JPS61175531A - Saw power sensor - Google Patents
Saw power sensorInfo
- Publication number
- JPS61175531A JPS61175531A JP1452385A JP1452385A JPS61175531A JP S61175531 A JPS61175531 A JP S61175531A JP 1452385 A JP1452385 A JP 1452385A JP 1452385 A JP1452385 A JP 1452385A JP S61175531 A JPS61175531 A JP S61175531A
- Authority
- JP
- Japan
- Prior art keywords
- saw
- frequency
- power
- delay line
- piezoelectric substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
- Radiation Pyrometers (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は光のパワーや広く電力を検出したり測定した
シするために使用するパワーセンサに係シ、特に固体物
質の表面を伝搬する表面弾性波(SAW: 5urfa
ce Acoustic Wave )を利用したSA
Wデバイスの感温機能を応用し九パワーセンサに関する
。[Detailed Description of the Invention] [Industrial Application Field] This invention relates to a power sensor used to detect or measure the power of light or a wide range of electric power, and particularly relates to a power sensor that is used to detect or measure the power of light, and in particular to a surface that propagates on the surface of a solid material. Acoustic wave (SAW: 5urfa
SA using ce Acoustic Wave)
This article relates to nine power sensors that apply the temperature-sensing function of the W device.
電力及び光のパワーを検出するパワーセンサには半導体
の光電効果を利用したホトダイオード・ホトトランジス
タ等やサーミスタ・熱電対のように入力パワーを熱量i
Ic変換し、さらに該熱量を抵抗値及び熱起電力に変換
して、その変化を検出する熱形センサなどがある。この
熱形センサにはサーミスタ・熱電対自身が発熱するタイ
プと、近傍に発熱体を設け、その熱量をサーミスタ・熱
電対で検出するタイプとがある。前者の熱電対タイプの
パワーセ/すの記載例としては「短ミリ波帯用電力検出
器」(杉浦吾男2戸田博道、電子通信学会技術研究報告
、 VOL 、 78. NO,119PAGE、 4
5−51′78)がある。このパワーセンサは、ポリイ
ミド基板上にBi −Sbで熱電対を形成した短ミリ波
帯の電力検出器であって、熱電対自身を整合負荷とし、
電力を吸収して発熱させるものである。これら熱形のパ
ワーセンサは基本的には温度センサに属し、電力や光の
パワーを熱量に変換する機能をこの温度センサに付加し
たものである。Power sensors that detect electric power and light power include photodiodes and phototransistors that utilize the photoelectric effect of semiconductors, as well as thermistors and thermocouples that convert input power into a quantity of heat.
There is a thermal type sensor that converts the amount of heat into Ic, further converts the amount of heat into a resistance value and thermoelectromotive force, and detects the change. There are two types of thermal sensors: one in which the thermistor/thermocouple itself generates heat, and another in which a heating element is provided nearby and the amount of heat detected by the thermistor/thermocouple. An example of the description of the former thermocouple type power sensor is "Power detector for short millimeter wave band" (Ago Sugiura 2 Hiromichi Toda, Institute of Electronics and Communication Engineers Technical Research Report, VOL, 78. NO, 119 PAGE, 4)
5-51'78). This power sensor is a short millimeter wave band power detector in which a Bi-Sb thermocouple is formed on a polyimide substrate, and the thermocouple itself is used as a matching load.
It absorbs electricity and generates heat. These thermal type power sensors basically belong to temperature sensors, and are added with a function of converting electric power or optical power into heat quantity.
ところで、温度全検出する方法の一つの例として、SA
Wデバイスを用いた発逗回路においてSAW伝搬路の状
態を熱的に歪ませ、該SAW伝搬路中を伝搬している5
AWO伝搬速度、もしくは伝搬経路長に変化を生じさせ
ることによシ:発振回路固有の発振周波数を変化させ、
その周波数の変化量からSAWデバイスの受けた熱量を
検出するSAW温度センサがある。このSAW温度セン
サは小形軽量、高精度であυ、またSAWセンサ部の製
作が容易で再現性が高いことから、SAWを利用したセ
ンサの中では実用化の進んでいるものの一つである。By the way, as an example of a method for detecting the entire temperature, SA
In a generator circuit using a W device, the state of the SAW propagation path is thermally distorted, and the SAW propagation path is propagated through the SAW propagation path5.
