング)の格子の幅によ
り、光が選択的に回折できることを利用して、基板と、
加熱ヒータとの間に回折格子溝を有して赤外線を遮蔽す
ることにより、基板加熱ヒータからの特定の光が赤外線
温度計に入射しないようにしたものである。
The present invention takes advantage of the fact that light can be selectively diffracted by the width of the grating of the diffraction grating groove (grating).
By having a diffraction grating groove between the heater and the heater to block infrared rays, specific light from the substrate heater is prevented from entering the infrared thermometer.

一般に、輻射波長λと回折格子の溝寸法については下記
の関係がある。
Generally, the following relationship exists between the radiation wavelength λ and the groove size of the diffraction grating.

λ−24Sin θ     (1) d:   @のピンチ θ :  基板面となす溝の角度 GaAs基板とヒータを内蔵する基板ホルダブロックと
の中間にあるサファイア板の表面に、赤外線が透過しな
い特定波長帯域を回折格子溝を形成することによって実
現するものである。
λ-24Sin θ (1) d: @ pinch θ: Angle of the groove with the substrate surface A specific wavelength band that does not transmit infrared rays is formed on the surface of the sapphire plate located between the GaAs substrate and the substrate holder block containing the heater. This is achieved by forming diffraction grating grooves.

第1図(a)は本発明の実施例である赤外線遮蔽用回折
格子溝を有する板の正面図であり、第1図山)はその側
面図である。
FIG. 1(a) is a front view of a plate having infrared ray shielding diffraction grating grooves according to an embodiment of the present invention, and FIG. 1(a) is a side view thereof.

基板載置板11を材料としてサファイアを使用し、その
表面に回折格子1!(グレーテング)12を形成したも
のであって、溝の寸法はピッチdが10μm程度であり
、溝の角度θは5.74度が最適寸法である。
Sapphire is used as the material for the substrate mounting plate 11, and a diffraction grating 1 is formed on its surface! (Grating) 12 is formed, and the dimensions of the grooves are such that the pitch d is about 10 μm, and the optimum angle θ of the grooves is 5.74 degrees.

第2図は、サファイア板に回折格子溝を設けた場合の赤
外線の透過率特性と感度特性であるが、波長が2μmを
最大にして±1μmの範囲で透過率が減衰する゛ので、
この波長帯でのヒータ側からの赤外線は完全に遮断され
る。
Figure 2 shows the infrared transmittance and sensitivity characteristics when a diffraction grating groove is provided on a sapphire plate.The transmittance is attenuated within a range of ±1 μm with a maximum wavelength of 2 μm.
Infrared rays from the heater side in this wavelength band are completely blocked.

又、赤外線検知器の検出感度特性は点線のようになり、
遮蔽板を使用することにより、赤外線検出器により基板
温度を400度から800℃の範囲で正確に測定するこ
とが可能になった。
Also, the detection sensitivity characteristics of the infrared detector are as shown by the dotted line,
By using the shielding plate, it became possible to accurately measure the substrate temperature in the range of 400 to 800 degrees Celsius using an infrared detector.

本発明では、回折格子溝を有する板としてサファイア板
用いたが、他に石英板等が高融点であるために使用され
ており、同様の赤外線波長−透過率特性があるので、本
発明は他の材料の場合でも通用できるものである。
In the present invention, a sapphire plate is used as the plate having the diffraction grating grooves, but other materials such as quartz plates are also used due to their high melting point and have similar infrared wavelength-transmittance characteristics. It can also be used for other materials.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように、本発明の赤外線検知器を用
いた基板の表面温度の測定方法は、基板裏面にあるヒー
タ側からの温度の影響がないために、基板の温度を正確
に測定出来るために、分子線結晶成長装置をはじめ、極
めて高精度を要する真空装置などには、高範囲に採用す
ることができ、効果大なるものがある。
As explained in detail above, the method for measuring the surface temperature of a substrate using the infrared detector of the present invention can accurately measure the temperature of the substrate because there is no influence of temperature from the heater side on the back side of the substrate. Therefore, it can be widely used in molecular beam crystal growth equipment and other vacuum equipment that requires extremely high precision, and has great effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(al及び第1図世)は、本発明の回折格子溝を
形成したサファイア板の正面図と側面図、第2図は、赤
外線の波長と透過率及び感度特性図、 第3図は、従来の分子線結晶成長装置の模式断面図、 図において、11はサファイア板、12は回折格子溝を
それぞれ示す。 第1図(01第1図(b) 514(μm〕 信り商 第3図
Figure 1 (al and figure 1) is a front view and side view of a sapphire plate on which diffraction grating grooves of the present invention are formed, Figure 2 is a graph of infrared wavelength, transmittance and sensitivity characteristics, Figure 3 1 is a schematic cross-sectional view of a conventional molecular beam crystal growth apparatus. In the figure, 11 indicates a sapphire plate, and 12 indicates a diffraction grating groove. Figure 1 (01 Figure 1 (b) 514 (μm) Credit card Figure 3

