JPS59224527A - Light power meter - Google Patents

Light power meter

Info

Publication number
JPS59224527A
JPS59224527A JP9897983A JP9897983A JPS59224527A JP S59224527 A JPS59224527 A JP S59224527A JP 9897983 A JP9897983 A JP 9897983A JP 9897983 A JP9897983 A JP 9897983A JP S59224527 A JPS59224527 A JP S59224527A
Authority
JP
Japan
Prior art keywords
surface acoustic
measurement light
acoustic waveform
oscillator
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9897983A
Other languages
Japanese (ja)
Inventor
Hitoshi Inomata
猪又 仁
Akira Miura
明 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Hokushin Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Hokushin Electric Corp filed Critical Yokogawa Hokushin Electric Corp
Priority to JP9897983A priority Critical patent/JPS59224527A/en
Publication of JPS59224527A publication Critical patent/JPS59224527A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/38Radiation pyrometry, e.g. infrared or optical thermometry using extension or expansion of solids or fluids
    • G01J5/44Radiation pyrometry, e.g. infrared or optical thermometry using extension or expansion of solids or fluids using change of resonant frequency, e.g. of piezoelectric crystals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

PURPOSE:To realize a light power meter which has fast responsibility and high- sensitivity characteristics by making measurement light incident to one of two surface acoustic waveform oscillators which are of the same material and in the same shape, and calculating the difference in oscillation frequency. CONSTITUTION:A black body layer is provided on the surface of a surface acoustic waveform oscillator 1 and the measurement light is made incident thereto; and a surface acoustic waveform oscillator 2 is formed of the same material and in the same shape with the oscillator 1 and the measurement light is not incident. A mixer 3 sends out the difference in frequency between output signals of the oscillators 1 and 2. Consequently, high-speed responsibility and high-sensitivity characteristics are obtained, and a digital signal output is obtained.

Description

【発明の詳細な説明】 本発明は、光パワーメータに関するものであって、詳し
くは、測定光を熱エネルギーに変換して測定する装置に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical power meter, and more particularly to a device that converts measurement light into thermal energy for measurement.

光パワーの大きさを測定する装置の一種に、測定光を熱
エネルギーに変換して測定するように構成されたものが
aる。
One type of device for measuring the magnitude of optical power is one that is configured to convert measurement light into thermal energy for measurement.

従来、このような光−熱変換形の光パワーメータとして
は、熱電対の温接点に黒体を設けて測定光を黒体に照射
させ、熱起電力の大きさから測定光のパワーの大きさを
求めるように構成されたものが用いられていた。
Conventionally, such a light-to-thermal conversion type optical power meter has a black body installed at the hot junction of a thermocouple, the measuring light is irradiated onto the black body, and the power of the measuring light is determined from the magnitude of the thermoelectromotive force. A structure designed to achieve the highest quality was used.

しかし、このような構成によれば、半導体のP−N接合
を利用した量子形光パワーメータのような波長依存性は
ないものの、応答性が遅く 感度が低いという欠点があ
る。また、出方信号はアナログ信号であシ、デジタル処
理を行うためKは信号変換しなければならない。
However, although such a configuration does not have wavelength dependence like a quantum optical power meter that uses a semiconductor PN junction, it has the drawbacks of slow response and low sensitivity. Further, the output signal is an analog signal, and K must be converted into a signal in order to perform digital processing.