By changing the AWO propagation speed or propagation path length: changing the oscillation frequency specific to the oscillation circuit,
There is a SAW temperature sensor that detects the amount of heat received by the SAW device from the amount of change in frequency. This SAW temperature sensor is small, lightweight, highly accurate, and the SAW sensor part is easy to manufacture and has high reproducibility, so it is one of the sensors that are being put into practical use among the SAW sensors.
前記したように、熱形パワーセンサであるサーミスタ・
熱電対は入力されたパワーを熱量に変換し、さらに該熱
量を抵抗値に変化するか、または熱起電力に変換し、最
終的には電圧に変換している。そのため、これらの変換
を高精度にするには出力電圧を正確に増幅する高価な差
動増幅器を必要とし、またマイクロコンピュータ技術を
利用した計測やシステムの制御を行なう場合は高価なA
/D変換器を必要とした。かかる事情から、センサとし
ては、測定したパワーをデジタル的に検出することが可
能な周波数として出力できるものが切望されている。As mentioned above, thermistors, which are thermal power sensors,
A thermocouple converts input power into heat, and then changes the heat into resistance or thermoelectromotive force, and finally into voltage. Therefore, in order to make these conversions highly accurate, expensive differential amplifiers are required to accurately amplify the output voltage, and when performing measurements and system control using microcomputer technology, expensive A
/D converter was required. Under these circumstances, there is a strong need for a sensor that can output measured power as a frequency that can be digitally detected.
また、製造面において熱電対の場合は、限られた2種類
の金属で精度良く接点を作る必要があシ、蒸着、エツチ
ング等複雑な工程が必要であった。In addition, in terms of manufacturing, thermocouples require complicated processes such as evaporation, etching, and the need to make contacts with high precision using only two types of metals.
さらに、酸化物であるサーミスタ材料は蒸気圧が低いた
めに蒸着するのが困難なことから、該サーミスタ材料の
金属を蒸着した後、酸化処理を行なう方法がとられてい
る。さらにまた、サーミスタは複数の物質を成分とし、
しかもこの成分比を正しくコントロールするという複雑
な工程が必要であった。Furthermore, since it is difficult to vapor-deposit a thermistor material which is an oxide due to its low vapor pressure, a method has been adopted in which an oxidation treatment is performed after the metal of the thermistor material is vapor-deposited. Furthermore, the thermistor consists of multiple substances,
Moreover, a complicated process was required to correctly control the ratio of these components.
以上、説明したように、従来の熱形パワーセンサは製造
が複雑であシ、かつ、使用材料が限定されることから、
コスト、安定性、信頼性、量産性に問題を残している。As explained above, conventional thermal power sensors are complicated to manufacture and the materials used are limited.
Problems remain in terms of cost, stability, reliability, and mass productivity.
そこで、この発明は、かかる実状に鑑みてなされたもの
で、その目的とするところは入力パワーで遅延時間を変
化させるSAW遅延線を用いて発振回路を構成し、機構
の簡素化を計って、製作を容易にするとともにデジタル
的計測が容易である周波数の変化量で出力するパワーセ
ンサを提供することにある。Therefore, the present invention was made in view of the above circumstances, and its purpose is to construct an oscillation circuit using a SAW delay line that changes the delay time depending on the input power, and to simplify the mechanism. It is an object of the present invention to provide a power sensor that outputs an amount of change in frequency that is easy to manufacture and easy to measure digitally.
この発明では温度特性を有する圧電性結晶を基板に用い
、この基板上に表面弾性波を送信及び受信する電極(交
差指形電極ともIDTともいう。In this invention, a piezoelectric crystal having temperature characteristics is used as a substrate, and electrodes (also called interdigital electrodes or IDTs) for transmitting and receiving surface acoustic waves are disposed on the substrate.
IDTはInter Digital Transdu
cerと呼ばれる)を設け、さらに該表面弾性波が伝搬
する2つの電極つまシ、送信用電極と受信用電極との間
に入力されたパワーを熱に変換する発熱体を有するSA
W遅延線による発振器を設け、この発振器により該入力
されたパワーを周波数の変化量として出力する構造とし
た。IDT is Inter Digital Transdu
cer), two electrode holders through which the surface acoustic waves propagate, and a heating element that converts power input into heat between the transmitting electrode and the receiving electrode.
An oscillator using a W delay line is provided, and the oscillator outputs the input power as a frequency change amount.
第1図はこの発明の一実施例の構成図を示している。こ
の発明は図示するように、圧電性基板10表面に5AW
t−発射させるための送信用交差指形電極(IDT)2
と、SAWを受信するための受信用交差指形電極(ID
T)3と、入力したパワーを熱に変換する発熱体4とを
設けてSAW遅延線素子を形成している。なお、該発熱
体は、前記圧電性基板の少なくとも一部に接触もしくは
近接して配置してもよい。各IDTの一方の電極はすべ
て接地されておシ、また送信用IDTの信号入力側の電
極と受信用IDTの信号出力側の電極との間にはSAW
発振回路を構成する増幅器5が接続されている。そして
、この増幅器と前記送信用及び受信用IDTによって電
気的閉ループ回路を作9、SAW遅延線の中心周波数を
固有振動数とする自励発振をさせる。この自励発振によ
って送信用IDTで生じたSAWは圧電性基板上を進行
し受信用IDTで受信される。この圧電性基板上に設け
た前記発熱体に光のパワーを入力し、発熱させると圧電
性基板の温度が上昇し、SAW遅延線のSAW伝搬速度
が変化すると同時にIDT間の距離が熱膨張により変化
し、SAW遅延線の遅延時間が変化する。この影響を受
けSAW遅延線の中心周波数を固有振動数とする自励発
振の振動数が変化する。この振動数を周波数カラ/り6
によって検出すれば、圧電性基板の表面の歪量、すなわ
ちSAW遅延線に加えられたパワーの大きさが検出でき
る。FIG. 1 shows a configuration diagram of an embodiment of the present invention. In this invention, as shown in the figure, 5AW is applied to the surface of the piezoelectric substrate 10.
Transmitting interdigital electrode (IDT) 2 for t-firing
and a reception interdigital electrode (ID) for receiving SAW.
T) 3 and a heating element 4 that converts input power into heat are provided to form a SAW delay line element. Note that the heating element may be placed in contact with or in close proximity to at least a portion of the piezoelectric substrate. One electrode of each IDT is all grounded, and a SAW is connected between the signal input side electrode of the transmitting IDT and the signal output side electrode of the receiving IDT.
An amplifier 5 constituting an oscillation circuit is connected. Then, an electrical closed loop circuit is formed by this amplifier and the transmitting and receiving IDTs 9, and self-oscillation is performed with the center frequency of the SAW delay line as the natural frequency. The SAW generated in the transmitting IDT due to this self-excited oscillation travels on the piezoelectric substrate and is received by the receiving IDT. When optical power is input to the heating element provided on the piezoelectric substrate to generate heat, the temperature of the piezoelectric substrate rises, the SAW propagation speed of the SAW delay line changes, and at the same time the distance between the IDTs increases due to thermal expansion. The delay time of the SAW delay line changes. Under this influence, the frequency of self-oscillation with the center frequency of the SAW delay line as its natural frequency changes. This frequency is the frequency color / 6
By detecting this, it is possible to detect the amount of strain on the surface of the piezoelectric substrate, that is, the amount of power applied to the SAW delay line.
次にSAWパワーセンサの感度を向上させる手段につい
て述べる。SAWパワーセンサヲ構成しているSAW遅
延線は圧電性基板自体大きな熱容量を持っている。そこ
で該圧電性基板を薄く細くすればよいが機械的強度が問
題となる。この問題を解決するには圧電性基板のSAW
伝搬路の裏面をエツチングし、送信側、受信側IDTを
縦方向いっばいになる様基板を細くすればよい。第2図
にその実施例を示す。このSAWパワーセンサは送信用
交差指形電極IDTと受信用交差指形電極IDTとの間
に熱的歪を加えSAW伝搬状態を変化させることを基本
的原理としているので、SAW伝搬領域を薄くし、圧電
性基板の熱容量を減少させている。これに加えて送信用
交差指形電極(よりT)、受信用交差指形電極(IDT
)を圧電性基板縦方向いりばいに配置している。以上述
べた2つの改良によシ感度のみならず応答速度の向上も
実現できる。Next, a means for improving the sensitivity of the SAW power sensor will be described. The piezoelectric substrate of the SAW delay line constituting the SAW power sensor has a large heat capacity. Therefore, it is possible to make the piezoelectric substrate thinner and thinner, but mechanical strength becomes a problem. To solve this problem, SAW of piezoelectric substrate
The back side of the propagation path may be etched to make the substrate thinner so that the transmitter and receiver IDTs are aligned vertically. An example of this is shown in FIG. The basic principle of this SAW power sensor is to change the SAW propagation state by applying thermal strain between the transmitting interdigital electrode IDT and the receiving interdigital electrode IDT, so the SAW propagation area can be made thinner. , reducing the heat capacity of the piezoelectric substrate. In addition to this, interdigital electrodes for transmission (more T) and interdigital electrodes for reception (IDT) are used.
) are arranged in the vertical direction of the piezoelectric substrate. The two improvements described above make it possible to improve not only the sensitivity but also the response speed.
次に実際に試作したSAWパワーセンサについて述べる
。第3図は実際に試作したSAWパワーセンサを構成す
る発熱抵抗体を備えたSAW遅延線である。このセンサ
は電力測定用であり、発熱体として発熱抵抗体7を用い
、この発熱抵抗体の両端には電力入力用の電極8をそれ
ぞれ備えた形となりている。第4図に実験結果を示す。Next, we will discuss the SAW power sensor that was actually prototyped. FIG. 3 shows a SAW delay line equipped with a heating resistor that constitutes an actually prototype SAW power sensor. This sensor is for power measurement, and uses a heating resistor 7 as a heating element, and electrodes 8 for power input are provided at both ends of the heating resistor. Figure 4 shows the experimental results.
図中縦軸はSAWパワーセンサの発振周波数変化量、横
軸は発熱抵抗体に入力された電力を示す。実験の結果、
このSAWパワーセンサは入力電力に対し発振周波数の
変化量が直線性よく変化することがわかった。相関係数
rは、0.99997であった。In the figure, the vertical axis shows the amount of change in the oscillation frequency of the SAW power sensor, and the horizontal axis shows the power input to the heating resistor. results of the experiment,
It was found that in this SAW power sensor, the amount of change in oscillation frequency changes with good linearity with respect to input power. The correlation coefficient r was 0.99997.
以上説明したように、本発明のSAWパワーセンサは、
従来のパワーセンサのように入力されたパワーを電圧で
出力する形のセンサではなく、デジタル的な測定が容易
に行なえる周波数の変化量として出力するという特徴を
持っている。このため従来の電圧出力タイプであるサー
ミスタ・熱電対を用いたパワーセンサのようにデジタル
信号処理時において高価なA/D変換器を使用せずに簡
単な波形整形により、例えば、システム制御、あるいは
コンビエータを用いたデータの処理が行なえる。As explained above, the SAW power sensor of the present invention is
Unlike conventional power sensors, which output the input power as a voltage, the sensor outputs the input power as a frequency change that can be easily measured digitally. For this reason, unlike power sensors using conventional voltage output types such as thermistors and thermocouples, simple waveform shaping does not require the use of expensive A/D converters during digital signal processing. Data can be processed using a combiator.
パワー検出機構は本来、圧電性基板に備わっている温度
特性を利用するため、信頼性が高く高感度のパワーセン
サとすることができる。この点は製造面においても有利
に作用し、例えばホトリソグラフィ技術を用いて電極及
び発熱体をわずか2枚のホトマスクを使用して形成する
ことができるというような特徴をもっている。これはパ
ワーセンサを安定に製造でき、しかも信頼性の良い安価
なセンナを提供できることを示している。Since the power detection mechanism originally utilizes the temperature characteristics inherent in the piezoelectric substrate, it can be a highly reliable and highly sensitive power sensor. This point also has an advantageous effect in terms of manufacturing, such that the electrodes and the heating element can be formed using only two photomasks using photolithography technology, for example. This shows that it is possible to stably manufacture a power sensor and provide a reliable and inexpensive sensor.
次に応用面について説明する。例えば、マイクロ波帯の
パワーセンサにするには整合負荷を圧電性基板上に形成
し、マイクロ波を吸収させて発熱させ、周波数の変化量
を検出することにより実現できる。また、光パワーセン
サの一種である赤外線センナにするには、赤外線吸収体
である全黒などの吸収体を圧電性基板上に設け、赤外線
を吸収させ、同様に周波数の変化量を検出すればよい。Next, the application aspect will be explained. For example, a microwave band power sensor can be realized by forming a matched load on a piezoelectric substrate, absorbing microwaves to generate heat, and detecting the amount of change in frequency. In addition, in order to create an infrared sensor, which is a type of optical power sensor, an infrared absorber such as all black is provided on a piezoelectric substrate to absorb infrared rays, and the amount of change in frequency can be detected in the same way. good.
以上述べたように本発明のパワーセンサは、信号出力方
法、信頼性、安定性、加えて応用の広さを兼備えたセン
サであシ、従来形式のパワーセ/すに代って広く利用で
きる。As described above, the power sensor of the present invention is a sensor that has a signal output method, reliability, stability, and a wide range of applications, and can be widely used in place of conventional power sensors. .
第1図は、本発明のパワーセンサの電気回路構成因、第
2図は、SAWパワーセンサの感度向上を目的とした実
施例を示す図、第3図は、実際に試作したSAWパワー
センサを構成するSAW遅延線を示す図、第4図は、実
際に試作したSAWパワーセンチの出力結果を示す図で
ある。
図中、1は圧電性基板、2は送信用交差指形電極(ID
T)、3は受信用交差孔形電極(IDT)。
4は発熱体、5は増幅器、6は周波数カウンタ。
7は発熱抵抗体、8は電極を示す。
特許出願人 安立電気株式会社
代理人 弁理士 小 池 龍太部
葉1回Fig. 1 shows the electric circuit configuration of the power sensor of the present invention, Fig. 2 shows an embodiment aimed at improving the sensitivity of the SAW power sensor, and Fig. 3 shows the actual prototype SAW power sensor. FIG. 4 is a diagram showing the SAW delay line that is constructed, and is a diagram showing the output results of an actually prototype SAW power centimeter. In the figure, 1 is a piezoelectric substrate, 2 is an interdigital electrode for transmission (ID
T), 3 is a receiving intersecting hole electrode (IDT). 4 is a heating element, 5 is an amplifier, and 6 is a frequency counter. 7 is a heating resistor, and 8 is an electrode. Patent Applicant Anritsu Electric Co., Ltd. Agent Patent Attorney Ryotabe Koike Once
Claims (2)
収して発熱する発熱体と; 該圧電性基板の表面に、表面弾性波を発射するための送
信用電極と、該表面弾性波を受信するための受信用電極
とを備えた表面弾性波遅延線素子を含むSAW遅延線発
振器と; 前記発熱体の発熱によって生じた該SAW遅延線発振器
の周波数もしくは周波数の変化量を計数する計数手段と
からなるSAWパワーセンサ。(1) A piezoelectric substrate; A heating element that is provided on the surface of the piezoelectric substrate and generates heat by absorbing the power to be measured; A transmitter for emitting surface acoustic waves onto the surface of the piezoelectric substrate a SAW delay line oscillator including a surface acoustic wave delay line element having an electrode and a receiving electrode for receiving the surface acoustic wave; a frequency or a frequency of the SAW delay line oscillator generated by heat generation of the heating element; A SAW power sensor comprising a counting means for counting the amount of change in.
接触もしくは近接して配置されていることを特徴とする
特許請求の範囲第1項記載のSAWパワーセンサ。(2) The SAW power sensor according to claim 1, wherein the heating element is arranged in contact with or in close proximity to at least a portion of the piezoelectric substrate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60014523A JPH0654262B2 (en) | 1985-01-30 | 1985-01-30 | SAW power sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60014523A JPH0654262B2 (en) | 1985-01-30 | 1985-01-30 | SAW power sensor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61175531A true JPS61175531A (en) | 1986-08-07 |
JPH0654262B2 JPH0654262B2 (en) | 1994-07-20 |
Family
ID=11863465
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60014523A Expired - Fee Related JPH0654262B2 (en) | 1985-01-30 | 1985-01-30 | SAW power sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0654262B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009105573A (en) * | 2007-10-22 | 2009-05-14 | Epson Toyocom Corp | Surface acoustic wave device |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54138480A (en) * | 1978-04-20 | 1979-10-26 | Toshiba Corp | Temperature detector |
JPS5957126A (en) * | 1982-09-27 | 1984-04-02 | Nippon Denso Co Ltd | Temperature detector |
JPS59224527A (en) * | 1983-06-03 | 1984-12-17 | Yokogawa Hokushin Electric Corp | Light power meter |
-
1985
- 1985-01-30 JP JP60014523A patent/JPH0654262B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54138480A (en) * | 1978-04-20 | 1979-10-26 | Toshiba Corp | Temperature detector |
JPS5957126A (en) * | 1982-09-27 | 1984-04-02 | Nippon Denso Co Ltd | Temperature detector |
JPS59224527A (en) * | 1983-06-03 | 1984-12-17 | Yokogawa Hokushin Electric Corp | Light power meter |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009105573A (en) * | 2007-10-22 | 2009-05-14 | Epson Toyocom Corp | Surface acoustic wave device |
Also Published As
Publication number | Publication date |
---|---|
JPH0654262B2 (en) | 1994-07-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6810750B1 (en) | Encoded surface acoustic wave based strain sensor | |
US4726225A (en) | Surface acoustic wave gas flow rate sensor with self-heating feature | |
CN109506808B (en) | SAW temperature sensor with monotone and linear output characteristics and design method thereof | |
JPS61175531A (en) | Saw power sensor | |
Joshi | Flow sensors based on surface acoustic waves | |
JP3095637B2 (en) | Ultrasonic humidity sensor | |
US4195244A (en) | CdS Solid state phase insensitive ultrasonic transducer | |
Becker et al. | Multistrip couplers for surface acoustic wave sensor application | |
JPH0476420B2 (en) | ||
JP4591858B2 (en) | Ultrasonic liquid flow rate sensor | |
JPS6215416A (en) | Laser beam energy distribution measuring instrument | |
JPH0641888B2 (en) | SAW force sensor | |
JP7345117B2 (en) | Temperature sensor and temperature measuring device | |
CN111781270B (en) | Differential phase discrimination circuit system for surface acoustic wave gas sensor | |
JPH0641886B2 (en) | SAW force sensor | |
JPS60249023A (en) | Heat flow sensor | |
JPH0473532B2 (en) | ||
JPH07198428A (en) | Surface acoustic wave sensor | |
JPS62123807A (en) | Saw force sensor | |
JP2002081981A (en) | Thermal flowmeter | |
JPH0643928B2 (en) | Stress sensor | |
JPS58120171A (en) | Microwave power detector | |
JPS627036U (en) | ||
JPH01221626A (en) | Infrared sensor | |
JPH0641887B2 (en) | SAW force sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |