JPS6117570B2 - - Google Patents

Info

Publication number
JPS6117570B2
JPS6117570B2 JP52050073A JP5007377A JPS6117570B2 JP S6117570 B2 JPS6117570 B2 JP S6117570B2 JP 52050073 A JP52050073 A JP 52050073A JP 5007377 A JP5007377 A JP 5007377A JP S6117570 B2 JPS6117570 B2 JP S6117570B2
Authority
JP
Japan
Prior art keywords
outer layer
layer material
cross
core material
sectional area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52050073A
Other languages
Japanese (ja)
Other versions
JPS53135866A (en
Inventor
Masahiro Nagai
Yasuhiko Myake
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP5007377A priority Critical patent/JPS53135866A/en
Publication of JPS53135866A publication Critical patent/JPS53135866A/en
Priority to US06/806,799 priority patent/USRE32399E/en
Priority to US06/806,798 priority patent/USRE32385E/en
Publication of JPS6117570B2 publication Critical patent/JPS6117570B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Extrusion Of Metal (AREA)

Description

【発明の詳細な説明】 本発明は、例えばアルミ被覆鋼線のような芯材
となるべき線条の外周に別な金属外層材を被覆し
てなる複合線条体の製造方法に係り、とくに当該
外層材の厚さを均質かつ安定して形成せしめ、か
つ実質的に無限長の製品を入手可能な複合線条体
の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a composite filament in which the outer periphery of a filament serving as a core material, such as an aluminum-coated steel wire, is coated with another metal outer layer material, and in particular, The present invention relates to a method of manufacturing a composite filament in which the thickness of the outer layer material is uniform and stable, and a product with substantially unlimited length can be obtained.

従来の押出による複合線条体の製造方法は、予
め芯材と外層材を複合一体化したビレツトをコン
テナ内に挿入しこれを押出す方法、あるいは芯材
をニツプルを介して押出室内に供給し、別途ビレ
ツトの形でコンテナ内に挿入した外層材を当該芯
材外周に押出被覆する方法が採用されてきたが、
これらはいずれもコンテナの容量により製品の長
さが制約を受けるため、生産性の向上に限界が存
在する上、押出製品の品質にもむらが生ずるとい
う問題があつた。
Conventional methods for manufacturing composite filament bodies by extrusion include inserting a billet in which the core material and outer layer material are integrated into a container into a container and extruding it, or supplying the core material into the extrusion chamber through nipples. , a method has been adopted in which an outer layer material is inserted into the container in the form of a billet and extruded to cover the outer periphery of the core material.
In all of these methods, the length of the product is limited by the capacity of the container, so there is a problem in that there is a limit to improving productivity and the quality of the extruded product also becomes uneven.

かかる問題点を解決するものとして、発明者ら
は先に回転方式による押出方法であるコンフオー
ム押出法に着目し、実質的に無限長の複合線条体
を高能率かつ高品質に製造することのできる押出
製造方法を提案した。(例えば特願昭50―
133186) これを本発明に係る実施例図面である第1およ
び2図を援用して説明する。すなわち、上記押出
製造方法は、駆動軸11によつて回転駆動される
可動ホイールの外周面にほぼ断面U字形状のエン
ドレス溝12を形成し、当該溝12とこれに係合
するシユーブロツク13とによつて細長い輸送通
路14を形成し、通路14の一端より外層材とな
るべき例えばアルミ素材19を供給して、回転す
る溝14の内面とアルミ素材19との間の接触摩
擦抵抗により、アルミ素材19を通路14の奥に
送りこみ、通路14の奥にストツパー15を配置
することにより前記アルミ素材19の移動を強制
的に阻止せしめ、それによつてアルミ素材に内圧
を発生せしめてこれを前記通路14と連通する集
合室18内に導いて、当該集合室内に配置された
ニツプル17より芯材となるべき例えば鋼線21
を供給し、ダイス16より複合線22を押出製造
するものである。
In order to solve this problem, the inventors first focused on the conform extrusion method, which is an extrusion method using a rotation method, and found that it is possible to manufacture composite filaments of virtually infinite length with high efficiency and high quality. We proposed an extrusion manufacturing method that can be used. (For example, special request in 1970-
133186) This will be explained with reference to FIGS. 1 and 2, which are embodiment drawings according to the present invention. That is, in the extrusion manufacturing method described above, an endless groove 12 having a substantially U-shaped cross section is formed on the outer circumferential surface of a movable wheel that is rotationally driven by a drive shaft 11, and the groove 12 and the shovel block 13 that engage with the endless groove 12 are formed. Thus, a long and narrow transport passage 14 is formed, and an aluminum material 19, for example, which is to be the outer layer material, is supplied from one end of the passage 14, and the aluminum material is 19 is sent to the back of the passage 14, and the stopper 15 is arranged at the back of the passage 14, thereby forcibly preventing the movement of the aluminum material 19, thereby generating internal pressure in the aluminum material and forcing it into the passage. For example, a steel wire 21 to be a core material is guided into a gathering chamber 18 communicating with
is supplied, and the composite wire 22 is extruded from the die 16.

この方法によれば、外層材と芯材をともに無限
長のものとして供給することができるから、製品
としての複合線22も実質的に無限長の形で入手
できるものである。しし、上記の方法においても
全く問題がないわけではない。すなわち、上記に
おける押出圧力発生機構から理解されるように、
その圧力発生はエンドレス溝14と素材19との
間の接触摩擦に依存しているから、溝内面と素材
の間にスリツプが生ずると押出圧力は大幅に低下
する。なんらかの原因でこのような圧力変動が数
多く生ずることになつたりすると、その度に被覆
層の形成に大きな変動を与え、肉厚の変動を来し
たり外径が不均一になるといつた製品不良の原因
になりかねない。
According to this method, both the outer layer material and the core material can be supplied as having infinite lengths, so that the composite wire 22 as a product can also be obtained in a substantially infinite length form. However, the above method is not completely free from problems. That is, as understood from the extrusion pressure generation mechanism described above,
Since the pressure generation depends on the contact friction between the endless groove 14 and the material 19, if slip occurs between the inner surface of the groove and the material, the extrusion pressure is significantly reduced. If such pressure fluctuations occur many times for some reason, it will cause large fluctuations in the formation of the coating layer, leading to variations in wall thickness, uneven outer diameter, and other product defects. This could be the cause.

本発明は上記のような実情にかんがみ、回転ホ
イールを用いた複合線の押出において、輸送通路
内にスリツプが生ずるようなことがあつても、つ
ねに均質な被覆層を安定して形成できる複合線条
体の押出製造方法を提供しようとするものであ
る。
In view of the above-mentioned circumstances, the present invention has been developed to provide a composite wire that can always stably form a homogeneous coating layer even if slips occur in the transportation path when extruding the composite wire using a rotating wheel. The present invention aims to provide a method for producing a strip by extrusion.

すなわち、本発明の要旨とするところは、回転
ホイールを用いた複合線の押出において集合室の
断面形状よりも大に形成するとともに、集合線を
押出成形するに際し、芯材に前方張力を付加しつ
つ製品を押出すことにある。
That is, the gist of the present invention is to form a composite wire larger than the cross-sectional shape of the gathering chamber when extruding the composite wire using a rotating wheel, and to apply forward tension to the core material when extruding the composite wire. The purpose is to extrude the product.

以下に実施例に基いて説明する。 This will be explained below based on examples.

第1図は、本発明に係る複合線条体の製造状況
を示す説明断面図であり、第2図は第1図のA―
A′断面図を示すものである。それぞれの符号の
示す構成はすでに説明した通りである。しかし
て、本発明においては、集合室の断面X―X′の
断面積よりも大となるように形成され、かつ複合
線22の芯材21には前方張力が付加される。
FIG. 1 is an explanatory cross-sectional view showing the manufacturing situation of the composite filament body according to the present invention, and FIG.
This shows a cross-sectional view of A′. The structure indicated by each symbol is as already explained. Therefore, in the present invention, the cross-sectional area of the gathering chamber is formed to be larger than the cross-sectional area of the cross-section X-X', and forward tension is applied to the core material 21 of the composite wire 22.

