JPS61225683A - Automatic gain/bias adjusting type dose rate meter - Google Patents

Automatic gain/bias adjusting type dose rate meter

Info

Publication number
JPS61225683A
JPS61225683A JP6718485A JP6718485A JPS61225683A JP S61225683 A JPS61225683 A JP S61225683A JP 6718485 A JP6718485 A JP 6718485A JP 6718485 A JP6718485 A JP 6718485A JP S61225683 A JPS61225683 A JP S61225683A
Authority
JP
Japan
Prior art keywords
dose rate
amplifier
input
rate meter
constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6718485A
Other languages
Japanese (ja)
Inventor
Yoshimi Goto
後藤 好美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6718485A priority Critical patent/JPS61225683A/en
Publication of JPS61225683A publication Critical patent/JPS61225683A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Radiation (AREA)

Abstract

PURPOSE:To achieve a higher accuracy of calculating dose rate, by combining the correction of an input exponential value produced by adding a constant thereto with the correction by gain and bias of an amplifier within a dose rate meter. CONSTITUTION:An input proportional to the logarithmic value of a dose rate is subjected to two corrections, the one by multiplying the logarithmic value constant times by a gain and a bias of an amplifier within a dose rate meter 7 and the other by adding a constant thereto and additional correction is done for any leaked current attributed to a resistance 3 and a capacitor 2 between a cable A between a radiation detector 1 and a preamplifier 4 and the ground. In other words, the current signal outputted from the detector 1 is amplified with an amplifier 4 and the amplification of the current signal thereof is done with a logarithmic amplifier 5, which outputs a voltage proportional to the logarithmic value of the input signal to be inputted into a dose rate meter 7, which is made up of a CPU, a memory and an input/output section. The output voltage signal of the amplifier 5 is converted into a dose rate by a software. The three resulting correction values are determined by a specified correction factor calculating formula based on the three irradiations at a reference dose rate and then the dose rate is shown on a display 8.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、放射線計測装置に係り、特に定期的に調整を
実施する線量率計測系のゲイン・バイアス調整に好適な
調整手段に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a radiation measuring device, and particularly to an adjusting means suitable for adjusting the gain and bias of a dose rate measuring system that is periodically adjusted.

〔発明の背景〕[Background of the invention]

従来は、コロナ出版基礎原子力講座2「放射線」188
頁に記載の如くアナログ回路で計測系を構成しておシ、
計測系のゲイン・バイアス調整は、可変抵抗器により出
力指示値が目標値に一致する様、ゲイン抵抗とバイアス
抵抗を交互に何回もくシ返し操作し合わせこんでおり、
調整のやりやすさの点については考慮していなかった。
Previously, Corona Publishing Basic Atomic Energy Course 2 "Radiation" 188
Configure the measurement system with analog circuits as described on page 1.
To adjust the gain and bias of the measurement system, the gain resistor and bias resistor are alternately operated many times using a variable resistor so that the output command value matches the target value.
No consideration was given to ease of adjustment.

他社のディジタル放射線計測は、パルス数をカウントす
る計数率計であフ、本発明の線量率計に対しては、新方
式は公表されていない。
Digital radiation measurement by other companies is just a count rate meter that counts the number of pulses, and no new method has been published for the dose rate meter of the present invention.

従来は、・線量率計内部のゲイン・バイアスを用いて前
置増幅器より入力する電圧信号(線量率の対数値に比例
するもの)を正しい線量率にあわせこんでいた。この補
正すべき誤差は線量率計測系にほぼ一定値を加える様な
誤差の原因もある。それは、リーク電流、検出器の経年
変化によるもので1、放射線計測系の使用中の定期点検
時校正を要するものである。従来、この誤差は線量率計
内部の増幅器のゲインとバイアスにて補正していた為精
度よく線量率にあわせこむことができなかつ友。(K2
図参照。) 〔発明の目的〕 本発明の目的は、放射線計測装置を模擬信号(または実
照射)により校正する場合、3回の模擬信号入力(また
は実照射)により簡単にゲイン・バイアスの調整を行な
い保守点検時の調整作業時間を飛躍的に短縮できるゲイ
ン・バイアス自動調整を可能とする線量率計を提供する
ことである。
Conventionally, the voltage signal input from the preamplifier (proportional to the logarithm of the dose rate) was adjusted to the correct dose rate using the gain and bias inside the dose rate meter. This error to be corrected may also be caused by an error that adds a nearly constant value to the dose rate measurement system. This is due to leakage current and deterioration of the detector over time, and requires calibration during periodic inspections while the radiation measurement system is in use. Conventionally, this error was corrected using the gain and bias of the amplifier inside the dose rate meter, which made it impossible to accurately match the dose rate. (K2
See diagram. ) [Purpose of the Invention] The purpose of the present invention is to easily adjust the gain and bias by inputting the simulated signal (or actual irradiation) three times to facilitate maintenance when calibrating a radiation measurement device using a simulated signal (or actual irradiation). It is an object of the present invention to provide a dose rate meter that enables automatic gain and bias adjustment that can dramatically shorten adjustment work time during inspection.

さらに、この自動調整によシ計測の精度を向上させるこ
とにある。
Furthermore, the purpose of this automatic adjustment is to improve the accuracy of measurement.

〔発明の概要〕[Summary of the invention]

従来、線量率の対数値に比例し次入力に対し、増幅器の
ゲインとバイアスで対数値を定数倍すること及び定数値
を加える補正のみしか行なえず、全線量率範囲に於いて
、基準線量率の照射をくり返し、補正値を決定していた
が、これは必ずしも精度よく校正されなかった。
Conventionally, it was only possible to perform corrections that were proportional to the logarithm of the dose rate, and for the next input, multiplied the logarithm by a constant using the gain and bias of the amplifier, and added a constant value. The correction value was determined by repeating the irradiation, but this was not always calibrated accurately.

本発明にては、線量率を算出する手段として、従来の2
つの補正と入力の指数値(線量率を示す値)に一定値を
加える補正を同時に行うことにより精度よく線量率を算
出することができる。さらにこの3つの補正値はその算
出式を与えることによ#)3回の基準線量率の照射によ
シ決定することができ調整を大幅に簡略化することがで
きる。
In the present invention, the conventional two methods are used as means for calculating the dose rate.
The dose rate can be calculated with high accuracy by simultaneously performing two corrections and a correction that adds a fixed value to the input index value (value indicating the dose rate). Furthermore, by providing calculation formulas, these three correction values can be determined by three irradiations at the reference dose rate, thereby greatly simplifying the adjustment.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第1図〜第3図を用いて説明
する。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 3.

第1図に放射線測定系を示す。まず、イオン・チェンバ
ー等の放射線検出器1は放射線(特にr線)が入射する
ことによりI Q−11〜10−’A程度の微弱電流を
出力する。この放射線検出器1よシの出力電流は放射線
検出器に入射した放射線の強さく線量率:mR/h)に
比例する。この出力電流は微弱であること、及び非常に
広範囲の値であるため直接検出器の設置しである現場よ
シ監視を行う場所に送ることが難しい。そこで、この検
出器lよシ出力される電流信号は通常前置増幅器4にて
増幅される。
Figure 1 shows the radiation measurement system. First, a radiation detector 1 such as an ion chamber outputs a weak current of about IQ-11 to 10-'A when radiation (especially r-rays) is incident thereon. The output current of the radiation detector 1 is proportional to the intensity and dose rate (mR/h) of the radiation incident on the radiation detector. Since this output current is weak and has a very wide range of values, it is difficult to send it directly to the site where the detector is installed or to the place where monitoring is performed. Therefore, the current signal output from the detector 1 is usually amplified by a preamplifier 4.

この電流信号の増幅はログ・アンプ(対数増幅器)にて
行われる。ログ・アンプ5は入力電流信号の対数値に比
例した電圧(たとえばθ〜10v)を出力する。この電
圧は監視を行う場所に置かれた線量率計・7に入力し、
検出器1を照射する放射線線量率として表示される8゜ また、放射線検出器1は放射線の入射によシミ離電流を
発生させる為に、数百Vの高電圧をかけている。そのた
め、検出器1と前置増幅器5を接続するケーブルにのっ
た電流信号はケーブル及びコネクタ等により生じる対接
地間の抵抗3とコンデンサ2の影響を受は易くなる。こ
の対接地間に生じた抵抗は、高電圧をかけている為に微
少電流が流れる。この微少電流(リーク電流)は放射線
測定の誤差となる。
Amplification of this current signal is performed by a log amplifier. The log amplifier 5 outputs a voltage (for example, θ˜10V) proportional to the logarithm value of the input current signal. This voltage is input to the dose rate meter 7 placed at the monitoring location.
8°, which is expressed as the radiation dose rate irradiating the detector 1. Furthermore, a high voltage of several hundred V is applied to the radiation detector 1 in order to generate a staining current due to the incidence of radiation. Therefore, the current signal carried on the cable connecting the detector 1 and the preamplifier 5 is easily influenced by the resistance 3 and capacitor 2 to ground caused by the cable, connector, etc. Because a high voltage is applied to this resistance between the ground and the ground, a small amount of current flows through it. This minute current (leakage current) causes an error in radiation measurement.

従来のアナログ型線量率計では、前置増幅器5よりの出
力電圧を入力し、増幅器にて増幅した電圧を線量率の対
数目盛をつけた出力表示器に表示していた。この時、線
量率計の増幅器のゲインとバイアスを調整することによ
シ正確な線量率を示すよう調整してい念。この原理を第
2図を用いて説明する。第2図内の、横軸に放射線検出
器1を照射する真の照射線量率、縦軸はアナログ型線量
率針の出力表示器にて示す表示線量率である。原理的に
図中の一点鎖線が本来あるべき関係であるが、前述のリ
ーク電流の為に図中の実線の様になってしまう。これで
は低線量率の範囲が測定不能となる為、線量率計内の増
幅器のゲインとバイアスを調整し、一点鎖線に近くなる
様にする。このゲインとバイアスの調整は単純に行なえ
ず、何度も実際に模擬線源(標準となるべき放射線量率
を発生させる放射線線源)を用いて測定範囲の線量率の
照射を行い、しだいに一点鎖線の関係に近くなる様にし
なければならない。この校正の複雑さは従来の大きな欠
点の1つであった。さらに、この校正は何度も行って誤
差をできるだけ小さくしても図中の破線の様になシ、精
度よく測定できなかった。
In conventional analog dose rate meters, the output voltage from the preamplifier 5 is input, and the voltage amplified by the amplifier is displayed on an output display with a logarithmic scale of dose rate. At this time, be sure to adjust the gain and bias of the amplifier of the dose rate meter to show the correct dose rate. This principle will be explained using FIG. 2. In FIG. 2, the horizontal axis represents the true irradiation dose rate that irradiates the radiation detector 1, and the vertical axis represents the displayed dose rate shown on the output display of the analog dose rate needle. In principle, the dash-dotted line in the figure is the relationship that should exist, but due to the aforementioned leakage current, it becomes like the solid line in the figure. This makes it impossible to measure the low dose rate range, so adjust the gain and bias of the amplifier in the dose rate meter so that it is close to the dashed-dotted line. Adjusting the gain and bias cannot be done simply, so irradiation is performed at the dose rate within the measurement range using a simulated radiation source (a radiation source that generates the radiation dose rate that should be the standard) many times. The relationship should be close to the one-dot chain line. The complexity of this calibration has been one of the major drawbacks of the prior art. Furthermore, even if this calibration was performed many times to minimize the error, it was not possible to measure accurately as shown by the broken line in the figure.

この現象は、検出器lの経年変化によっても生じる。放
射線検出器1(イオン・チェンバー等の電離箱型検出器
)は使用していくkつれ、内部に封入したガスが電離作
用によりしだいに消費され、高電圧がかかることで微弱
な電流が流れてリーク電流と同様な現象が生じる。
This phenomenon also occurs due to aging of the detector l. As the radiation detector 1 (an ion chamber type detector such as an ion chamber) is used, the gas sealed inside is gradually consumed by ionization, and a weak current flows due to the high voltage applied. A phenomenon similar to leakage current occurs.

本発明では、線量率計7を中央処理部(CPU)。In the present invention, the dose rate meter 7 is a central processing unit (CPU).

主記憶部(メモリー)、入出力部よシ構成し、前置増幅
器5よシの電圧信号をソフトウェアで線量率に変換し、
表示器8に線量率を表示する。この線量率の変換方法を
以下に説明する。照射線量率t−D、検出器よりの出力
電流を■、前置増幅器の出力電圧をVとする。
It consists of a main storage section (memory) and an input/output section, and converts the voltage signal from the preamplifier 5 into a dose rate using software.
The dose rate is displayed on the display 8. The method of converting this dose rate will be explained below. Assume that the irradiation dose rate is t-D, the output current from the detector is (■), and the output voltage of the preamplifier is V.

真の線量率りと出力電流Iは比例する九め(1)式%式
%(1) 但し、Aは定数、Bは補正係数 前置増幅器4の出力電圧Vは、ログ・アンプ5の増幅に
より生じるから V−p x tog I 十q        ”・(
2)但し、pは定数(増幅器のゲイン) qは定数(増幅器のバイアス) 本発明の線量率計では線量率をそのまま算出する為、(
1)、(2)式を用いて、 V=pXtogI+q =pxLog(AXD+B)+q    ・・・(3)
の関係式がある。即ち、 すると(4)式は nXV−)m D=lO+t        ・・・(5)となる。
True dose rate and output current I are proportional to formula 9 (1) % formula % (1) However, A is a constant, B is a correction coefficient, and the output voltage V of the preamplifier 4 is the amplification of the log amplifier 5. Since it is caused by V-p x tog I 10q ”・(
2) However, p is a constant (amplifier gain) and q is a constant (amplifier bias).Since the dose rate meter of the present invention calculates the dose rate as it is, (
Using equations 1) and (2), V=pXtogI+q =pxLog(AXD+B)+q...(3)
There is a relational expression. That is, then the equation (4) becomes nXV-)m D=lO+t (5).

本発明では(5)式の演算を線量率計にて行い、n。In the present invention, the calculation of equation (5) is performed using a dose rate meter, and n.

m、Lの補正係数を最適となる様に決定する。The correction coefficients for m and L are determined to be optimal.

次に、このm、n、to補正係数の決定方法を説明する
。まず3つの線量率Dt 、 D!t Dsにて照射を
行い、その時の表示線量率t−M1 、 Ml 。
Next, a method for determining the m, n, and to correction coefficients will be explained. First, the three dose rates Dt, D! Irradiation was performed at tDs, and the displayed dose rate at that time was t-M1, Ml.

Msとすると、(5)式より zog(Mi    A)=nxVt+m      
   ・−(6)tOg (Ml  t ) = n 
x Vz +m     ・”(7)LogcMs−t
3=nxV3+m     −(a)但し、m、n、l
は調整前の補正係数とする。
If Ms, then from equation (5) zog(Mi A)=nxVt+m
・-(6) tOg (Mlt) = n
x Vz +m ・”(7) LogcMs-t
3=nxV3+m - (a) However, m, n, l
is the correction coefficient before adjustment.

また、調整後の補正係数をmQ 、ng 、16とする
と、 tag (DB −2o)= nQ X Vt +m6
    − (9)Log (Dz  Ao)= no
 X Vz +mo    −(10)Log(D3−
to)=noXVx+mo    ・−(xl)となる
。ここで、Ms >Mz >Mtとし、20は小さいの
でMs、Ml)t、となる様にすれば、(7)、 g3
)、 (10) 、 (u)式よりLo g Mz =
 n X Vz +m      ・・・(12)!、
og Ms =: n X Vs +m      =
 (13)AOg Dz =n6 X Vz +mo 
    ・・・(14)tog Ds ” no X 
Vs +mo     ・・・(15)となる。この4
つの式金解くと、 tOgDs  AogD2 no =            x n    = 
(16)togM3−LozM2 ・・・(17) となり、(9)、  (12) 、 (16) 、 (
17)式を用いると、to = D t  10C−(
18)ここで O C=   [:tog(Mx  7)+m〕+m。
Furthermore, if the correction coefficients after adjustment are mQ, ng, and 16, then tag (DB -2o) = nQ X Vt +m6
- (9) Log (Dz Ao) = no
X Vz +mo −(10)Log(D3−
to)=noXVx+mo·-(xl). Here, if Ms > Mz > Mt and 20 is small, Ms, Ml)t, (7), g3
), (10), From equation (u), Log Mz =
n X Vz +m...(12)! ,
og Ms =: n X Vs +m =
(13) AOg Dz = n6 X Vz +mo
...(14) tog Ds ” no X
Vs +mo (15). This 4
Solving the two equations, tOgDs AogD2 no = x n =
(16) togM3-LozM2 ... (17) becomes (9), (12), (16), (
17) Using formula, to = D t 10C-(
18) where OC=[:tog(Mx 7)+m]+m.

となる。以上の校正(補正係数の算出)を行うことによ
シ、従来より簡単に精度よく校正を行うことができる。
becomes. By performing the above calibration (calculation of correction coefficients), calibration can be performed more easily and accurately than in the past.

以上を第3°図を用いて、1.10’ 、10’m几/
hで校正した場合を説明する。横軸に真の照射線量率、
縦軸に表示線量率をとると、校正前は図中の実線であシ
、(16) 、 (17) 、 Cl8)式の校正によ
シ図中の破線とすることができる。ここでは、Da =
M3 =10” D2=Mx = 10 ’ D 1” 1 + M t =5 X 10 ’を用い
る。但し、(16) 、 (17) 、 (18)式中
のn、m。
Using Figure 3, we can calculate the above at 1.10', 10'm/
The case of calibration using h will be explained. The horizontal axis is the true irradiation dose rate,
If the displayed dose rate is plotted on the vertical axis, the solid line in the figure before calibration is a solid line, and the dashed line in the figure can be changed by calibration using equations (16), (17), and Cl8). Here, Da =
Use M3 = 10'' D2 = Mx = 10' D 1'' 1 + M t = 5 x 10'. However, n and m in formulas (16), (17), and (18).

tは実線時の補正係数である。したがって、算出したn
、)、m(、、Loを使用することによシス中の破線の
様に精度よく、容易に校正を行うことができる。
t is a correction coefficient for the solid line. Therefore, the calculated n
By using , ), m(,, Lo, it is possible to easily perform calibration with high accuracy as shown by the broken line in the system.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、従来精度よく補正しきれなかったリー
ク電流及び検出器の経年変化によって生じる誤差を容易
に(マンマシン性)精度よく校正できるので、性能及び
保守性を大幅に向上させる効果がある。
According to the present invention, errors caused by leakage current and aging of the detector, which could not be corrected accurately in the past, can be easily and accurately calibrated (man-machine-friendly), resulting in the effect of significantly improving performance and maintainability. be.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は放射線の計測系、第2図は従来の補正説明図、
第3図は本発明の補正説明図である。 1・・・放射線検出器、2・・・ケーブルの静電容量、
3・・・対接地間の抵抗、4・・・前置増幅器、5・・
・ログ・アンプ、7・・・線量率計、8・・・線量率表
示器。
Figure 1 shows the radiation measurement system, Figure 2 shows the conventional correction diagram,
FIG. 3 is an explanatory diagram of correction according to the present invention. 1... Radiation detector, 2... Cable capacitance,
3... Resistance to ground, 4... Preamplifier, 5...
- Log amplifier, 7... Dose rate meter, 8... Dose rate display.

Claims (1)

【特許請求の範囲】 1、電離箱放射線検出器よりの出力電離電流の対数値に
比例した信号を入力し、線量率を算出する線量率計にお
いて、入力に定数を加える部分と入力を定数倍する部分
を有し、該2つの部分とは別に入力の指数値に定数を加
える部分を設けたことを特徴とするゲイン・バイアス自
動調整型線量率計。 2、特許請求の範囲第1項記載の線量率計にて、該3つ
の補正用定数を、3種の線量率で照射した後一回で算出
する手段を設けたことを特徴とするゲイン・バイアス自
動調整型線量率計。
[Claims] 1. In a dose rate meter that calculates the dose rate by inputting a signal proportional to the logarithm of the output ionizing current from an ionization chamber radiation detector, there is a part that adds a constant to the input, and a part that adds a constant to the input, and a part that multiplies the input by a constant. 1. A gain/bias automatic adjustment type dose rate meter, characterized in that the dose rate meter has a part for adding a constant to an input index value, and a part for adding a constant to an input index value separately from the two parts. 2. The dose rate meter according to claim 1, characterized in that it is provided with means for calculating the three correction constants once after irradiation at three different dose rates. Automatic bias adjustment type dose rate meter.
JP6718485A 1985-03-29 1985-03-29 Automatic gain/bias adjusting type dose rate meter Pending JPS61225683A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6718485A JPS61225683A (en) 1985-03-29 1985-03-29 Automatic gain/bias adjusting type dose rate meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6718485A JPS61225683A (en) 1985-03-29 1985-03-29 Automatic gain/bias adjusting type dose rate meter

Publications (1)

Publication Number Publication Date
JPS61225683A true JPS61225683A (en) 1986-10-07

Family

ID=13337551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6718485A Pending JPS61225683A (en) 1985-03-29 1985-03-29 Automatic gain/bias adjusting type dose rate meter

Country Status (1)

Country Link
JP (1) JPS61225683A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012052841A (en) * 2010-08-31 2012-03-15 High Energy Accelerator Research Organization Radiation detection apparatus
RU2697902C1 (en) * 2018-09-06 2019-08-21 Общество с ограниченной ответственностью "КОНВЕЛС Автоматизация" Ionizing radiation detecting unit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012052841A (en) * 2010-08-31 2012-03-15 High Energy Accelerator Research Organization Radiation detection apparatus
RU2697902C1 (en) * 2018-09-06 2019-08-21 Общество с ограниченной ответственностью "КОНВЕЛС Автоматизация" Ionizing radiation detecting unit

Similar Documents

Publication Publication Date Title
US3955086A (en) Radiation thickness gauge
JPS5862508A (en) Device and method of measuring thickness
JPH0348471B2 (en)
Hooker et al. A gamma-ray attenuation method for void fraction determinations in experimental boiling heat transfer test facilities
JP3153484B2 (en) Environmental radiation monitor
JPS61225683A (en) Automatic gain/bias adjusting type dose rate meter
US4089054A (en) Device for measuring the thickness of layers with a radionuclide irradiating the layer
DE3940141A1 (en) METHOD FOR THE DIRECT, MEASURING TECHNICAL REPRESENTATION OF A DIFFERENTIAL MEASUREMENT IN ITS CORRECT PHYSICAL UNIT
US3180985A (en) Standardization of radiation-absorption type density gages
Julius et al. Performance, requirements and testing in individual monitoring
JPS6159280A (en) Apparatus for measuring neutron
US3848125A (en) Coating thickness gauge
Burgkhardt et al. A computer assisted evaluation technique for albedo thermoluminescence dosemeters
JPS6157879A (en) Automatic adjusting device for dosimeter
Siddiqua et al. Determination of Calibration X-Ray Beam Qualities and Establish a Set of Conversion Coefficients for Calibration of Radiation Protection Devices Used in Diagnostic Radiology
August et al. Advantages of using a PMOS FET dosimeter in high-dose radiation effects testing
JPS6170444A (en) Concentration analyzing method in electron ray micro-analysis instrument
CN113853536B (en) Characterization method for transmission source attribute characteristics of segmented gamma scanning measurement system
RU2754993C1 (en) Reactimeter counting channel calibration method
SU1628657A1 (en) Radioisotope method of measuring material thickness using a radioisotope thickness meter
US4031387A (en) Method of determining whether radioactive contaminants are inside or outside a structure
Kadhim Calibration of ionization chamber survey meter
JP3111686B2 (en) Radiation thickness gauge
Clapp et al. Noncontacting thickness gauge using beta rays
JPH0723876B2 (en) Radiation analyzer