本発明は、このような欠点を解決したものであシ、高速
応答、高感度特性を有し、さらK、デジタル信号出力が
得られる光パワーメータを提供するものであって、表面
に黒体層が設けられこの黒体層に測定光が入射される第
1の表面弾性波形発振器と、第1の表面弾性波形発振器
と同材質で同形状に形成され測定光が入射されない第2
の表面弾性波形発振器と、これら第1の表面弾性波形発
振器と第2の表面弾性波形発振器の出力信号の周波数の
差を送出するミキサーとで構成したことを特徴とする特
許 以下、図面を用いて詳細に説明する。
The present invention solves these drawbacks, and provides an optical power meter that has high-speed response and high sensitivity characteristics, and further provides a digital signal output, and has a black body on the surface. A first surface acoustic waveform oscillator is provided with a black body layer and the measurement light is incident on the black body layer, and a second surface acoustic waveform oscillator is formed of the same material and the same shape as the first surface acoustic waveform oscillator and does not receive the measurement light.
This patent is characterized by comprising a surface acoustic waveform oscillator, and a mixer that transmits the difference in frequency between the output signals of the first surface acoustic waveform oscillator and the second surface acoustic waveform oscillator. Explain in detail.

第1図は、本発明の原理説明図であって、1は第1の表
面弾性波形発振器(以下SAWという)、2は第2のS
AW、3はミキサー、4Fi出力端子である。第1の5
AWIの表面には黒体層が設けられていて、この黒体層
には測定光が入射される。第2の5AW2は第1のBA
WLと同材質で形成されたものであって、この第2の5
AW2には測定光は入射されない。ミキサー3には各B
AWL、 2の出力信号が加えられ、これら両信号の周
波数の差が出力端子4に送出される。
FIG. 1 is a diagram explaining the principle of the present invention, in which 1 is a first surface acoustic wave oscillator (hereinafter referred to as SAW), and 2 is a second SAW.
AW, 3 is a mixer, 4Fi output terminal. 1st 5
A black body layer is provided on the surface of the AWI, and measurement light is incident on this black body layer. The second 5AW2 is the first BA
It is formed of the same material as WL, and this second 5
No measurement light is incident on AW2. Mixer 3 has each B
The output signals of AWL, 2 are added, and the difference in frequency between these two signals is sent to output terminal 4.

このような構成において、第1のBAWLの黒体層に測
定光が照射されると、第1の5AW1.の表面温度が上
昇し、その出力周波数が変化する。一方、第2の5AW
2 Kは測定光は照射されないので、測定光の照射以外
の周囲温度の変化による出力周波数の変化は打ち消され
ることになる。すなわち、黒体層に測定光が照射されな
い状態を考えると、第1周波数変化をすることになり、
周囲温度の変化の影響がミキサー3の出力周波数に現わ
れることはない。一方、第1の5AW1の黒体層に測定
光が照射されると、第1の5AWIには周囲温度の変化
に測定光の照射による温度変化が加算されるととKなる
が、前述のように周囲温度の変化の影響は第2の5AW
2の出力により打ち消されているので、ミキサー3の出
力周波数には測定光の照射量に関連した周波数変化のみ
が現われることKなる。従って、出力周波数の変化の大
きさから、測定光の光パワーの大きさを求めることがで
きる。
In such a configuration, when the black body layer of the first BAWL is irradiated with measurement light, the first 5AW1. surface temperature increases and its output frequency changes. On the other hand, the second 5AW
Since measurement light is not irradiated at 2 K, changes in the output frequency due to changes in ambient temperature other than the measurement light irradiation are canceled out. That is, if we consider a state in which the measurement light is not irradiated to the black body layer, the first frequency will change,
The effect of changes in ambient temperature does not appear on the output frequency of the mixer 3. On the other hand, when the black body layer of the first 5AW1 is irradiated with the measurement light, the first 5AWI will be K if the temperature change due to the irradiation of the measurement light is added to the change in the ambient temperature. The effect of changes in ambient temperature on the second 5AW
Since the output frequency of the mixer 3 is canceled by the output of the mixer 3, only the frequency change related to the irradiation amount of the measurement light appears in the output frequency of the mixer 3. Therefore, the magnitude of the optical power of the measurement light can be determined from the magnitude of the change in the output frequency.