上記のように、集合室18の断面積が通路14
の断面積よりも大に構成されれば、単位断面積当
りの素材のボリユームが通路内におけるよりも集
合室内における方が大大きくなる。かくして、輸
送通路において発生せしめられた押出圧力は、ボ
リユームの大きな集合室内において蓄積され、ボ
リユームの小さい輸送通路内に圧力変動があつて
も、その変動が集合室内の圧力変動に与える影響
が小さくなるのである。その原理を端的に示すも
のは、楽器のバツクパイプの原理であり、吹込み
パイプ内での空気の変動が大きくとも、その圧力
が断面積の大きなバツク内に安定して蓄積され、
吹出しパイプ側においては空気の流動はつねに安
定した一定流動を保持できるのである。輸送通路
を吹込みパイプ、集合室をバツグ、吹出しパイプ
をダイス部分と考えれば、その効果は明瞭であろ
う。なお、集合室の入口部に断面縮小部20を形
成してやると、その絞り効果によつて集合室内の
圧力変動を一層低減せしめる効果を有する。
As mentioned above, the cross-sectional area of the gathering room 18 is equal to the passage 14.
If the cross-sectional area is larger than the cross-sectional area, the volume of material per unit cross-sectional area will be much larger in the gathering room than in the passage. In this way, the extrusion pressure generated in the transport passage is accumulated in the collection chamber with a large volume, and even if there is a pressure fluctuation in the transport passage with a small volume, the influence of the fluctuation on the pressure fluctuation in the collection chamber is reduced. It is. A simple example of this principle is the principle of the backpipe of a musical instrument.Even if the air fluctuates greatly within the blowpipe, the pressure is stably accumulated within the backpipe, which has a large cross-sectional area.
On the blowout pipe side, the air flow can always maintain a stable constant flow. If you think of the transport passage as the blow pipe, the gathering room as the bag, and the blow pipe as the die, the effect will be clear. It should be noted that if the cross-section reduced portion 20 is formed at the entrance of the collection chamber, the narrowing effect thereof will have the effect of further reducing pressure fluctuations within the collection chamber.

このような断面積の大きな集合室をもつてする
ダイス部分での圧力安定という本発明に固有の効
果に加えるに、本発明にあつては、外層材の被覆
せしめられる芯材に一定の前方張力を付加せしめ
ることを必須の構成要件とする。この前方張力の
付加により、仮にも集合室内の圧力に変動があつ
たとしても、押出製品の被覆層の厚さを安定せし
め得る特徴的効果を発揮せしめ得ることとなるも
のである。
In addition to the effect unique to the present invention of stabilizing the pressure at the die portion having such a gathering chamber with a large cross-sectional area, the present invention also provides a constant front tension in the core material covered by the outer layer material. It is an essential configuration requirement to add . By applying this forward tension, even if the pressure inside the collecting chamber fluctuates, a characteristic effect can be exhibited that can stabilize the thickness of the coating layer of the extruded product.

