JPH0654262B2 - SAW power sensor - Google Patents

SAW power sensor

Info

Publication number
JPH0654262B2
JPH0654262B2 JP60014523A JP1452385A JPH0654262B2 JP H0654262 B2 JPH0654262 B2 JP H0654262B2 JP 60014523 A JP60014523 A JP 60014523A JP 1452385 A JP1452385 A JP 1452385A JP H0654262 B2 JPH0654262 B2 JP H0654262B2
Authority
JP
Japan
Prior art keywords
saw
electrode
piezoelectric substrate
power
propagation path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60014523A
Other languages
Japanese (ja)
Other versions
JPS61175531A (en
Inventor
良文 高橋
幸一郎 宮城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP60014523A priority Critical patent/JPH0654262B2/en
Publication of JPS61175531A publication Critical patent/JPS61175531A/en
Publication of JPH0654262B2 publication Critical patent/JPH0654262B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は光のパワーや広く電力を検出したり測定した
りするために使用するパワーセンサに係り、特に固体物
質の表面を伝搬する表面弾性波(SAW;Surface A
coustic Wave )を利用したSAWデバイスの感応機能
を応用したSAWパワーセンサに関する。
Description: TECHNICAL FIELD The present invention relates to a power sensor used for detecting and measuring the power of light and a wide range of power, and particularly to surface elasticity propagating on the surface of a solid substance. Wave (SAW; Surface A)
The present invention relates to a SAW power sensor that applies the sensitive function of a SAW device using a coustic wave).

〔従来の技術〕[Conventional technology]

電力及び光のパワーを検出するパワーセンサには、半導
体の光電効果を利用したホトダイオード・ホトトランジ
スタ等や、サーミスタ・熱電対のように入力パワーを熱
量に変換し、さらに該熱量を抵抗値及び熱起電力に変換
して、その変化を検出する熱形センサ等がある。
A power sensor that detects the power of electric power and light includes a photodiode / phototransistor that uses the photoelectric effect of semiconductors, a thermistor / thermocouple, etc. There is a thermal sensor or the like that converts the electromotive force to detect the change.

これら熱形のパワーセンサは基本的には温度センサに属
し、電力や光のパワーを熱量に変換する機能をこの温度
センサに付加したものである。
These thermal power sensors basically belong to a temperature sensor, and a function of converting electric power or light power into heat quantity is added to the temperature sensor.

熱形パワーセンサであるサーミスタ・熱電対は入力され
たパワーを熱量に変換し、さらに該熱量を抵抗値に変換
するか、または熱起電力に変換し、最終的には電圧に変
換している。そのため、これらの変換を高精度にするに
は出力電圧を正確に増幅する高価な差動増幅器を必要と
し、またマイクロコンピュータ技術を利用した計測やシ
ステムの制御を行う場合は高価なA/D変換器を必要と
する。
A thermistor / thermocouple, which is a thermal power sensor, converts the input power into a heat quantity, and further converts the heat quantity into a resistance value or a thermoelectromotive force, and finally into a voltage. . Therefore, in order to make these conversions highly accurate, an expensive differential amplifier that accurately amplifies the output voltage is required, and when performing measurement or system control using microcomputer technology, expensive A / D conversion is required. Need a vessel.

また、製造面においては、熱電対の場合、限られた2種
類の金属で精度良く接点を作る必要があり、蒸着、エッ
チング等複雑な工程が必要である。サーミスタの場合
は、酸化物であるサーミスタ材料は蒸気圧が低いために
蒸着するのが困難なことから、該サーミスタ材料の金属
を蒸着した後、酸化処理を行う方法がとられており、複
数の物質を成分とし、しかもこの成分比を正しくコント
ロールするという複雑な工程が必要である。
In terms of manufacturing, in the case of a thermocouple, it is necessary to make a contact accurately with limited two kinds of metals, and complicated processes such as vapor deposition and etching are required. In the case of a thermistor, it is difficult to deposit the thermistor material, which is an oxide, because of its low vapor pressure.Therefore, a method of depositing the metal of the thermistor material and then performing an oxidation treatment has been adopted. A complicated process of using a substance as a component and properly controlling the component ratio is required.

