JPS61175555A - Quantitative analysis employing x-ray fluorescence analyzer - Google Patents

Quantitative analysis employing x-ray fluorescence analyzer

Info

Publication number
JPS61175555A
JPS61175555A JP1707485A JP1707485A JPS61175555A JP S61175555 A JPS61175555 A JP S61175555A JP 1707485 A JP1707485 A JP 1707485A JP 1707485 A JP1707485 A JP 1707485A JP S61175555 A JPS61175555 A JP S61175555A
Authority
JP
Japan
Prior art keywords
dead time
calibration curve
quantitative analysis
time correction
curve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1707485A
Other languages
Japanese (ja)
Inventor
Akio Hori
彰男 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP1707485A priority Critical patent/JPS61175555A/en
Publication of JPS61175555A publication Critical patent/JPS61175555A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/223Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material by irradiating the sample with X-rays or gamma-rays and by measuring X-ray fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/07Investigating materials by wave or particle radiation secondary emission
    • G01N2223/076X-ray fluorescence

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To enable the use of a common calibration curve for apparatuses, by separating the calibration curve from dead time zone as apparatus function. CONSTITUTION:A dead element corrector 16 performs an almost complete dead time correction for the intensity of X rays counted to enable the calculation of the true intensity of X rays. Then, the concentration of sample components is calculated from a calibration curve with a component calculator 18 with respect to the true intensity of X rays calculated. The calibration curve is separated from the dead time by a highly accurate dead time correction with the corrector 16. As a result, the calibration curves of sample components can be used commonly for apparatuses by correcting the sensitivity ratioes among the apparatuses involved.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、蛍光X線分析装置において定量分析を行な
う、方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for performing quantitative analysis in a fluorescent X-ray analyzer.

(従来の技術) X線検出器により得られるパルス信号を計数し、この計
数値にもとづき定量分析を行なう装置にあっては、不感
時間補正を行なった後、検量線を用いて定量分析を行な
っている。このように、検出器−プリアンプ−計数器の
系において発生する不感時間の補正が必須条件である。
(Prior art) In an apparatus that counts pulse signals obtained by an X-ray detector and performs quantitative analysis based on the counted value, after performing dead time correction, quantitative analysis is performed using a calibration curve. ing. Thus, it is essential to correct the dead time that occurs in the detector-preamplifier-counter system.

不感時間がゼロの場合、X線入力(X線管電流)対計数
値(X線強度)は、第2図に記号2として示されるよう
に完全に直線として表現される。しかし、実際には不感
時間の影響で同図に記号4として示されるように曲線と
なる。この曲線4と直線2の関係は、理論的に示される
項だけでなく、回路的な問題が絡みあっており、単純な
式では補正できない。
If the dead time is zero, the x-ray input (x-ray tube current) versus the count value (x-ray intensity) is represented as a perfectly straight line, as shown as symbol 2 in FIG. However, in reality, due to the dead time, the curve becomes a curve as shown by symbol 4 in the figure. The relationship between the curve 4 and the straight line 2 involves not only theoretical terms but also circuit problems, and cannot be corrected using a simple equation.

従来の不感時間補正は、 N0N/  (1−TN) (但し、Nは実際の計数値、Tは不感時間(秒)、NO
は補正された計数値)で示される理論式を使用している
The conventional dead time correction is N0N/ (1-TN) (where N is the actual count value, T is the dead time (seconds), and NO
is the corrected count value).

(発明が解決しようとする問題点) 上記の理論式を用いた不感時間補正では、実際の不感時
間を補正しきれず、未補正成分が残る。
(Problems to be Solved by the Invention) In the dead time correction using the above theoretical formula, the actual dead time cannot be completely corrected, and an uncorrected component remains.

一方、試料成分間の干渉を補正するためのマトリックス
補正を行なった後の検量線は、もし不感時間がなければ
例えば第3図に記号6で示されるように表わされるが、
実際には成分が100%近くになると計数量が大きくな
って不感時間の影響で算え落しが増加してくるため、同
図に記号8で示される曲線のようにうねってくる。不感
時間は装置の関数であるため、装置条件を変化させると
この曲線8も変化し、検量線は一定の条件下のみでしか
使用できない結果となっている。
On the other hand, if there is no dead time, the calibration curve after matrix correction for correcting interference between sample components would be expressed as shown by symbol 6 in FIG. 3, for example.
In reality, when the component approaches 100%, the number of counts increases and the number of calculation errors increases due to the effect of dead time, so the curve becomes undulating as shown by the symbol 8 in the figure. Since the dead time is a function of the equipment, this curve 8 also changes as the equipment conditions change, resulting in the fact that the calibration curve can only be used under certain conditions.

このため、実際の分析装置では検量線を作成するとき、
この不感時間の未補正項を含んだ形で検量線を作成して
いる。このため、装置間の未補正成分のバラツキが検量
線に影響し、装置ごとに検量線を作成する煩わしさがあ
った。
For this reason, when creating a calibration curve in an actual analyzer,
A calibration curve is created that includes the uncorrected term for this dead time. Therefore, variations in uncorrected components between devices affect the calibration curve, and it is troublesome to create a calibration curve for each device.

この発明は、検量線を装置関数である不感時間から分離
させ、各装置に共通の検量線を使用することを可能とす
る、蛍光X線分析装置の定量分析方法を提供することを
目的とするものである。
An object of the present invention is to provide a quantitative analysis method for a fluorescent X-ray analyzer, which separates a calibration curve from dead time, which is an instrument function, and makes it possible to use a common calibration curve for each instrument. It is something.

(問題点を解決するための手段) この発明の定量分析方法では、検量線が装置関数として
の不感時間の影響を受けない程度に高精度の不感時間補
正を行ない、かつ、検量線を各装置に共通に使用するよ
うにしたものである。
(Means for Solving the Problems) In the quantitative analysis method of the present invention, highly accurate dead time correction is performed to the extent that the calibration curve is not affected by the dead time as a function of the instrument, and the calibration curve is It is designed for common use.

(作用) 不感時間補正を高精度に行なうと検量線は不感時間から
分離される。その結果、各装置による感度比を補正すれ
ば、各試料成分の検量線は各装置に共通に使用すること
ができる。
(Function) When dead time correction is performed with high precision, the calibration curve is separated from the dead time. As a result, by correcting the sensitivity ratio of each device, the calibration curve for each sample component can be used in common for each device.

(実施例) 第1図はこの発明の定量分析方法を実施する蛍光X線分
析装置の計数系を概略的に示す。10は検出器、12は
プリアンプ、14は計数器、16は計数されたX線強度
にほぼ完全な不感時間補正を施すことによって真のX線
強度を算出する不感補正機、18はその算出された真の
X線強度に対し、検量線から試料成分濃度を算出する成
分計算機である。
(Example) FIG. 1 schematically shows a counting system of a fluorescent X-ray analyzer that implements the quantitative analysis method of the present invention. 10 is a detector, 12 is a preamplifier, 14 is a counter, 16 is a dead-time correction machine that calculates the true X-ray intensity by applying almost complete dead-time correction to the counted X-ray intensity, and 18 is the calculated X-ray intensity. This is a component calculator that calculates sample component concentrations from a calibration curve based on the true X-ray intensity.

不感補正機におけるほぼ完全な不感時間補正は。Almost complete dead time correction in the dead correction machine.

例えば以下のように行なう。For example, do as follows.

第1の方法は例えば次の経験式 %式%) (ただし、Nは実際の計数値、T!〜Tnは係数、NO
は補正された計数値)を用いる方法である。
The first method is, for example, the following empirical formula % formula %) (where N is the actual count value, T!~Tn are coefficients, NO
is the corrected count value).

すなわち、まず各装置についてXIl管電流を変化させ
てX線強度を測定し、第2図に示されるような曲線4を
作成し、低X線管電流域でのその曲線4の接線として真
のX線強度を表わす直線2を得る。そして、これらの曲
線4と直線2のデータをもとにして各装置ごとの上記経
験式の係数T+。
That is, first measure the X-ray intensity by varying the XIl tube current for each device, create a curve 4 as shown in Figure 2, and then use the true tangent to curve 4 in the low X-ray tube current range. A straight line 2 representing the X-ray intensity is obtained. Based on the data of these curve 4 and straight line 2, the coefficient T+ of the above empirical formula is determined for each device.

T2.・・・・・・Tnを決定する。T2. ...Determine Tn.

次に、試料を測定したときの計数値Nから上記の式によ
る補正された計数値Noを算出する。
Next, the corrected count value No. according to the above formula is calculated from the count value N when the sample is measured.

不感時間補正の第2の方法は、テーブルを用いる方法で
ある。すなわち、上記のように測定された第2図の曲線
4のデータ及び算出された直線2のデータをテーブルと
して保持しておき、試料測定時の計数値に対応する真の
X線強度をそのテーブルから読み取るものである。
A second method of dead time correction is a method using a table. That is, the data of curve 4 in Figure 2 measured as above and the data of straight line 2 calculated are held as a table, and the true X-ray intensity corresponding to the count value at the time of sample measurement is stored in the table. This is what is read from.

第1の方法及び第2の方法は、一般にコンピュータを用
いることにより容易に行なうことができる。
The first method and the second method can generally be easily performed using a computer.

従来は検量線に、装置に非線型に依存する不感時間成分
が含まれていたので、第1図の装置において不感補正機
16と成分計算機18とは一体のものとして備えられて
いる必要があった。しかしながら、この発明では検量線
に不感時間成分が含まれていないので、不感補正機16
と成分計算機18とを別個のものとすることができる。
Conventionally, the calibration curve has included a dead time component that is nonlinearly dependent on the device, so the device shown in FIG. Ta. However, in this invention, since the calibration curve does not include a dead time component, the dead time compensator 16
and component calculator 18 may be separate.

その結果、成分計算機18を蛍光X線分析装置とは別装
置とすることもできる。
As a result, the component calculator 18 can be provided as a separate device from the fluorescent X-ray analyzer.

(効果) この発明では装置関数である不感時間と試料成分関数で
ある検量線とが分離され、各装置に共通の検量線が使用
できるようになる結果、以下のような効果を発揮するこ
とができる。
(Effects) In this invention, the dead time, which is an instrument function, and the calibration curve, which is a sample component function, are separated, and a common calibration curve can be used for each instrument, resulting in the following effects. can.

(1)分析上の問題が装置関数と試料成分関数とに分離
されるので、理論的な補正が更に容易となる。
(1) Since analytical problems are separated into instrument functions and sample component functions, theoretical correction becomes easier.

(2)高い計数率領域まで利用できるようになり、高感
度分析を可能とする。
(2) It becomes possible to use even high counting rate regions, enabling highly sensitive analysis.

(3)このJ!明では各装置ごとの不感時間測定(例え
ば経験式の係数の決定やテーブル作成)と、各装置に共
通の各試料成分ごとの検量線の測定を行なうのみで済む
。これに対して、従来の方法では各試料成分ごとの検量
線を各装置について測定しなければならない。この発明
で必要な不感時間測定は、従来のように検量線を装置ご
とに作成する作業に比べるとはるかに簡単な作業である
(3) This J! In this case, it is only necessary to measure the dead time for each device (for example, determine the coefficients of the empirical formula and create a table) and measure the calibration curve for each sample component that is common to each device. In contrast, in the conventional method, a calibration curve for each sample component must be measured for each device. The dead time measurement required in this invention is a much simpler task than the conventional task of creating a calibration curve for each device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明を実施する蛍光X線分析装置の計数系
を示す概略図、第2図はX線強度測定における不感時間
の影響を示すグラフ、第3図は検量線を示すグラフであ
る。
Fig. 1 is a schematic diagram showing the counting system of a fluorescent X-ray analyzer implementing the present invention, Fig. 2 is a graph showing the influence of dead time on X-ray intensity measurement, and Fig. 3 is a graph showing a calibration curve. .

Claims (3)

【特許請求の範囲】[Claims] (1)蛍光X線分析装置のX線計数値に不感時間補正を
施した後、検量線を用いて定量分析を行なう方法におい
て、 前記不感時間補正を検量線が装置関数としての不感時間
の影響を受けない程度に行ない、 かつ、前記検量線を各装置に共通に使用することを特徴
とする定量分析方法。
(1) In a method in which a dead time correction is applied to the X-ray count values of a fluorescent X-ray analyzer and then a quantitative analysis is performed using a calibration curve, the influence of the dead time as a function of the instrument when the dead time correction is applied to the calibration curve. 1. A quantitative analysis method, characterized in that the calibration curve is carried out to the extent that no damage is caused, and the calibration curve is used in common for each device.
(2)前記不惑時間補正は、経験式として以下の式を用
いて行なう特許請求の範囲第1項に記載の定量分析方法
。 N_0=N/(1−T_1N−T_2N^2−T_3N
^3−・・・・・・−TnN^n)(ただし、Nは実際
の計数値、T_1〜Tnは係数、N_0は補正された計
数値)
(2) The quantitative analysis method according to claim 1, wherein the unfavorable time correction is performed using the following formula as an empirical formula. N_0=N/(1-T_1N-T_2N^2-T_3N
^3-・・・・・・-TnN^n) (However, N is the actual count value, T_1 to Tn are coefficients, and N_0 is the corrected count value)
(3)前記不感時間補正は、実測された計数値と補正さ
れた計数値のテーブルを用いて行なう特許請求の範囲第
1項に記載の定量分析方法。
(3) The quantitative analysis method according to claim 1, wherein the dead time correction is performed using a table of actually measured count values and corrected count values.
JP1707485A 1985-01-30 1985-01-30 Quantitative analysis employing x-ray fluorescence analyzer Pending JPS61175555A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1707485A JPS61175555A (en) 1985-01-30 1985-01-30 Quantitative analysis employing x-ray fluorescence analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1707485A JPS61175555A (en) 1985-01-30 1985-01-30 Quantitative analysis employing x-ray fluorescence analyzer

Publications (1)

Publication Number Publication Date
JPS61175555A true JPS61175555A (en) 1986-08-07

Family

ID=11933832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1707485A Pending JPS61175555A (en) 1985-01-30 1985-01-30 Quantitative analysis employing x-ray fluorescence analyzer

Country Status (1)

Country Link
JP (1) JPS61175555A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012160881A1 (en) 2011-05-20 2012-11-29 株式会社リガク Wavelength-dispersive x-ray fluorescence analysis device
WO2022113481A1 (en) * 2020-11-30 2022-06-02 株式会社リガク X-ray fluorescence analysis device
WO2023210137A1 (en) * 2022-04-28 2023-11-02 株式会社島津製作所 Fluorescent x-ray analysis method and fluorescent x-ray analysis apparatus

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012160881A1 (en) 2011-05-20 2012-11-29 株式会社リガク Wavelength-dispersive x-ray fluorescence analysis device
JP2012242285A (en) * 2011-05-20 2012-12-10 Rigaku Corp Wavelength dispersion type fluorescent x-ray analyzer
EP2685247A1 (en) * 2011-05-20 2014-01-15 Rigaku Corporation Wavelength-dispersive x-ray fluorescence analysis device
US8774356B2 (en) 2011-05-20 2014-07-08 Rigaku Corporation Wavelength dispersive X-ray fluorescence spectrometer
EP2685247A4 (en) * 2011-05-20 2014-10-08 Rigaku Denki Co Ltd Wavelength-dispersive x-ray fluorescence analysis device
WO2022113481A1 (en) * 2020-11-30 2022-06-02 株式会社リガク X-ray fluorescence analysis device
JP2022086669A (en) * 2020-11-30 2022-06-09 株式会社リガク Fluorescent x-ray analyzer
CN116507943A (en) * 2020-11-30 2023-07-28 株式会社理学 Fluorescent X-ray analysis device
CN116507943B (en) * 2020-11-30 2023-12-01 株式会社理学 Fluorescent X-ray analysis device
US11832981B2 (en) 2020-11-30 2023-12-05 Rigaku Corporation X-ray fluorescence spectrometer
EP4254016A4 (en) * 2020-11-30 2024-01-10 Rigaku Denki Co Ltd X-ray fluorescence spectrometer
WO2023210137A1 (en) * 2022-04-28 2023-11-02 株式会社島津製作所 Fluorescent x-ray analysis method and fluorescent x-ray analysis apparatus

Similar Documents

Publication Publication Date Title
JPS61175555A (en) Quantitative analysis employing x-ray fluorescence analyzer
JP4369909B2 (en) Magnetic property measuring method and measuring instrument
EP3132285B1 (en) Guard efficiency compensation system
JP2732460B2 (en) X-ray fluorescence analysis method
Johnson et al. Utilization of Concurrently Gathered Pulser Data for Complete Spectral Validation of Gamma-Ray Spectra from Germanium Detectors
JPH06273364A (en) Corrective operation method for gas measuring equipment
JPH0532787Y2 (en)
Cammann et al. Comments on instrument-zeroing and blank-correction methods in trace analysis
JP2564930B2 (en) X-ray fluorescence analyzer
JPH05273122A (en) Infrared absorption measuring method for impurity in silicon crystal
JPH0249459B2 (en) KYUKOBUNSEKIKEI
EP4261560A1 (en) Circuit calibration systems
JPH02163688A (en) Multinuclide separation type radiation measuring device
JP3111686B2 (en) Radiation thickness gauge
SU1099279A1 (en) Device for registering chromatograms
JPS61225683A (en) Automatic gain/bias adjusting type dose rate meter
JPH0429083A (en) Sensitivity calibrator for radiation detector
JPH0599912A (en) Analog filter device
JPS61181961A (en) Data processor for chromatograph
JPH04113206A (en) Correction of calibration curve in measuring device
JPS5930069A (en) Method for measuring earth current on grounding resistor by computer of dc grounding detector
JPS62121383A (en) Radiant ray measuring instrument
JPH0366620B2 (en)
SU1296887A1 (en) Method of determining photographic resolving power of len-sphotographic material system
SU834630A1 (en) Variable magnetic field parameter measuring device