Claims (1)

【特許請求の範囲】[Claims]  半導体単結晶基板が裏面からヒータで加熱され、該半
導体単結晶基板の表面温度を赤外線温度計で測定する際
に、該半導体単結晶基板と加熱ヒータ間に、該赤外線検
知器の検出波長帯を反射する回折格子溝を有する板状体
を設けたことを特徴とする基板温度の測定方法。
When a semiconductor single crystal substrate is heated from the back side with a heater and the surface temperature of the semiconductor single crystal substrate is measured with an infrared thermometer, the detection wavelength band of the infrared detector is placed between the semiconductor single crystal substrate and the heater. A method for measuring substrate temperature, characterized in that a plate-like body having reflective diffraction grating grooves is provided.
JP1804885A 1985-01-31 1985-01-31 Measurement of substrate temperature Pending JPS61176131A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1804885A JPS61176131A (en) 1985-01-31 1985-01-31 Measurement of substrate temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1804885A JPS61176131A (en) 1985-01-31 1985-01-31 Measurement of substrate temperature

Publications (1)

Publication Number Publication Date
JPS61176131A true JPS61176131A (en) 1986-08-07

Family

ID=11960805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1804885A Pending JPS61176131A (en) 1985-01-31 1985-01-31 Measurement of substrate temperature

Country Status (1)

Country Link
JP (1) JPS61176131A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006105789A (en) * 2004-10-05 2006-04-20 Canon Inc Temperature-measuring device and exposure device
WO2009119418A1 (en) * 2008-03-26 2009-10-01 東京エレクトロン株式会社 Temperature-measuring apparatus, and mounting table structure and heat treatment apparatus having the same
JP2022123646A (en) * 2021-02-12 2022-08-24 ウシオ電機株式会社 Temperature measurement method, optical heating method and optical heater

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006105789A (en) * 2004-10-05 2006-04-20 Canon Inc Temperature-measuring device and exposure device
WO2009119418A1 (en) * 2008-03-26 2009-10-01 東京エレクトロン株式会社 Temperature-measuring apparatus, and mounting table structure and heat treatment apparatus having the same
JP2022123646A (en) * 2021-02-12 2022-08-24 ウシオ電機株式会社 Temperature measurement method, optical heating method and optical heater

Similar Documents

Publication Publication Date Title
Hellman et al. Infra-red transmission spectroscopy of GaAs during molecular beam epitaxy
EP0329447B1 (en) Apparatus for determining the temperature of wafers or thin layers
JP2000516038A (en) Short-time annealing system and method including improved temperature sensing and monitoring
GB2238868A (en) Silicon wafer temperature measurement by optical transmission monitoring.
JPS61176131A (en) Measurement of substrate temperature
JPS5992998A (en) Method for growing crystal using molecular beam
JP3600873B2 (en) Substrate temperature measurement unit
Sitter et al. Exact determination of the real substrate temperature and film thickness in vacuum epitaxial growth systems by visible laser interferometry
JP2818124B2 (en) Semiconductor device manufacturing method
EP0171694A1 (en) A process for controlling the growth of a crystal
JPS61220414A (en) Apparatus for generating molecular beam
JPS5893320A (en) Method for measuring temperature of device for molecular beam epitaxial growth
JPS6142125A (en) Mbe substrate and method for measuring temperature thereof
Bersohn Simple Method for Variable Frequency in Electron Resonance Measurements
JPH0493730A (en) Temperature measuring apparatus
JPH0238398A (en) System for controlling crystal growth
JPS61139021A (en) Temperature measurement of mbe base board
JPS63241919A (en) Molecular beam epitaxy system
JPH067072B2 (en) Substrate temperature measurement method
JPH11251249A (en) Method of forming semiconductor film
JPH01115895A (en) Observation port of molecular-beam apparatus for crystal growth
JPH0379762A (en) Thin film forming device
JPS61263212A (en) Molecular beam epitaxy substrate holder
JPH03222410A (en) Thin film production device
JPH04235731A (en) Viewing window for vacuum container