以上述べたような熱形パワーセンサは製造が複雑であ
り、かつ、使用材料が限定されることから、コスト、安
定性、信頼性、量産性に問題をのこしていた。
Since the thermal power sensor as described above is complicated to manufacture and the materials used are limited, there have been problems in cost, stability, reliability and mass productivity.

ところで、温度を検出する方法の一つとして、SAWデ
バイスを用いた発振回路においてSAW伝搬路の状態を
熱的に歪ませ、該SAW伝搬路中を伝搬しているSAW
の伝搬速度、もしくは伝搬経路長に変化を生じさせるこ
とにより、発振回路固有の発振周波数を変化させ、その
周波数の変化量からSAWデバイスの受けた熱量を検出
するSAW温度センサがある。このSAW温度センサは
小形軽量、高精度であり、またSAWセンサ部の製作が
容易で再現性が高いことから、SAWを利用したセンサ
の中では実用化の進んでいるものの一つである。
By the way, as one of the methods for detecting the temperature, in the oscillation circuit using the SAW device, the state of the SAW propagation path is thermally distorted and the SAW propagation in the SAW propagation path is distorted.
There is a SAW temperature sensor that changes the oscillation frequency peculiar to the oscillation circuit by changing the propagation velocity or the propagation path length and detects the amount of heat received by the SAW device from the amount of change in the frequency. This SAW temperature sensor is small and lightweight, has high accuracy, and the SAW sensor unit is easy to manufacture and has high reproducibility. Therefore, it is one of the sensors using the SAW, which is being put to practical use.

SAWデバイスを用いた発振器には、特開昭54−138480
号公報(温度検出装置)が開示するように、共振形発振
器と、遅延線素子形発振器とが知られている。
An oscillator using a SAW device is disclosed in JP-A-54-138480.
As disclosed in Japanese Patent Publication (Temperature Detection Device), a resonance type oscillator and a delay line element type oscillator are known.

SAW温度センサに関して開示された技術としては、例
えば、前記特開昭54−138480号公報(温度検出装置)及
び特開昭59−57126 号公報(温度検出器)に記載のもの
がある。特開昭54−138480号公報に開示の温度検出装置
は、SAWデバイスを用いて発振周波数が温度に依存す
る発振器を構成し、その発振周波数を離れた場所で検出
して前記発振器の置かれた位置の温度を検出するように
したものである。また、特開昭59−57126 号公報に開示
の温度検出器は、感温部となるSAWデバイスと増幅器
とで発振器を構成し該発振器の出力信号レベルをレベル
判定器で判定して、被測温物体の温度がキューリー点よ
り高いか低いかを検出するようにしたものである。記載
された実施例によれば、SAWデバイスを筒状の金属ケ
ースの先端に収め、交差指形電極と増幅器その他の素子
との信号の授受は金属ケース内に通したリード線で行う
ようにしている。
Techniques disclosed regarding the SAW temperature sensor include, for example, those described in JP-A-54-138480 (temperature detection device) and JP-A-59-57126 (temperature detector). The temperature detecting device disclosed in Japanese Patent Laid-Open No. 138480/54 constitutes an oscillator whose oscillation frequency depends on temperature by using a SAW device, detects the oscillation frequency at a remote place, and places the oscillator. The temperature of the position is detected. In the temperature detector disclosed in Japanese Patent Laid-Open No. 59-57126, an oscillator is composed of a SAW device serving as a temperature sensing section and an amplifier, and the output signal level of the oscillator is determined by a level determiner, and the measured signal is measured. The temperature of the warm object is detected to be higher or lower than the Curie point. According to the described embodiment, the SAW device is housed in the tip of a cylindrical metal case, and signals are exchanged between the interdigital electrodes and the amplifier or other elements by means of lead wires passing through the metal case. There is.