すなわち、芯材に一定の前方張力が付加された
状態で集合室内に圧力変動が発生したと考える。
集合室内の圧力が高いということは、その内圧に
よりダイス部分での外層材のフローが速くなると
いうことである。もしも前方張力が付加されてい
ないと、複合線の押出される速度より外層材のフ
ロー速度の方が速くなり、結果的に被覆材料がダ
イス孔よりオーバーフローしてきて、外層材の肉
厚が所要外径よりも過大する。逆に集合室内の圧
力が低くなれば外層材のダイス部分でのフローを
小さくし、結果的に複合線自体を外方に移動せし
める力も低下して、外層材の肉厚は薄くなる。か
くして集合室内の圧力変動により外層材の肉厚不
均一を生じ、製品不良につながる。
In other words, it is assumed that pressure fluctuations occur within the collection chamber while a constant forward tension is applied to the core material.
The fact that the pressure inside the gathering chamber is high means that the flow of the outer layer material at the die section becomes faster due to the internal pressure. If forward tension is not applied, the flow rate of the outer layer material will be faster than the extrusion speed of the composite wire, and as a result, the coating material will overflow from the die hole, resulting in the outer layer material being thicker than required. larger than the diameter. On the other hand, if the pressure in the gathering chamber becomes low, the flow of the outer layer material at the die portion is reduced, and as a result, the force that moves the composite wire itself outward is also reduced, and the thickness of the outer layer material becomes thinner. Thus, pressure fluctuations within the gathering chamber cause uneven thickness of the outer layer material, leading to product defects.

しかしながら、芯材に前方張力が付加されてい
ると、集合室内の圧力が高くなつてダイス部分の
外層材のフローが速くなつたとしても、当該前方
張力によつて芯材が当該外層材のフローに追随
し、外層材にオーバーフローを発生せしめるおそ
れがなくなる一方、集合室内の圧力が小さくなつ
た場合には、集合室内の外層材を前方張力が芯材
とともに引出す効果を生じ、前記肉厚の低下現象
を防止するものである。
However, if forward tension is applied to the core material, even if the pressure in the collection chamber increases and the flow of the outer layer material at the die part becomes faster, the core material will be forced to flow faster due to the forward tension. On the other hand, when the pressure inside the gathering chamber becomes small, the forward tension has the effect of pulling out the outer layer material inside the gathering chamber along with the core material, and the above-mentioned decrease in wall thickness occurs. This is to prevent the phenomenon.

上記の通り、本発明は集合室の断面積を大とし
てマス効果によるクツシヨンを与え、輸送通路内
の圧力変動がそのまま集合室内での圧力変動にな
らないという効果を発揮せしめ得たばかりでな
く、仮にも集合室内の圧力に変動があつたとして
も、芯材に前方張力が付加されることにより、外
層材のフローに適応した押出速度を確保して、被
覆層の肉厚変動の発生を阻止し、つねに安定した
高品質の複合線条体を製造可能としたものであ
る。
As described above, the present invention not only has the effect that the cross-sectional area of the gathering chamber is increased to provide cushioning due to the mass effect, but also that pressure fluctuations in the transportation passage do not directly result in pressure fluctuations within the gathering chamber. Even if the pressure inside the collection chamber fluctuates, forward tension is applied to the core material, ensuring an extrusion speed that is compatible with the flow of the outer layer material, preventing variations in the thickness of the coating layer, This makes it possible to always produce stable, high-quality composite filaments.

なお、外層材としては、前記アルミニウムに限
るものではなく、銅、亜鉛、錫などの金属さらに
はプラスチツクなどが使用できるものであり、芯
材としても銅線に限定されず外層材よりも変形抵
抗の小さい材料が使用できるものである。
The outer layer material is not limited to the above-mentioned aluminum, but metals such as copper, zinc, tin, and even plastics can be used.The core material is not limited to copper wire, but has a higher deformation resistance than the outer layer material. material with a small size can be used.

第3図は、本発明に係る別な実施例を示す説明
断面図であり、第4図はそのB―B′断面図であ
る。この実施例は2本のエンドレス溝32が設け
られた場合を示している。図において、30は駆
動軸、31は前記駆動軸に取付けられた可動ホイ
ールであつて、本実施例においては、外周面に2
本のエンドレス溝32が形成されている。33は
固定シユーブロツク、34は輸送通路、35はス
トツパー部、36は断面縮小部、37は集合室、
38はニツプル、39はダイスである。本実施例
において、前記実施例同様、可動ホイール31が
駆動軸30によつて回転され、2本の輸送通路3
4にそれぞれアルミ素材よりなる外層材40が供
給される。外層材40は可動ホイール31の回転
に伴い、エンドレス溝32との間の接触摩擦抵抗
によつて通路の奥に移動せしめられ、ストツパー
35により強制的に移動を阻止されることにより
前記同様押出圧力が発生せしめられ、断面縮小部
36を経て集合室内に送り込まれる。かくして、
ニツプル38より芯材41が供給され外層材40
と複合一体化されてダイス39より複合線42と
して押出される。
FIG. 3 is an explanatory sectional view showing another embodiment of the present invention, and FIG. 4 is a sectional view taken along line BB'. This embodiment shows a case where two endless grooves 32 are provided. In the figure, 30 is a drive shaft, and 31 is a movable wheel attached to the drive shaft.
An endless book groove 32 is formed. 33 is a fixed shovel block, 34 is a transportation passage, 35 is a stopper part, 36 is a cross-sectional reduction part, 37 is a gathering room,
38 is a nipple and 39 is a die. In this embodiment, as in the previous embodiment, a movable wheel 31 is rotated by a drive shaft 30, and two transport passages 3
4 are each supplied with an outer layer material 40 made of aluminum material. As the movable wheel 31 rotates, the outer layer material 40 is moved to the back of the passage due to the frictional resistance of contact with the endless groove 32, and is forcibly prevented from moving by the stopper 35, so that the same extrusion pressure is applied as described above. is generated and sent into the collection chamber through the cross-sectional reduction section 36. Thus,
The core material 41 is supplied from the nipple 38 and the outer layer material 40
The composite wire 42 is extruded from the die 39 as a composite wire 42.

上記のように2本のエンドレス溝が使用される
ことにより、仮に1つの溝にスリツプが発生して
もう一方の溝がこれを補完し、大きな圧力変動に
進展することはないから、より安定した製品を期
待できるものである。
By using two endless grooves as described above, even if a slip occurs in one groove, the other groove will compensate for it, and large pressure fluctuations will not develop, resulting in a more stable surface. The product is what you can expect.

第5図はさらに別な実施例を示すものであり、
第6図は第5図のC―C′断面図を示すものであ
る。本実施例は上記の実施例における2本の溝と
同様な効果を期待するものであるが、本実施例に
おいては、上記の実施例のように同一可動ホイー
ルに2本のエンドレス溝を形成するのでなく、2
つの可動ホイールを使用する場合が示されてい
る。すなわち、49は固定シユーブロツク、5
1,51′は駆動軸、50,50′は上記駆動軸に
取付けられ上下に相対応して配置された可動ホイ
ール、52,52′は当該可動ホイールの外周面
に形成されているエンドレス溝である。53,5
3′は輸送通路、54,54′はその断面O―
O′が溝の断面Q―Q′よりも大に形成されている
集合室、55,55′は通路と集合室との連通部
に形成された断面縮小部、56はニツプル、57
はダイス、58,58′はそれぞれの輸送通路5
3,53′に供給される外層材、59は芯材であ
る。
FIG. 5 shows yet another embodiment,
FIG. 6 shows a sectional view taken along line CC' in FIG. This example is expected to have the same effect as the two grooves in the above example, but in this example, two endless grooves are formed on the same movable wheel as in the above example. 2, not 2
The use of two movable wheels is shown. That is, 49 is a fixed shovel block, 5
1 and 51' are drive shafts, 50 and 50' are movable wheels attached to the drive shaft and arranged vertically correspondingly, and 52 and 52' are endless grooves formed on the outer peripheral surface of the movable wheels. be. 53,5
3' is the transportation passage, and 54, 54' are its cross sections O--
55, 55' are reduced cross-section portions formed at the communication portion between the passage and the collecting chamber; 56 is a nipple; 57
is the die, and 58 and 58' are the respective transport passages 5.
3 and 53' are outer layer materials supplied, and 59 is a core material.

本実施例の場合には、可動ホイールが別体とな
つたそれぞれに別個のエンドレス溝が形成されて
いるから、相補効果がより完全となるのである。
In this embodiment, since separate endless grooves are formed in each separate movable wheel, the complementary effect is more complete.

以上、本発明に係る複合線の製造方法によれ
ば、集合室の断面積が輸送通路の断面積よりも大
きく構成されているから、輸送通路内においてス
リツプなどに起因する圧力変動が発生しても、当
該圧力変動は断面積の大きな集合室に蓄積された
外層材の圧力までを変動せしめることがなく、安
定した被覆層を有する複合線条体を入手できる上
に、前方張力を付加することにより、仮にも集合
室内の圧力変動があつたとしても被覆層の肉厚に
影響を与えることを防止できるから、つねに高品
質の複合線条体を安定して製造できるものであ
り、コンフオーム押出法の適用による無限長の製
品を入手できる効果と相まつて、本発明の当業界
におよぼす意義はまことに大きなものがある。
As described above, according to the method of manufacturing a composite wire according to the present invention, since the cross-sectional area of the gathering chamber is configured to be larger than the cross-sectional area of the transport passage, pressure fluctuations due to slips etc. occur in the transport passage. However, the pressure fluctuation does not cause the pressure of the outer layer material accumulated in the collecting chamber with a large cross-sectional area to fluctuate, and it is possible to obtain a composite filament body having a stable coating layer, and also to apply forward tension. By using this method, even if there is a pressure fluctuation in the gathering chamber, it can be prevented from affecting the thickness of the coating layer, so it is possible to consistently produce high-quality composite filaments, and the conform extrusion method Coupled with the effect that products of infinite length can be obtained by application of this invention, the significance of the present invention to this industry is truly great.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る一実施例を示す説明断面
図、第2図は第1図のA―A′断面図、第3図は
本発明に係る別な実施例を示す説明断面図、第4
図は第3図のB―B′断面図、第5図は本発明にか
かるさらに別な実施例を示す説明断面図、第6図
は第5図のC―C′断面図である。 10,31,50,50′…可動ホイール、1
1,30,51,51′…駆動軸、12,32,
52,52′…エンドレス溝、13,33,49
…ストツパー、16,39,57…ダイス、1
7,28,56…ニツプル、18,37,54…
集合室、19,40,58,58′…外層材、2
0,36…断面縮小部、21,41,59…芯
材、22,42…複合線条体。
FIG. 1 is an explanatory sectional view showing one embodiment of the present invention, FIG. 2 is an AA' sectional view of FIG. 1, and FIG. 3 is an explanatory sectional view showing another embodiment of the present invention. Fourth
The figures are a sectional view taken along line BB' in FIG. 3, FIG. 5 is an explanatory sectional view showing still another embodiment of the present invention, and FIG. 6 is a sectional view taken along line CC' in FIG. 10, 31, 50, 50'...Movable wheel, 1
1, 30, 51, 51'...drive shaft, 12, 32,
52, 52'...endless groove, 13, 33, 49
...stopper, 16,39,57...dice, 1
7, 28, 56...nipple, 18, 37, 54...
Gathering room, 19, 40, 58, 58'...outer layer material, 2
0, 36... Reduced cross section portion, 21, 41, 59... Core material, 22, 42... Composite filament.

Claims (1)

【特許請求の範囲】 1 可動ホイールの周端面に形成されたエンドレ
ス溝と当該エンドレス溝に係合する固定シユーブ
ロツクとにより細長い輸送通路を形成し、当該輸
送通路内に外層材を供給し、前記可動ホイールの
回転に伴い前記外層材と溝内面との間に生ずる接
触摩擦抵抗によつて前記外層材に押出圧力を発生
せしめ、一方該外層材が被覆さるべき芯材は、前
記通路の奥において当該通路と連通し前記通路の
断面積よりも大きな断面積を有する集合室内に供
給され、前記外層材と芯材とを当該集合室内にお
いて複合一体化せしめるとともに、前記芯材には
前方張力を付加せしめて、ダイを通して複合線条
体を成形押出すことを特徴とする複合線条体の製
造方法。 2 輸送通路と集合室との連通路に断面縮小部を
形成しておく特許請求の範囲第1項記載の複合線
条体の製造方法。
[Scope of Claims] 1. An elongated transportation path is formed by an endless groove formed on the peripheral end surface of the movable wheel and a fixed shoe block that engages with the endless groove, and an outer layer material is supplied into the transportation path, and the movable wheel is The contact friction resistance generated between the outer layer material and the inner surface of the groove as the wheel rotates causes extrusion pressure to be generated in the outer layer material, while the core material to be covered with the outer layer material The material is supplied into a collection chamber that communicates with the passageway and has a cross-sectional area larger than the cross-sectional area of the passageway, and integrates the outer layer material and the core material into a composite body within the collection chamber, and applies forward tension to the core material. A method for producing a composite filament, comprising: molding and extruding the composite filament through a die. 2. The method for manufacturing a composite filament body according to claim 1, wherein a reduced cross-section portion is formed in the communication path between the transportation path and the gathering room.
JP5007377A 1977-04-30 1977-04-30 Manufacture of composite wire rod Granted JPS53135866A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP5007377A JPS53135866A (en) 1977-04-30 1977-04-30 Manufacture of composite wire rod
US06/806,799 USRE32399E (en) 1977-04-30 1985-12-09 Method for the manufacture of a composite metal wire
US06/806,798 USRE32385E (en) 1977-04-30 1985-12-09 Apparatus for the manufacture of a composite metal wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5007377A JPS53135866A (en) 1977-04-30 1977-04-30 Manufacture of composite wire rod

Publications (2)

Publication Number Publication Date
JPS53135866A JPS53135866A (en) 1978-11-27
JPS6117570B2 true JPS6117570B2 (en) 1986-05-08

Family

ID=12848816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5007377A Granted JPS53135866A (en) 1977-04-30 1977-04-30 Manufacture of composite wire rod

Country Status (1)

Country Link
JP (1) JPS53135866A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS569907A (en) * 1979-07-03 1981-01-31 Hitachi Cable Method and apparatus for continuously manufacturing composite wire
JPS5641014A (en) * 1979-09-11 1981-04-17 Hitachi Cable Ltd Manufacture of composite wire

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50133186A (en) * 1974-04-09 1975-10-22

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50133186A (en) * 1974-04-09 1975-10-22

Also Published As

Publication number Publication date
JPS53135866A (en) 1978-11-27

Similar Documents

Publication Publication Date Title
HU206468B (en) Method and apparatus for producing ribbed tubes
US4182738A (en) Method of manufacturing helical members from a synthetic extruded material
US4242368A (en) Method for the manufacture of a composite metal wire
EP1498253A4 (en) Highly viscous molten coating composition coating core wire extrusion head
JPS6117570B2 (en)
US3029476A (en) Method for making blown rubber
JPS6117569B2 (en)
US3783663A (en) Method of and device for the drawing of tubular workpieces
JP2801199B2 (en) Continuous extruder for composite filaments
JPS56132303A (en) Production of optical fiber cable
JP2697844B2 (en) Continuous wire and tube extrusion equipment
US4533421A (en) Method for making a lap seam extruded tendon
JPS6057928B2 (en) Metal composite manufacturing equipment
GB2218034A (en) An extrusion process and apparatus therefor
JPS619920A (en) Production of irregular-sectioned composite metallic wire and combination die device used in said production
JPS5933444B2 (en) Die for extruding finned shapes
JPS599247B2 (en) Composite wire manufacturing equipment
JPS6057927B2 (en) How to manufacture multiple composite wires at the same time
FR2564375A1 (en) METHOD FOR MANUFACTURING THERMOPLASTIC RIGID LIPID TUBES
JPH0910825A (en) Manufacture of composite wire shaped body
JPS5886927A (en) Manufacturing device of composite wire-shaped body
JPS637852B2 (en)
JPS595444Y2 (en) Continuous manufacturing equipment for metal composite materials
JPS598809Y2 (en) Rotating wheel continuous composite material extrusion equipment
JPS5973116A (en) Production of composite wire rod