第2図は、本発明の一実施例の要部を示す構成説明図で
ろって、11は取付体、12は圧N1体基板、13は第
1の5AVEを構成するための第1のすだれ状電極、1
4は第2の8AW2を構成するための第2のすだれ状電
極、15はこれら第1の8AW1及び第2の5AW2の
表面に設けられた絶縁層、16は絶縁層15上に設けら
れた黒体層、17はカバーである。
FIG. 2 is a configuration explanatory diagram showing the main parts of an embodiment of the present invention, in which 11 is a mounting body, 12 is a pressure N1 body substrate, and 13 is a first blind for configuring the first 5AVE. shaped electrode, 1
4 is a second interdigital electrode for configuring the second 8AW2; 15 is an insulating layer provided on the surfaces of the first 8AW1 and the second 5AW2; 16 is a black electrode provided on the insulating layer 15; The body layer 17 is a cover.

取付体11は高熱伝導率を有するものであって、例えば
銅板を用いる。圧電体基板12としては、例えばYカッ
ト水晶板を用いる。すだれ状電極13゜14は例えば公
知のフォトリソグラフィ技術を用いて形成する。絶縁層
15は黒体層16によるすだれ状電極13.14間の短
絡を防ぐものであって、例えば2酸化シリコン膜を用い
る。黒体層16としては例えばカーボン膜を用いる。カ
バー17には第1の5A11にのみ測定光を照射するた
めの開口18が設けられていて、例えば黒色塗装された
アルミ板を用いる3、実験例によれば、測定光が照射さ
れない状態において各5AW1.2からは約40 MH
zの周波数信号が得られ、恒温槽内で一定温度に保った
場合の周波数変化は±1Hzであシ、温度を変化させた
場合には約4kl(z/’Cの周波数変化が得られた。
The mounting body 11 has high thermal conductivity, and is made of, for example, a copper plate. As the piezoelectric substrate 12, for example, a Y-cut crystal plate is used. The interdigital electrodes 13 and 14 are formed using, for example, a known photolithography technique. The insulating layer 15 prevents a short circuit between the interdigital electrodes 13 and 14 caused by the black body layer 16, and is made of, for example, a silicon dioxide film. For example, a carbon film is used as the black body layer 16. The cover 17 is provided with an opening 18 for irradiating the measurement light only on the first 5A11, and according to an experiment using, for example, a black-painted aluminum plate, when the measurement light is not irradiated, each Approximately 40 MH from 5AW1.2
A frequency signal of z/'C was obtained, and when the temperature was kept constant in the thermostatic oven, the frequency change was ±1 Hz, and when the temperature was changed, a frequency change of about 4kl (z/'C was obtained. .

そして、5AVE K測定光を照射した場合πは測定光
のパワーの大きさに応じて8AW1の周波数は変化する
が8AW20周波数けはとんど変化しないことが確認で
きた。
It was confirmed that when 5AVEK measurement light was applied, the 8AW1 frequency changed depending on the power of the measurement light, but the 8AW20 frequency hardly changed.

なお、上記実施例では、各SAWを1ボート形で構成す
る例を示したが、2ポート形でおってもよい。
In the above embodiment, each SAW is configured as a one-port type, but it may be configured as a two-port type.

また、各SAWを個別に作っておき、温度特性の揃った
ものを2個組み合わせて用いるようにしてもよい。
Alternatively, each SAW may be made individually and two SAWs with the same temperature characteristics may be used in combination.

以上説明したように、本発明によれは、応答性が早く、
高感度特性を有するデジタル出力形の光パワーメータが
実現でき、光通信システムの光パワーの測定等に実用上
の効果は大きい。
As explained above, the present invention provides quick response and
A digital output type optical power meter with high sensitivity characteristics can be realized, which has a great practical effect in measuring optical power of optical communication systems.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の原理説明図、第2図は本発明の一実施
例の要部を示す構成説明図である。 1.2・・・表面弾性波形発振器、3・・・ミキサー、
4・・・出力端子、11・・・取付体、12・・・圧電
体基板、13゜14・・・すだれ状電極、15・・・絶
縁層、16・・・黒体層、17・・・カバー、18・・
・開口。
FIG. 1 is a diagram illustrating the principle of the present invention, and FIG. 2 is a diagram illustrating the configuration of a main part of an embodiment of the present invention. 1.2...Surface acoustic waveform oscillator, 3...Mixer,
4... Output terminal, 11... Mounting body, 12... Piezoelectric substrate, 13° 14... Interdigital electrode, 15... Insulating layer, 16... Black body layer, 17...・Cover, 18...
・Opening.