SAW温度センサに光のパワーを熱量に変換する機能を
付加して光パワーセンサとし、前述の熱形パワーセンサ
の問題点を解決したものが、例えば特開昭59−224527号
公報(光パワーメータ)に開示されている。該光パワー
メータは、表面に黒体層が設けられこの黒体層に測定光
が入射される第1の表面弾性波形発振器と、第1の表面
弾性波形発振器と同材質で同形状に形成され測定光が入
射されない第2の表面弾性波形発振器と、これら第1の
表面弾性波形発振器と第2の表面弾性波形発振器の出力
信号の周波数の差を送出するミキサーとで構成し、前記
黒体層に被測定光を照射し、そのパワーを測定するよう
にしたものである。実施例として記載された要部を示す
構成説明図(断面図)には、一方の表面弾性波形発振器
の交差指形電極部に被測定光を照射して同電極部を加熱
するようにしている図が示されている。
The SAW temperature sensor is provided with a function of converting the power of light into a calorific value to form an optical power sensor, which solves the problems of the thermal power sensor described above, for example, Japanese Patent Laid-Open No. 59-224527 (optical power meter). ) Is disclosed. The optical power meter is provided with a black body layer on the surface, and a first surface acoustic wave oscillator in which measurement light is incident on the black body layer, and the first surface acoustic wave oscillator is formed of the same material and in the same shape. The black body layer is composed of a second surface acoustic wave oscillator to which measurement light is not incident, and a mixer for sending out a difference in frequency between output signals of the first surface acoustic wave oscillator and the second surface acoustic wave oscillator. The light to be measured is radiated to and the power is measured. In the configuration explanatory view (cross-sectional view) showing the main part described as an example, the interdigitated electrode portion of one surface acoustic waveform oscillator is irradiated with light to be measured to heat the electrode portion. The figure is shown.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

以上述べたように、前記温度検出装置及び前記温度検出
器はSAWセンサ部全体が検出しようとする温度の雰囲
気中に置かれるし、前記光パワーメータは表面弾性波形
発振器(実施例では共振形発振器の交差指形電極部)を
加熱して光パワーを検出するようしている。
As described above, the temperature detecting device and the temperature detector are placed in an atmosphere at the temperature to be detected by the entire SAW sensor section, and the optical power meter is a surface acoustic waveform oscillator (resonant type oscillator in the embodiment). The cross finger-shaped electrode part) is heated to detect the optical power.

これらの例が示すように、従来技術では、共振形発振器
を用いた場合はもちろんのこと、遅延線素子形発振器を
用いた場合も、交差指形電極部を含むSAWセンサ部全
体が測定しようとする熱(温度)を受けるように構成さ
れていた。
As shown in these examples, in the conventional technique, not only when using the resonance type oscillator but also when using the delay line element type oscillator, it is attempted to measure the entire SAW sensor unit including the interdigital finger type electrode unit. It was configured to receive the heat (temperature) that it produced.

本願発明者等はSAWパワーセンサの研究のなかで、シ
ミュレーションの結果、交差指形電極部を加熱すると、
そこが熱膨張し、温度変化に伴う周波数の変化が見られ
るが、その一方で感度の直線性に悪影響を与えていると
いうこと、また、圧電性基板自体が大きな熱容量を持っ
ており感度の向上の妨げになっていることを発見した。
As a result of the simulation, the inventors of the present application, in the study of the SAW power sensor, heated the interdigitated electrode part,
Although there is thermal expansion, there is a change in frequency due to temperature changes, but on the other hand, the linearity of sensitivity is adversely affected, and the piezoelectric substrate itself has a large heat capacity, which improves sensitivity. I have found that it is hindering me.

およそ、よいセンサを実現するためには、被測定パラメ
ータと検知されている測定量との間に一義的な関係があ
ることが必要とされているから、表面弾性波装置(SA
Wデバイス)でパワーセンサを実現するためには交差指
形電極のもつ感温特性が関与しない形でSAW伝搬路の
もつ遅延特性だけを利用する形をとることが求められ
る。
In order to realize a good sensor, it is required that there is a unique relationship between the measured parameter and the measured quantity.
In order to realize a power sensor with a W device), it is required to use only the delay characteristic of the SAW propagation path without involving the temperature-sensitive characteristic of the interdigital electrode.

