JPS61175623A - Liquid crystal display device - Google Patents

Liquid crystal display device

Info

Publication number
JPS61175623A
JPS61175623A JP60016742A JP1674285A JPS61175623A JP S61175623 A JPS61175623 A JP S61175623A JP 60016742 A JP60016742 A JP 60016742A JP 1674285 A JP1674285 A JP 1674285A JP S61175623 A JPS61175623 A JP S61175623A
Authority
JP
Japan
Prior art keywords
layer
liquid crystal
crystal display
display device
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60016742A
Other languages
Japanese (ja)
Inventor
Hideaki Iwano
岩野 英明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP60016742A priority Critical patent/JPS61175623A/en
Publication of JPS61175623A publication Critical patent/JPS61175623A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1365Active matrix addressed cells in which the switching element is a two-electrode device

Abstract

PURPOSE:To decrease the number of process and to improve considerably yield by forming BTBD between a cell electrode and line electrode. CONSTITUTION:A non-linear device is the BTBD and a p-type a-Si layer 104, an i layer a-Si layer 105 and an a-Si:Ge layer 106 are successively laminated between the line electrode 103 and cell electrode 102 consisting of ITO formed on an insulating substrate 10. The ITO and two times of photolithographing stages for the a-Si part are just required to form the non-linear element. The process for production is extremely short and simple. Since the a-Si:Ge layer 106 has high conductivity and large coefft. of light absorption, said layer acts as a light shielding layer to suppress the malfunction of the BTBD.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は各画素忙非線形素子を設け、多重化を可能忙し
、且つ製造工穆を大幅に減少させ几液晶表示装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a liquid crystal display device in which each pixel is provided with a nonlinear element, which enables multiplexing and greatly reduces the manufacturing process.

〔従来の技術〕[Conventional technology]

液晶表示装置は大形表示装置を実現する定めに各画素に
非線形制御−置を設ける。従来の前記非線形制御装置に
け薄膜トランジスタ(丁F’J’)に代表される3端子
素子と、バリスタ、金属−絶縁体−金属(M工M)、2
つのダイオードを逆方向忙つないだバヴクトゥバックダ
イオードを逆方向につないだバックトウパックダイオー
ド(以下BTBD  と称する)等の2端子素子等があ
る。
In liquid crystal display devices, each pixel is provided with a nonlinear control device in order to realize a large display device. The conventional nonlinear control device includes a three-terminal element represented by a thin film transistor (F'J'), a varistor, a metal-insulator-metal (M),
There are two-terminal devices such as a back-to-back diode (hereinafter referred to as BTBD), which has two diodes connected in the opposite direction, and a back-to-back diode (hereinafter referred to as BTBD).

′〔発明が解決しようとする問題点〕 しかし前述の従来技術では、3端子素子の場合製造プロ
セスが長く難しい即ちT’FTf:製作する九めには6
〜8回のフォトリングラフィ工程を通す友めに各層の制
御釦は細心の注意を必要とし、歩留りを向上させ製造コ
ストを下げるのが難しいという問題点を有する。まtバ
リスタ、M工Mは非線形素子の容量が大きくこれを通じ
てのクロストークht問題となり付加容量の設置や素子
構造に特別の工夫ht必要である。また半導体層として
非晶質シリコン(以下α−日iと称する)を用い九BT
BDけα−Biがプラズマ放電分解によって形成できる
為に低温で大面積にわtって薄膜形成可能な几め、安価
なガラスを基板とし友大形ディスプレイ用のスイッチン
グ素子として好的である。第2図は従来のBTBDを含
む画素部の断面図である。
[Problem to be solved by the invention] However, in the above-mentioned conventional technology, in the case of a three-terminal element, the manufacturing process is long and difficult.
The control buttons of each layer require careful attention during the ~8 photolithography process, which poses a problem in that it is difficult to improve the yield and reduce the manufacturing cost. In the varistor and M process, the capacitance of the non-linear element is large, which causes a problem of crosstalk, which requires installation of additional capacitance and special measures for the element structure. In addition, amorphous silicon (hereinafter referred to as α-i) was used as the semiconductor layer and 9BT
Since α-Bi in BD can be formed by plasma discharge decomposition, it is possible to form a thin film over a large area at low temperatures, making it suitable as a switching element for large-sized displays using inexpensive glass as a substrate. FIG. 2 is a cross-sectional view of a pixel section including a conventional BTBD.

絶縁基体201上に共通電極となるS型α−Bi層20
2iWa−8ff1層203を積層し、a−84の上面
にシ璽ットキー接合を形成するプラチナ、金等の金属電
極204を設蓋し非線形素子を形成する。しかしこの従
来技術においても、フォトリソグラフィの工程が4回必
要であり、大幅な製造コストの減少は難しいという問題
点を有している。そこで本発明けこのような問題点を解
決するもので、その目的とするところは、安価なガラス
基板を用い。
S-type α-Bi layer 20 serving as a common electrode on an insulating base 201
A 2iWa-8ff1 layer 203 is laminated, and a metal electrode 204 of platinum, gold, etc., which forms a shut-key junction, is provided on the upper surface of a-84 to form a nonlinear element. However, this conventional technique also has the problem that four photolithography steps are required, making it difficult to significantly reduce manufacturing costs. Therefore, the present invention is intended to solve these problems, and its purpose is to use an inexpensive glass substrate.

製造工程を大gに減少させ、その結果製造コストの極め
て低い液晶表示装置を提供するところkある。
There are ways to reduce the manufacturing process to a large extent, thereby providing a liquid crystal display device with extremely low manufacturing costs.

r問題点を解決する之めの手段〕 本発明の半導体装置は、前記非線形装置がBTBDであ
り、絶縁基体上に形成された工Toによる行電極とセル
電極の間Vcpgα−S<層とsmα−Bi層とα−B
イ:Ga層を順次積層し九ことを特徴とする。
Means for Solving Problems] In the semiconductor device of the present invention, the nonlinear device is a BTBD, and a layer of Vcpgα−S<layer and smα between the row electrode and the cell electrode formed on the insulating substrate -Bi layer and α-B
A: It is characterized by sequentially laminating Ga layers.

〔作用〕[Effect]

本発明の上記の構成によれば、非線形素子を形成するま
で忙工Toと、α−8i部の2回のフォトリソグラフイ
エSt必要とするの入であり、!1造工穆が極めて短く
簡単である。更にα−sイ:Ga層は導電率が高く且つ
光吸収係数が大であるので遮光層として働きBTBDの
誤動作を押える。
According to the above configuration of the present invention, it is necessary to perform the photolithography process twice for the α-8i section and the photolithography process for the α-8i section until the nonlinear element is formed. 1 construction is extremely short and simple. Furthermore, since the α-sI:Ga layer has high conductivity and a large light absorption coefficient, it acts as a light shielding layer and suppresses malfunction of the BTBD.

〔実施例〕〔Example〕

第1図は本発明の実施例忙おける液晶表示装置の1画素
の断面図であって、101けガラス等の絶縁性基体10
2け工Toから成るセル電極、103けITOから成る
行電極、104け臭素等の周期律表第1−b族元素を混
入したα−84層(p層)、105け不純物の混入のな
いα−si層(i畳)、106けモノシランガス(Si
H4)、ゲルマンガス(Gl−)を混合して、プラズマ
放電分解等により形成され次α−Bi : G#合金層
である。α−Bi : Gg層は半金属的性質を持ち且
つ可視鍼先をほとんど吸収するのでml及び遮光層とし
ての役割を担う。IE3図にこの非線形素子の電流電圧
特性を示す。該非線形素子は限界電圧vthを有し、該
限界電圧を超える電圧が訪素子に印加されると訪素子は
導通状態となる。113図に示すよ5Vc正負電圧忙対
して対称的スイッチング特性を有する。
FIG. 1 is a cross-sectional view of one pixel of a liquid crystal display device according to an embodiment of the present invention.
Cell electrode consisting of 2-layer To, row electrode consisting of 103-layer ITO, 104-layer α-84 layer (p layer) containing elements from group 1-b of the periodic table such as bromine, and 105-layer without contamination of impurities. α-Si layer (i tatami), 106 monosilane gas (Si
The α-Bi:G# alloy layer is formed by mixing H4) and germane gas (Gl-) and plasma discharge decomposition. α-Bi: The Gg layer has semimetallic properties and absorbs most of the visible needle tip, so it plays a role as a ml and light-shielding layer. Figure IE3 shows the current-voltage characteristics of this nonlinear element. The nonlinear element has a limit voltage vth, and when a voltage exceeding the limit voltage is applied to the visiting element, the visiting element becomes conductive. As shown in Figure 113, it has symmetrical switching characteristics with respect to 5Vc positive and negative voltages.

914図に皺BTBDKよるマトリックス液晶デ、イス
プレイの回路構成図である。401けマトリックス配電
され次データ線、402け走査線である。
Figure 914 is a circuit diagram of a matrix liquid crystal display using BTBDK. There are 401 power-distributed data lines and 402 scanning lines.

403け液晶表示素子、404はBTBD′f示す。該
液晶表示素子と該BTBDは直列に接続されて単位画素
が形成されている。データ線忙かかる電圧パルスの振幅
vdと走査線にかかる電圧パルスの振幅v8の差(vd
 −Vs )が液晶に加わる正味電圧となりこれが非線
形素子の限界電圧vthより低ければ液晶表示素子には
電圧が印加されず、正味電圧が非線形素子の限界電圧と
液晶の閾値電圧より高ければ液晶表示素子に電圧が印加
され、画素の液晶の光学状態を変更することができる。
403 liquid crystal display elements, 404 indicate BTBD'f. The liquid crystal display element and the BTBD are connected in series to form a unit pixel. The difference between the amplitude vd of the voltage pulse applied to the data line and the amplitude v8 of the voltage pulse applied to the scanning line (vd
-Vs) is the net voltage applied to the liquid crystal, and if this is lower than the limit voltage vth of the nonlinear element, no voltage is applied to the liquid crystal display element, and if the net voltage is higher than the limit voltage of the nonlinear element and the threshold voltage of the liquid crystal, the liquid crystal display element A voltage can be applied to change the optical state of the pixel's liquid crystal.

更に#BTBDけ正負電圧に対して対称的なスイッチン
グ特性を有する几めK、正負電圧を交互に印加して動作
させることが可能で、液晶の寿命を延ばすことが可能で
ある。
Furthermore, it is possible to operate by alternately applying positive and negative voltages, which have switching characteristics symmetrical to the positive and negative voltages of #BTBD, and it is possible to extend the life of the liquid crystal.

第5図に本発明による液晶表示素子の製造方法を説明す
る。ガラス等の絶縁基体501上に工TOをスパッタリ
ング等の方法により薄講形成を行なう。(第5−(b)
図)。画素電極及び行電極のパターンを7オトエヴチン
グの工程により形成する。
A method of manufacturing a liquid crystal display element according to the present invention will be explained with reference to FIG. A thin film of TO is formed on an insulating substrate 501 such as glass by a method such as sputtering. (Chapter 5-(b)
figure). Patterns of pixel electrodes and row electrodes are formed by a seven-dimensional etching process.

($ 5− (c)図)。しかる後に、該基板を真空容
器中の基板支持台の上に設置し、p層α−ai、<層の
α−si、 a−siaa 層を同一真空容器中で連続
形成する($5−頓図)。
($5- (c) figure). Thereafter, the substrate is placed on a substrate support in a vacuum container, and the p layer α-ai, the <layer α-si, and the a-siaa layer are successively formed in the same vacuum container ($5-one-piece). figure).

次にフォトリングラフィの工程によりa−Bi:Gg 
、 α−8i@が一度にパターン形成されセル電極が得
られる(第5− (g)図)。
Next, a-Bi:Gg was formed by a photophosphorography process.
, α-8i@ are patterned all at once to obtain a cell electrode (Figure 5-(g)).

本実施例によって得られ几非線形素子は第3図に示す如
く十分なスイッチング特性を有し、多重化の可能な大面
積の液晶表示装置を前記駆動方法により均一でコントラ
スト比の高い画gI!表示が可能であった。本実施例に
おいては、スイッチング素子のパターン形1までにフォ
トリソグラフィの工稈が2回必要とするだけであり、従
来の液晶表示装置に比較して工糧数ht 3〜4回減少
するtめに大幅な歩留りの向上を期待できる。市た工T
Oの形成以後、最終の電極層の形成までが同一の真空容
器内で形成可能な几め、従来のTFTのような精密な界
面制御を必要としないのでこの点でも歩留りの向上を期
待できる。更にこの形成方法けα−s<、 a−B’i
:Ge層が200 ’C〜300℃の低温で形成できる
ので安価なガラス等を使用可能で液晶表示装置を低価格
で製、造するのに好適である。
The nonlinear element obtained in this example has sufficient switching characteristics as shown in FIG. 3, and can be used in a large-area liquid crystal display device that can be multiplexed by using the above-described driving method to produce uniform and high contrast ratio images. display was possible. In this embodiment, only two photolithography processes are required to form the pattern 1 of the switching element, and the number of photolithography processes is reduced by 3 to 4 times compared to a conventional liquid crystal display device. A significant improvement in yield can be expected. Ichitako T
Since the formation of O and the formation of the final electrode layer can be performed in the same vacuum container, and precise interface control unlike conventional TFTs is not required, an improvement in yield can be expected in this respect as well. Furthermore, this formation method α−s<, a−B′i
: Since the Ge layer can be formed at a low temperature of 200'C to 300C, inexpensive glass or the like can be used, making it suitable for producing and producing liquid crystal display devices at low cost.

〔発明の効果〕〔Effect of the invention〕

以上述べ几ように本発明によればセル電極と行電極の間
KBTBDを形成しtことにより、従来の液晶表示装置
の製造方法と比較して工程数を減少させることh=でき
、その結果大幅に歩留り力を向上し信頼性ht高く且つ
安価な液晶表示装置の製造うt可能となるという効果を
有する。
As described above, according to the present invention, by forming KBTBD between the cell electrode and the row electrode, the number of steps can be reduced compared to the conventional manufacturing method of a liquid crystal display device, and as a result, the number of steps can be significantly reduced. This has the effect of improving yield and making it possible to manufacture highly reliable and inexpensive liquid crystal display devices.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による液晶表示装置の画素部の主要断面
図。 第2図は従来のBTBD非線形素子を用い次液晶表示装
置の画素部の主要断面図。 第3図は本発明によるBTBD非線形素子の電流−電圧
特性の一例を示した図。 第4図は、本発明によるマトリックス駆動液晶ディスプ
レイの回路構成図。 軍5図(ロ))〜(8]は本発明による画素部の製造工
程を示した図。 101 、201・・・・・・絶縁性基体102 、2
06・・・・・・セル電極103・・・・・・行電極 104・・・・・・α−BiCp層) 105 、203・・・・・・α−Sゼ(4層)106
− a −s< G a層 107 、207・・・・・一対向電極108 、20
8・・・・・・対向基体202・・・・・・α−Sイ(
1層) 204・・・・・・シlヴトキー電極 205・・・・・・絶縁性薄膜 401・・・・・・データ線 402・・・・・・走査線 403・・・・・・液晶表示素子 404・・・・・・バプクトゥパックダイオード501
・・・・・・絶縁性基体 502・・・・・・工T0 503・・・・・・α−BiCp層) 504・・・・・・α−5iCi層) 505・・・・・・α−5ee一層 以  上 出原人 株式会社 諏訪精工舎
FIG. 1 is a main cross-sectional view of a pixel section of a liquid crystal display device according to the present invention. FIG. 2 is a main cross-sectional view of a pixel portion of a liquid crystal display device using a conventional BTBD nonlinear element. FIG. 3 is a diagram showing an example of current-voltage characteristics of the BTBD nonlinear element according to the present invention. FIG. 4 is a circuit diagram of a matrix-driven liquid crystal display according to the present invention. Figures 5 (b) to (8) are diagrams showing the manufacturing process of the pixel portion according to the present invention. 101, 201... Insulating substrates 102, 2
06...Cell electrode 103...Row electrode 104...α-BiCp layer) 105, 203...α-Sze (4 layers) 106
-a-s< Ga layer 107, 207...One counter electrode 108, 20
8...Counter substrate 202...α-Si(
1 layer) 204...Silver key electrode 205...Insulating thin film 401...Data line 402...Scanning line 403...Liquid crystal Display element 404... Bapuktupac diode 501
......Insulating substrate 502...T0 503...α-BiCp layer) 504...α-5iCi layer) 505...α -5ee 1st layer and above Izuhara Suwa Seikosha Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] (1)マトリックス状に配列された電極間に液晶層を設
け、対向する前記セル電極の一方には行電極とセル電極
の間に電気的非線形手段を有し、各対向セル電極間に前
記非線形手段の持つ限界電圧と前記液晶の持つ閾値電圧
の和より大きな電圧を印加することによって液晶の光学
状態を変更させ駆動し得る液晶表示装置において、前記
非線形手段が前記行電極とセル電極の間に周期律表第I
I−b族元素を含む非晶質硅素(p層)と不純物を含ま
ない非晶質硅素層(i層)を順次積層して成ることを特
徴とする液晶表示装置。
(1) A liquid crystal layer is provided between electrodes arranged in a matrix, one of the opposing cell electrodes has electrical nonlinear means between a row electrode and a cell electrode, and the nonlinear means is provided between each opposing cell electrode. In a liquid crystal display device in which the optical state of the liquid crystal can be changed and driven by applying a voltage larger than the sum of the limit voltage of the means and the threshold voltage of the liquid crystal, the nonlinear means is arranged between the row electrode and the cell electrode. Periodic Table I
A liquid crystal display device comprising an amorphous silicon layer (p layer) containing an I-b group element and an amorphous silicon layer (i layer) containing no impurities, which are successively laminated.
(2)前記行電極及びセル電極が酸化インジウムスズ(
ITO)から成ることを特徴とする特許請求の範囲第1
項記載の液晶表示装置。
(2) The row electrodes and cell electrodes are indium tin oxide (
Claim 1 characterized in that the material is made of ITO)
The liquid crystal display device described in Section 1.
(3)前記非線形手段の上に不透明且つ導電性の電極が
形成されていることを特徴とする特許請求の範囲第1項
記載の液晶表示装置。
(3) The liquid crystal display device according to claim 1, wherein an opaque and conductive electrode is formed on the nonlinear means.
(4)前記不透明且つ導電性の電極が硅素及びゲルマニ
ウム元素を主成分とする非晶質材料であることを特徴と
する特許請求の範囲第1項記載の液晶表示装置。
(4) The liquid crystal display device according to claim 1, wherein the opaque and conductive electrode is an amorphous material containing silicon and germanium elements as main components.
JP60016742A 1985-01-31 1985-01-31 Liquid crystal display device Pending JPS61175623A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60016742A JPS61175623A (en) 1985-01-31 1985-01-31 Liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60016742A JPS61175623A (en) 1985-01-31 1985-01-31 Liquid crystal display device

Publications (1)

Publication Number Publication Date
JPS61175623A true JPS61175623A (en) 1986-08-07

Family

ID=11924716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60016742A Pending JPS61175623A (en) 1985-01-31 1985-01-31 Liquid crystal display device

Country Status (1)

Country Link
JP (1) JPS61175623A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0599462A1 (en) * 1992-11-25 1994-06-01 Sharp Kabushiki Kaisha Display device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0599462A1 (en) * 1992-11-25 1994-06-01 Sharp Kabushiki Kaisha Display device

Similar Documents

Publication Publication Date Title
KR0133845B1 (en) Semiconductor device and electro-optical device for using it
US4589733A (en) Displays and subassemblies having improved pixel electrodes
US4816885A (en) Thin-film transistor matrix for liquid crystal display
GB2081018A (en) Active Matrix Assembly for Display Device
US4642620A (en) Matrix display device
CN102543754A (en) Oxide thin film transistor and method of fabricating the same
US4709992A (en) Liquid crystal matrix display device having opposed diode rings on substrates
JPH06102537A (en) Active matrix type liquid crystal display element
US5508765A (en) Matrix-addressed type display device
JPH04313729A (en) Liquid crystal display device
US5677547A (en) Thin film transistor and display device including same
JPH0261725B2 (en)
JPS6227709B2 (en)
US5295008A (en) Color LCD panel
JPS61175623A (en) Liquid crystal display device
JPH0230019B2 (en)
US20050225543A1 (en) Display circuit having asymmetrical nonlinear resistive elements
JPS61175624A (en) Liquid crystal display device
JPH0239103B2 (en)
JPH0261019B2 (en)
JPH01277217A (en) Active matrix type liquid crystal display element array
JPS63292114A (en) Active matrix type liquid crystal display device
US20230082232A1 (en) Active matrix substrate and liquid crystal display device
JPH023231A (en) Thin film transistor and manufacture thereof
KR940001900B1 (en) Nonlinear resister devices