Claims (1)

【特許請求の範囲】[Claims] 表面に黒体層が設けられこの黒体層に測定光が入射され
る第1の表面弾性波形発振器と、第1の表面弾性波形発
振器と同利質で同形状に形成され測定光が入射されない
第2の表面弾性波形発振器と、これら第1の表面弾性波
形発振器と第2の表面弾性波形発振器の出力信号の周波
数の差を送出するミキサーとを具備した光パワーメータ
a first surface acoustic waveform oscillator provided with a black body layer on its surface and into which measurement light is incident; and a first surface acoustic waveform oscillator which is formed in the same material and shape as the first surface acoustic waveform oscillator and does not allow measurement light to enter therein. An optical power meter comprising a second surface acoustic waveform oscillator and a mixer that transmits the difference in frequency between the output signals of the first surface acoustic waveform oscillator and the second surface acoustic waveform oscillator.
JP9897983A 1983-06-03 1983-06-03 Light power meter Pending JPS59224527A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9897983A JPS59224527A (en) 1983-06-03 1983-06-03 Light power meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9897983A JPS59224527A (en) 1983-06-03 1983-06-03 Light power meter

Publications (1)

Publication Number Publication Date
JPS59224527A true JPS59224527A (en) 1984-12-17

Family

ID=14234132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9897983A Pending JPS59224527A (en) 1983-06-03 1983-06-03 Light power meter

Country Status (1)

Country Link
JP (1) JPS59224527A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61175531A (en) * 1985-01-30 1986-08-07 Anritsu Corp Saw power sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61175531A (en) * 1985-01-30 1986-08-07 Anritsu Corp Saw power sensor

Similar Documents

Publication Publication Date Title
Lee et al. Excitation of surface elastic waves by transient surface heating
US3879992A (en) Multiple crystal oscillator measuring apparatus
US4398115A (en) Temperature probe using a plate of quartz
JPH02276915A (en) Flow rate measuring instrument using surface acoustic wave and method for the same
Beerman The pyroelectric detector of infrared radiation
US3983424A (en) Radiation detector employing acoustic surface waves
JPH102793A (en) Pyroelectric infrared detection element and pyroelectric infrared sensor
JPS59224527A (en) Light power meter
Joshi Flow sensors based on surface acoustic waves
Gordon et al. High-resolution Brillouin scattering
CA1136260A (en) Cds solid state phase insensitive ultrasonic transducer
Byer et al. Complementary domain pyroelectric detectors with reduced sensitivity to mechanical vibrations and temperature changes
US3503012A (en) Optical differential interferometer discriminator for fm to am conversion
Das et al. Contactless semiconductor surface characterization using surface acoustic waves
US4259726A (en) Diode array convolver
US20220179285A1 (en) Photonic ac-dc equivalence converter and performing ac-dc equivalence conversion
Kampik et al. Thermal converter with quartz crystal temperature sensor for ac-dc transfer
US3714604A (en) Self excited electron phonon resonator
JPS593690B2 (en) Laser output measurement method using transmission method and piezoelectric vibrator for the measurement
JPH049625A (en) Frequency analyzing element
SU615799A1 (en) Optical frequency converter
JPS6032589Y2 (en) Light receiving element of laser output meter
JPS61258126A (en) Saw power sensor
Joshi Surface-acoustic-wave (SAW) voltage sensor with improved sensitivity
Hauden et al. Characterization of nonlinear propagation of Rayleigh waves