すなわち、感度の直線性がよいSAWパワーセンサを実
現するためには交差指形電極部には熱的な影響が及びに
くい形で、SAW伝搬路で被測定パワーに対応した発熱
すなわち温度上昇が得られることが望ましい。
That is, in order to realize a SAW power sensor with good linearity of sensitivity, the interdigitated electrode portion is less likely to be thermally affected, and the SAW propagation path generates heat corresponding to the measured power, that is, temperature rise. Is desirable.

この発明は、かかる実状に鑑みてなされたもので、その
目的とするところは、製作が容易であると共にデジタル
的計測が容易である周波数の変化量で出力するという特
長を持ったSAWデバイスを利用した発振回路を用い
て、感度の直線性がよいSAWパワーセンサを提供する
ことである。
The present invention has been made in view of such circumstances, and an object of the present invention is to use a SAW device having a feature of outputting a frequency change amount that is easy to manufacture and easy to digitally measure. Using the oscillation circuit described above, it is to provide a SAW power sensor having good linearity of sensitivity.

〔問題点を解決するための手段〕[Means for solving problems]

この発明では、表面弾性波(SAW)を用いた発振器に
遅延線素子形発振器を採用することとし、しかも温度特
性を有する圧電性基板上に設けられる送信用電極と受信
用電極(実施例においては交差指形電極。IDTとよい
う。IDT;Inter Digital Transducer )の間に
所定の距離を置くこととした。そして、両電極の間に形
成されるSAWの遅延線路となる伝搬路上に、両電極か
らそれぞれ所定の距離離して、被測定信号のパワーを吸
収して発熱し該伝搬路すなわち遅延線路を加熱する発熱
体を当接もしくは近接して設けることとした。
In the present invention, a delay line element type oscillator is adopted as an oscillator using surface acoustic waves (SAW), and furthermore, a transmission electrode and a reception electrode (in the embodiment, provided on a piezoelectric substrate having temperature characteristics). Interdigitated electrodes, which is called IDT, and a predetermined distance is set between the IDT (Inter Digital Transducer). Then, on the propagation path serving as the delay line of the SAW formed between both electrodes, at a predetermined distance from each of the electrodes, the power of the signal under measurement is absorbed and heat is generated to heat the propagation path, that is, the delay line. The heating element is provided in contact with or close to it.

また、該発熱体の発熱によって生じた前記SAW遅延線
発振器の周波数もしくは周波数の変化量を計数する計数
手段を備えた。
The SAW delay line oscillator is provided with counting means for counting the frequency or the amount of change in the frequency caused by the heat generation of the heating element.

〔作用〕[Action]

発熱体は被測定信号のパワーを吸収して発熱しSAWの
伝搬路を加熱する。送信用電極から発射され受信用電極
で受信されるSAWは、前記伝搬路の加熱による伝搬路
長の変化と伝搬速度の変化を受けて、送・受信用電極間
の伝搬時間が変化し、結果としてSAW遅延線発振器の
周波数が変化する。変化した周波数もしくは周波数の変
化量を計数すれば発熱量すなわち被測定信号のパワーが
求められる。
The heating element absorbs the power of the signal under measurement to generate heat and heat the propagation path of the SAW. The SAW emitted from the transmitting electrode and received by the receiving electrode changes the propagation time between the transmitting and receiving electrodes due to the change in the propagation path length and the change in the propagation velocity due to the heating of the propagation path. As a result, the frequency of the SAW delay line oscillator changes. The amount of heat generation, that is, the power of the signal under measurement is obtained by counting the changed frequency or the amount of change in the frequency.

発熱体がSAW伝搬路上の、両電極からそれぞれ所定の
距離離れた位置に当接もしくは近接して設けられている
から、主としてSAW伝搬路が加熱され、両電極への熱
の影響が少ない。
Since the heating element is provided in contact with or close to each of the electrodes on the SAW propagation path at a predetermined distance from each of the electrodes, the SAW propagation path is mainly heated, and the influence of heat on both electrodes is small.

〔実施例〕〔Example〕

第1図はこの発明の一実施例の構成図を示している。 FIG. 1 shows a block diagram of an embodiment of the present invention.

この発明は図示するように、圧電性基板1の表面にSA
Wを発射させるための送信用交差指形電極(IDT)2
と、SAWを受信するための受信用交差指形電極(ID
T)3とを両電極の間隔を隔てて設け、この間隔で規定
されるSAWの伝搬路を伝搬するSAWに伝搬時間に相
当する遅れを生じさせるSAW遅延線素子を形成し、入
力したパワーを熱に変換する発熱体4を送信用IDT2
と受信用IDT3の間のSAW伝搬路上に設けている。
発熱体4と送信用IDT2及び受信用IDT3は所定の
距離を隔てるように、図では中間にくる配置をとってい
る。なお、該発熱体4は、前記圧電性基板1の少なくと
も一部に接触(当接)もしくは近接して配置してもよ
く、要は測定すべきパワーに対応した発熱量でSAW遅
延線に温度変化を与えればよい。各IDT2,3の一方
の電極はすべて接地されており、また送信用IDT2の
信号入力側の電極と受信用IDT3の信号出力側の電極
との間にはSAW発振回路を構成する増幅器5が接続さ
れている。そして、この増幅器5と前記送信用IDT2
及び受信用IDT3によって電気的閉ループ回路を作る
と、増幅器5は発振器となり、SAW遅延線発振器とし
てSAW遅延線の中心周波数を固有振動数とする自励発
振をさせることができる。この自励発振によって送信用
IDT2で生じたSAWは圧電性基板1上を進行し受信
用IDT3で受信される。この圧電性基板1上に設けた
前記発熱体4に光のパワーを入力し発熱させると、両I
DT2,3と発熱体4とが前述のような配置となってい
るので、圧電性基板1の主としてSAW伝搬路部分の温
度が上昇し、SAW遅延線のSAW伝搬速度が変化する
と同時に両IDT2,3間の距離が熱膨張により変化
し、SAW遅延線の遅延時間が変化する。この影響を受
けSAW遅延線の中心周波数を固有振動数とする自励発
振の振動数が変化する。この振動数を周波数カウンタ6
によって検出すれば、圧電性基板1の表面の歪量、すな
わちSAW遅延線に加えられたパワーの大きさが検出で
きる。
As shown in the drawing, the present invention is provided with SA on the surface of the piezoelectric substrate 1.
Intermittent interdigital electrode (IDT) 2 for firing W
And a receiving cross-shaped electrode (ID for receiving SAW)
T) 3 is provided with a space between both electrodes, and a SAW delay line element that causes a delay corresponding to the propagation time in the SAW propagating in the SAW propagation path defined by this space is formed, and the input power is The heating element 4 that converts heat into the IDT 2 for transmission
It is provided on the SAW propagation path between the receiving IDT 3 and the receiving IDT 3.
In the figure, the heating element 4, the transmitting IDT 2 and the receiving IDT 3 are arranged in the middle so as to be separated by a predetermined distance. The heating element 4 may be arranged in contact (contact) with or in proximity to at least a part of the piezoelectric substrate 1. In short, the heating element 4 needs to be heated by the heating value corresponding to the power to be measured. Just make a change. One electrode of each of the IDTs 2 and 3 is grounded, and an amplifier 5 forming a SAW oscillation circuit is connected between the signal input side electrode of the transmitting IDT 2 and the signal output side electrode of the receiving IDT 3. Has been done. Then, the amplifier 5 and the transmitting IDT 2
When an electrically closed loop circuit is formed by the receiving IDT 3, the amplifier 5 becomes an oscillator, and the SAW delay line oscillator can perform self-excited oscillation with the center frequency of the SAW delay line as the natural frequency. The SAW generated in the transmitting IDT 2 by this self-oscillation advances on the piezoelectric substrate 1 and is received by the receiving IDT 3. When light power is input to the heating element 4 provided on the piezoelectric substrate 1 to generate heat, both I
Since the DTs 2, 3 and the heating element 4 are arranged as described above, the temperature of mainly the SAW propagation path portion of the piezoelectric substrate 1 rises, the SAW propagation speed of the SAW delay line changes, and at the same time both IDTs 2, The distance between 3 changes due to thermal expansion, and the delay time of the SAW delay line changes. Under this influence, the frequency of self-excited oscillation with the natural frequency at the center frequency of the SAW delay line changes. This frequency is the frequency counter 6
If detected by, the amount of strain on the surface of the piezoelectric substrate 1, that is, the magnitude of the power applied to the SAW delay line can be detected.

次にSAWパワーセンサの感度を向上させる手段につい
て述べる。
Next, a means for improving the sensitivity of the SAW power sensor will be described.

SAWパワーセンサを構成しているSAW遅延線は圧電
性基板自体大きな熱容量を持っている。そこで該圧電性
基板を薄く細くすればよいが機械的強度が問題となる。
この問題を解決するには圧電性基板のSAW伝搬路の裏
面をエッチングし、送信用IDT及び受信用IDTを縦
方向いっぱいになるよう圧電性基板を細くすればよい。
The SAW delay line that constitutes the SAW power sensor has a large heat capacity in the piezoelectric substrate itself. Therefore, the piezoelectric substrate may be thin and thin, but mechanical strength becomes a problem.
To solve this problem, the back surface of the SAW propagation path of the piezoelectric substrate may be etched to thin the piezoelectric substrate so that the transmitting IDT and the receiving IDT are vertically filled.

第2図にその実施例を示す。このSAWパワーセンサは
送信用IDTと受信用IDTとの間に熱的歪を加えSA
W伝搬状態を変化させることを基本的原理としているの
で、SAW伝搬領域を薄くし、圧電性基板1の熱容量を
減少させている。これに加えて、表面弾性波(SAW)
の広がりのすべてを利用できるように、送信用IDT
2,受信用IDT3を圧電性基板1の縦方向いっぱいに
配置している。以上述べた2つの改良により感度のみな
らず応答速度の向上も実現できる。
An example thereof is shown in FIG. This SAW power sensor applies thermal strain between the IDT for transmission and the IDT for reception.
Since the basic principle is to change the W propagation state, the SAW propagation region is thinned and the heat capacity of the piezoelectric substrate 1 is reduced. In addition to this, surface acoustic waves (SAW)
The transmission IDT so that you can take advantage of all of the
2. The IDT 3 for reception is arranged in the vertical direction of the piezoelectric substrate 1. With the two improvements described above, not only the sensitivity but also the response speed can be improved.

次に実際に試作したSAWパワーセンサについて述べ
る。
Next, the SAW power sensor actually manufactured will be described.

第3図は実際に試作したSAWパワーセンサを構成する
発熱抵抗体を備えたSAW遅延線である。このセンサは
電力測定用であり、発熱体として発熱抵抗体7を用い、
この発熱抵抗体7の両端には電力入力用の電極8をそれ
ぞれ備えた形となっている。発熱邸抗体77と送信用I
DT2及び受信用IDT3とは所定の距離を隔てて配置
され、両IDT2,3への熱の影響を少なくしている。
FIG. 3 shows a SAW delay line provided with a heating resistor that constitutes a SAW power sensor actually manufactured. This sensor is for power measurement, and uses the heating resistor 7 as a heating element.
Electrodes 8 for power input are provided at both ends of the heating resistor 7, respectively. Fever house antibody 77 and transmission I
The DT2 and the receiving IDT3 are arranged at a predetermined distance from each other to reduce the influence of heat on the IDTs 2 and 3.

第4図に実験結果を示す。図中縦軸はSAWパワーセン
サの発振周波数変化量、横軸は発熱抵抗体に入力された
電力を示す。実験の結果、このSAWパワーセンサは入
力電力に対し発振周波数の変化量が直線性よく変化する
ことが分かった。相関係数rは、0.99997 であった。ま
た、0.1mW 10Hzという測定し易い感度特性を得た。
The experimental results are shown in FIG. In the figure, the vertical axis represents the amount of change in the oscillation frequency of the SAW power sensor, and the horizontal axis represents the power input to the heating resistor. As a result of experiments, it was found that the amount of change in the oscillation frequency of this SAW power sensor changes linearly with respect to the input power. The correlation coefficient r was 0.99997. In addition, a sensitivity characteristic of 0.1 mW 10 Hz was obtained, which was easy to measure.

次に応用面について説明する。例えば、マイクロ波帯の
パワーセンサにするには整合負荷を圧電性基板上に形成
し、マイクロ波を吸収させて発熱させ、周波数の変化量
を検出することにより実現できる。また、光パワーセン
サの一種である赤外線センサにするには、赤外線吸収体
である金黒などの吸収体を圧電性基板上に設け、赤外線
を吸収させ、同様に周波数の変化量を検出すればよい。
Next, the application aspect will be described. For example, a microwave band power sensor can be realized by forming a matching load on a piezoelectric substrate, absorbing microwaves to generate heat, and detecting the amount of frequency change. In addition, in order to make an infrared sensor, which is a type of optical power sensor, if an absorber such as gold black, which is an infrared absorber, is provided on the piezoelectric substrate, infrared rays are absorbed, and the amount of change in frequency is similarly detected. Good.

〔発明の効果〕〔The invention's effect〕

以上説明したように、この発明では、表面弾性波を用い
た発振器に遅延線素子形発振器を採用することとし、し
かも圧電性基板上に設けられる送信用電極と受信用電極
の間に所定の距離を置くこととし、両電極の間に形成さ
れるSAWの伝搬路上に、両電極からそれぞれ所定の距
離離して、被測定信号のパワーを吸収して発熱し該伝搬
路を加熱する発熱体を設けることとしたから、電極部へ
の熱の影響が少なく、感度の直線性がよいSAWパワー
センサが得られた。
As described above, in the present invention, the delay line element type oscillator is adopted as the oscillator using the surface acoustic wave, and the predetermined distance is provided between the transmitting electrode and the receiving electrode provided on the piezoelectric substrate. And a heating element for absorbing the power of the signal under measurement and generating heat to heat the propagation path on the propagation path of the SAW formed between the electrodes at a predetermined distance from the electrodes. As a result, a SAW power sensor with little influence of heat on the electrode portion and good linearity of sensitivity was obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明のパワーセンサの電気回路構成図,第
2図は、SAWパワーセンサ感度向上を目的とした実施
例を示す図,第3図は、実際に試作したSAWパワーセ
ンサを構成するSAW遅延線を示す図,第4図は、実際
に試作したSAWパワーセンサの出力結果を示す図であ
る。 図中、1は圧電性基板,2は送信用交差指形電極(ID
T),3は受信用交差指形電極(IDT),4は発熱
体,5は増幅器(閉ループの構成によりSAW遅延線発
振器として発振する。),6は周波数カウンタ,7は発
熱抵抗体,8は電極を示す。
FIG. 1 is an electric circuit configuration diagram of the power sensor of the present invention, FIG. 2 is a diagram showing an embodiment for the purpose of improving the sensitivity of the SAW power sensor, and FIG. 3 is a configuration of an actually manufactured SAW power sensor. FIG. 4 is a diagram showing a SAW delay line that performs the above, and FIG. 4 is a diagram showing an output result of an actually manufactured SAW power sensor. In the figure, 1 is a piezoelectric substrate, 2 is a transmitting cross-shaped electrode (ID
T), 3 is an interdigital finger electrode (IDT) for reception, 4 is a heating element, 5 is an amplifier (oscillates as a SAW delay line oscillator due to the closed loop configuration), 6 is a frequency counter, 7 is a heating resistor, 8 Indicates an electrode.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭54−138480(JP,A) 特開 昭59−57126(JP,A) 特開 昭59−224527(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-54-138480 (JP, A) JP-A-59-57126 (JP, A) JP-A-59-224527 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】温度特性を有する圧電性材料で成りその表
面が平坦な圧電性基板と、表面弾性波を発射するために
該圧電性基板の表面上に設けられた送信用電極と、該送
信用電極によって発射された表面弾性波を受信するため
に前記圧電性基板の表面上に前記送信用電極と所定の距
離を隔てて設けられた受信用電極とを含み、前記送信用
電極と前記受信用電極との間の前記圧電性基板表面に表
面弾性波に対して伝搬遅延を生ぜしめる表面弾性波の伝
搬路を形成してなるSAW遅延線発振器と; 前記伝搬路の、前記送信用電極と前記受信用電極とから
それぞれ所定の距離隔たった位置に、該伝搬路に当接も
しくは近接して設けられ、被測定信号のパワーを吸収し
て発熱し、該伝搬路を加熱する発熱体と; 該発熱体の発熱によって生じた前記SAW遅延線発振器
の周波数もしくは周波数の変化量を計数する計数手段と
からなるSAWパワーセンサ。
1. A piezoelectric substrate made of a piezoelectric material having temperature characteristics and having a flat surface, a transmitting electrode provided on the surface of the piezoelectric substrate for emitting a surface acoustic wave, and a transmitting electrode. The transmitting electrode and the receiving electrode are provided on the surface of the piezoelectric substrate so as to receive the surface acoustic wave emitted by the trust electrode, and the receiving electrode provided at a predetermined distance from the transmitting electrode. A SAW delay line oscillator in which a surface acoustic wave propagation path that causes a propagation delay for the surface acoustic wave is formed on the surface of the piezoelectric substrate between the transmission electrode and the transmission electrode; A heating element that is provided in contact with or in proximity to the propagation path at a position separated from the reception electrode by a predetermined distance, absorbs power of a signal under measurement to generate heat, and heats the propagation path; The SA generated by the heat generation of the heating element SAW power sensor comprising a counting means for counting the amount of change in the frequency or the frequency of the delay line oscillator.
JP60014523A 1985-01-30 1985-01-30 SAW power sensor Expired - Fee Related JPH0654262B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60014523A JPH0654262B2 (en) 1985-01-30 1985-01-30 SAW power sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60014523A JPH0654262B2 (en) 1985-01-30 1985-01-30 SAW power sensor

Publications (2)

Publication Number Publication Date
JPS61175531A JPS61175531A (en) 1986-08-07
JPH0654262B2 true JPH0654262B2 (en) 1994-07-20

Family

ID=11863465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60014523A Expired - Fee Related JPH0654262B2 (en) 1985-01-30 1985-01-30 SAW power sensor

Country Status (1)

Country Link
JP (1) JPH0654262B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5104198B2 (en) * 2007-10-22 2012-12-19 セイコーエプソン株式会社 Surface acoustic wave device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54138480A (en) * 1978-04-20 1979-10-26 Toshiba Corp Temperature detector
JPS5957126A (en) * 1982-09-27 1984-04-02 Nippon Denso Co Ltd Temperature detector
JPS59224527A (en) * 1983-06-03 1984-12-17 Yokogawa Hokushin Electric Corp Light power meter

Also Published As

Publication number Publication date
JPS61175531A (en) 1986-08-07

Similar Documents

Publication Publication Date Title
US5003822A (en) Acoustic wave microsensors for measuring fluid flow
US4726225A (en) Surface acoustic wave gas flow rate sensor with self-heating feature
US3983424A (en) Radiation detector employing acoustic surface waves
US6142948A (en) Vibration displacement detecting system
JPH0654262B2 (en) SAW power sensor
JP3095637B2 (en) Ultrasonic humidity sensor
Joshi Flow sensors based on surface acoustic waves
US6327890B1 (en) High precision ultrasonic chilled surface dew point hygrometry
Joshi Surface-acoustic-wave (SAW) flow sensor
RU2456559C1 (en) Thermal radiation receiver
US7373838B2 (en) Acoustic wave flow sensor for high-condensation applications
RU2658596C1 (en) Sensitive element on surface acoustic waves for measuring pressure of liquids and gases
Cheng et al. A multi-resolution wireless force sensing system based upon a passive SAW device
JPH0476420B2 (en)
JP4591858B2 (en) Ultrasonic liquid flow rate sensor
JP7345117B2 (en) Temperature sensor and temperature measuring device
JPH0641888B2 (en) SAW force sensor
JPS60249023A (en) Heat flow sensor
SU1635018A1 (en) Optical thermometer
JP2002081981A (en) Thermal flowmeter
JPH0353569B2 (en)
JPH0321054B2 (en)
JPH0641886B2 (en) SAW force sensor
JPH01221626A (en) Infrared sensor
JPH084584Y2 (en) Surface acoustic wave vacuum gauge

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees