JPS6117536A - Preparation of benzophenonetetracarboxylic acid - Google Patents

Preparation of benzophenonetetracarboxylic acid

Info

Publication number
JPS6117536A
JPS6117536A JP13663084A JP13663084A JPS6117536A JP S6117536 A JPS6117536 A JP S6117536A JP 13663084 A JP13663084 A JP 13663084A JP 13663084 A JP13663084 A JP 13663084A JP S6117536 A JPS6117536 A JP S6117536A
Authority
JP
Japan
Prior art keywords
bta
crude
nitric acid
reaction
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13663084A
Other languages
Japanese (ja)
Inventor
Naoki Ando
直樹 安藤
Hideetsu Fujiwara
秀悦 藤原
Kenji Hosoya
細谷 賢治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Nippon Synthetic Chemical Industry Co Ltd
Original Assignee
Nippon Synthetic Chemical Industry Co Ltd
Japan Synthetic Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Synthetic Chemical Industry Co Ltd, Japan Synthetic Rubber Co Ltd filed Critical Nippon Synthetic Chemical Industry Co Ltd
Priority to JP13663084A priority Critical patent/JPS6117536A/en
Publication of JPS6117536A publication Critical patent/JPS6117536A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To obtain the titled compound useful as a raw material for a polyimide of a heat-resistant material in high purity, by oxidizing bis(dimethylphenyl) ethane with nitric acid with a specific concentration at a specific temperature, recrystallizing the crude reaction product separated by concentration, etc. with water. CONSTITUTION:Bis(dimethylphenyl)ethane shown by the formula I is oxidized 25-40wt%, preferably 28-35wt% nitric acid at 120-170 deg.C, preferably at 125- 165 deg.C, to give benzophenonetetracarboxylic acid(BTA) shown by the formula II. The reaction product solution is concentrated, cooled, or cooled after concentration, to precipitate and to separate crude BTA. Then, crude BTA is recrystallized by the use of water as a solvenet for recrystallization, to give purified BTA. Part or the whole (preferably 50-90wt%) of the mother liquor separated from crude BTA is sent to the oxidation process, 5-25wt% recrystallized mother liquor is replaced with new water, and preferably recycled through the recrystallization process.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、高純度のベンゾフェノンテトラカルボン酸の
製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for producing highly pure benzophenone tetracarboxylic acid.

従来の技術 ベンゾフェノンテトラカルボン酸(以下「BTAJと云
う)は、脱水することによりベンゾフェノンテトラカル
ボン酸二無水物(以下「BTDAJと云う)とすること
ができ、このBTDAは耐熱性樹脂であるポリイミドの
原料として特に有用である。
BACKGROUND ART Benzophenonetetracarboxylic acid (hereinafter referred to as "BTAJ") can be made into benzophenonetetracarboxylic dianhydride (hereinafter referred to as "BTDAJ") by dehydration, and this BTDA is a polyimide which is a heat-resistant resin. Particularly useful as a raw material.

従来かかるBTAの製造方法としては、ビス(ジメチル
フェニル)プロピオン酸を酸化する方法、ビス(ジメチ
ルフェニル)メタンを酸化する方法、ビス(ジメチルフ
ェニル)エタンを酸化する方法などが知られている。
Conventionally known methods for producing BTA include a method of oxidizing bis(dimethylphenyl)propionic acid, a method of oxidizing bis(dimethylphenyl)methane, and a method of oxidizing bis(dimethylphenyl)ethane.

これらの方法においては、0−キシレンとアセトアルデ
ヒドなどから容易に合成できるビス(ジメチルフェニル
)エタン(ジキシリノエタン、以下rDXEJと云う)
を原料とし、これを硝酸酸化する方法(DXE酸化法)
が最も実用的であると考えられている。
In these methods, bis(dimethylphenyl)ethane (dixylinoethane, hereinafter referred to as rDXEJ), which can be easily synthesized from 0-xylene and acetaldehyde, etc.
is used as a raw material and oxidized with nitric acid (DXE oxidation method)
is considered the most practical.

発明が解決しようとする問題点 前記DXE酸化法として、例えばソビエト特許第232
,237号明細書によれば、10〜20重量%の低濃度
の硝酸を使用して150〜200℃で酸化する方法が記
されている。
Problems to be Solved by the Invention As the DXE oxidation method, for example, Soviet Patent No. 232
, 237 describes a method of oxidizing at 150 to 200° C. using nitric acid at a low concentration of 10 to 20% by weight.

しかしこの方法は、硝酸濃度が薄く多量の硝酸水溶液を
使用するため、反応器の使用効率が悪く、しかも反応後
に粗BTAを析出させるために多量のエネルギーを消費
するという欠点を有する。
However, this method uses a large amount of aqueous nitric acid solution with a low concentration of nitric acid, so it has the disadvantage that the efficiency of reactor use is poor and that a large amount of energy is consumed to precipitate crude BTA after the reaction.

一方米国特許第3,671.5879号明細書によれば
、70重景%程度の高濃度の硝酸を使用して170℃付
近で連続的に酸化する方法が、また米国特許第4,17
3,573号明細書には54重量%の硝酸を徐々に供給
して140〜175℃の温度で酸化する方法が示されて
いる。これらの方法によれば、硝酸濃度が高(、反応器
の効率は良くなるが、その一方で副生成物の生成量が増
加し、得られる粗BTAの色が再結晶を繰り返しても黄
色を帯びており、この得られたBTAを脱水・精製して
BTDAを製造しても白色とはならず、クリーム色のB
TDAとなる。
On the other hand, according to US Pat. No. 3,671.5879, there is a method of continuous oxidation at around 170°C using high concentration nitric acid of about 70%, and US Pat. No. 4,17
No. 3,573 discloses a method in which nitric acid of 54% by weight is gradually fed and oxidized at a temperature of 140 DEG to 175 DEG C. According to these methods, the nitric acid concentration is high (and the efficiency of the reactor is improved, but on the other hand, the amount of by-products produced increases, and the color of the crude BTA obtained remains yellow even after repeated recrystallization. Even if the obtained BTA is dehydrated and purified to produce BTDA, it will not become white, but a cream-colored BTA.
It becomes TDA.

実際、現在市販されているBTDAは、これらの方法で
製造されていると見られるが、クリーム色で純度が96
゛〜97%の粉末結晶であり、再結晶を繰り返し実施し
ても白色結晶にはなり難い。
In fact, the BTDA currently on the market appears to be manufactured using these methods, but it is cream-colored and has a purity of 96%.
It is ~97% powder crystal, and is difficult to become white crystal even if recrystallization is repeated.

近年耐熱性素材としてポリイミドが注目され、特に電子
材料向けに高純度の透明性の優れたポリイミドが、また
そのための高純度モノマーが求められているにもかかわ
らず、ポリイミドのモノマーであるBTDAについては
、高純度白色のものを効率良く製造する方法が知られて
いないのが現状である。
In recent years, polyimide has attracted attention as a heat-resistant material, and although there is a demand for high-purity, highly transparent polyimide especially for electronic materials, and for high-purity monomers for that purpose, there is still a lack of BTDA, the monomer of polyimide. Currently, there is no known method for efficiently producing a highly pure white product.

本発明は、かかる技術的課題を背景になされたもので、
副生成物が少な(、BTDAの原料である高純度のBT
Aを得ることが可能な製造方法を提供することを目的と
する。
The present invention was made against the background of such technical problems, and
Few by-products (Highly purified BT, the raw material for BTDA)
The purpose of the present invention is to provide a manufacturing method capable of obtaining A.

問題を解決するための手段 即ち本発明は、次の各工程を含むことを特徴とするベン
ゾフェノンテトラカルボン酸の製造方法である。
A means for solving the problem, that is, the present invention is a method for producing benzophenonetetracarboxylic acid, which is characterized by including the following steps.

(イ)ビス(ジメチルフェニル)エタンを、濃度25〜
40重量%の硝酸を用い、温度120〜170℃下で酸
化反応せしめる第1工程。
(a) Bis(dimethylphenyl)ethane at a concentration of 25~
The first step is to carry out an oxidation reaction using 40% by weight of nitric acid at a temperature of 120 to 170°C.

(ロ)反応生成液を、濃縮するか、冷却するか、もしく
は濃縮後冷却して粗ベンゾフェノンテトラカルボン酸を
析出・分離する第2工程。
(b) A second step of concentrating or cooling the reaction product liquid, or cooling after concentration to precipitate and separate crude benzophenonetetracarboxylic acid.

(ハ)粗ベンゾフェノンテトラカルボン酸を、再結晶溶
媒として水を用い再結晶する第3工程。
(c) A third step of recrystallizing crude benzophenonetetracarboxylic acid using water as a recrystallization solvent.

以下本発明を工程別に分けて詳細に説明する。The present invention will be explained in detail below by dividing it into steps.

(イ)第1工程 第1工程は、例えば下記反応式で示されるDXE酸化反
応である。
(a) First step The first step is, for example, a DXE oxidation reaction shown by the following reaction formula.

+35/3H*  O+34/3NO ここで本発明に使用されるDXEは、例えば0−キシレ
ンとアセトアルデヒドを縮合させることにより得られ、
例えば異性体、未反応の0−キシレンおよび縮合物を分
離する時に使用する炭化水素などの抽剤を若干含有して
いてもよいが、不純物が多い場合はBTA析出・分離後
の母液を後記のように本工程である反応器にリサイクル
できる量がそれだけ少なくなるので、好ましくはDXE
の純度は95重量%以上である。
+35/3H*O+34/3NO Here, DXE used in the present invention is obtained, for example, by condensing 0-xylene and acetaldehyde,
For example, it may contain a small amount of extractant such as a hydrocarbon used when separating isomers, unreacted 0-xylene, and condensates, but if there are many impurities, the mother liquor after BTA precipitation and separation may be used as described below. Since the amount that can be recycled to the reactor in this process will be correspondingly smaller, it is preferable to use DXE.
The purity is 95% by weight or more.

また酸化に使用される硝酸の濃度は、25〜40重重景
、好ましくは28〜35重量%である。DXE酸化反応
では、使用される硝#濃度が約40重量%を境に、これ
を越える濃度の硝酸を使用すると急激に副生成物である
黄色化合物の生成率が増大し、一方約25重量%未満で
は硝酸濃度が薄ずぎて多量の硝酸水溶液を使用せねばな
らず、反応器の使用効率が悪く、反応後の反応生成液の
濃縮、B T、Aの析出・分離に多量のエネルギーを必
要とし、何れも好ましくない。
The concentration of nitric acid used for oxidation is 25 to 40% by weight, preferably 28 to 35% by weight. In the DXE oxidation reaction, when the concentration of nitric acid used exceeds approximately 40% by weight, the production rate of a yellow compound as a by-product increases rapidly; If the nitric acid concentration is too low, a large amount of nitric acid aqueous solution must be used, resulting in poor reactor usage efficiency and a large amount of energy being consumed for concentrating the reaction product solution after the reaction and for precipitating and separating BT and A. Both are necessary and undesirable.

硝酸の使用量は、DXE1モルに対し100重量%硝酸
換算で10〜20モルが好ましい。
The amount of nitric acid used is preferably 10 to 20 moles in terms of 100% by weight nitric acid per mole of DXE.

使用される硝酸の理論量は、前記反応式から11.33
モルであり、DXE1モルに対し硝酸が約10モル未満
であると、反応は十分に進行せず、一方約20モルを越
える大量の硝酸は不必要であり、しかも反応後の扱いが
難しく不利になる。
The theoretical amount of nitric acid used is 11.33 from the above reaction formula.
If the amount of nitric acid is less than about 10 moles per mole of DXE, the reaction will not proceed sufficiently, while a large amount of nitric acid exceeding about 20 moles is unnecessary and is disadvantageous because it is difficult to handle after the reaction. Become.

また前記反応における反応温度は、120〜170℃で
あり、特に125〜165 ’Cが好ましい。
Further, the reaction temperature in the above reaction is 120 to 170°C, particularly preferably 125 to 165'C.

本発明におりるDXE酸化法では、副生ずる黄色化合物
の量と反応条件の間には相関関係があり、前記硝酸濃度
と反応温度によって副生成物の量が大きく影響される。
In the DXE oxidation method according to the present invention, there is a correlation between the amount of the yellow compound produced as a by-product and the reaction conditions, and the amount of the by-product is greatly influenced by the nitric acid concentration and reaction temperature.

即ち反応温度が50℃以下では反応速度は著しく遅く、
50℃を越え120℃未満では反応速度が次第に大きく
なるが、副生成物であ黄色化合物の量多くなり、120
℃以上での反応温度で急激に該黄色化合物の生成率が減
少するのである。また反応温度が170℃を越えると副
生ずる黄色化合物は少量ではあるが、後工程で実施する
水を用いる再結晶によっても完全には該黄色化合物を分
離し難く、再結晶により得られるBTAはクリーム色を
しており、白色とはなり難い。即ちこの現象は、かかる
反応温度条件で生成する副生成物の一部がBTAに非常
に近い構造を有するためと思料される。
That is, when the reaction temperature is below 50°C, the reaction rate is extremely slow;
If the reaction rate exceeds 50°C and falls below 120°C, the reaction rate gradually increases, but the amount of yellow compounds as by-products increases.
The production rate of the yellow compound sharply decreases when the reaction temperature is higher than .degree. Furthermore, when the reaction temperature exceeds 170°C, the yellow compound produced as a by-product is small, but it is difficult to completely separate the yellow compound even by recrystallization using water in the subsequent step, and the BTA obtained by recrystallization is It is colored and is unlikely to be white. That is, this phenomenon is considered to be because some of the by-products produced under such reaction temperature conditions have a structure very similar to BTA.

更に反応温度が170℃を越えると二酸化炭素などの副
生成物も増加し、また反応速度も大となって反応が暴走
し易くその制御も困難となる。
Furthermore, if the reaction temperature exceeds 170° C., by-products such as carbon dioxide will increase, and the reaction rate will also increase, making it easy for the reaction to run out of control and making it difficult to control.

なお反応時間は、通常1〜10時間程度である。また反
応は密閉系で行っても、加圧開放系で行ってもよい。密
閉系で行った場合には、二酸化炭素と酸素窒素の発生の
ために原料液の充填率によて圧力が変わる。それゆえ反
応器の耐圧度に従って液の充填率を決めなければならな
いが、室温における充填率が50%程度の場合の反応時
の圧力は、30〜7017g/−程度である。
Note that the reaction time is usually about 1 to 10 hours. Further, the reaction may be carried out in a closed system or in a pressurized open system. When carried out in a closed system, the pressure changes depending on the filling rate of the raw material liquid due to the generation of carbon dioxide and oxygen and nitrogen. Therefore, the filling rate of the liquid must be determined according to the pressure resistance of the reactor, and when the filling rate at room temperature is about 50%, the pressure during reaction is about 30 to 7017 g/-.

反応終了後、得られる反応生成液を好ましくは10〜5
0℃程度に冷却し、必要に応じてガスを放出し、反応系
を常圧に戻すことによって薄黄色の水溶液または水性懸
濁液が得られる。
After the reaction is completed, the reaction product liquid obtained is preferably 10 to 5
A pale yellow aqueous solution or suspension is obtained by cooling to about 0° C., releasing gas as necessary, and returning the reaction system to normal pressure.

反応生成液中の未゛反応の硝酸は、アルカリ性物質によ
り中和することもできるが、後記するようにかかる硝酸
を反応系にリサイクルすることも可能であり、詩に中和
する必要はない。
The unreacted nitric acid in the reaction product solution can be neutralized with an alkaline substance, but as will be described later, such nitric acid can also be recycled into the reaction system, so it is not necessary to neutralize it.

(ロ)第2工程 得られた反応生成液を室温下に放置してもBTAは析出
するが、析出までに長時間かかり、その析出量も少ない
(b) Second step BTA will precipitate even if the reaction product solution obtained is left at room temperature, but it takes a long time to precipitate and the amount of BTA precipitated is small.

従って第2工程では、反応生成液をi)濃縮するかく濃
縮法)、ii)冷却するか(冷却法)、もしくは+ii
 )濃縮後冷却して(濃縮・冷却法)、反応生成液から
粗BTAを析出・分離する。
Therefore, in the second step, the reaction product liquid is either i) concentrated (concentration method), ii) cooled (cooling method), or +ii
) After concentration and cooling (concentration/cooling method), crude BTA is precipitated and separated from the reaction product liquid.

か(てi)濃縮法の場合は、反応生成液を例えば沸騰さ
せるか、または50〜500Torr程度の減圧下で沸
騰させて揮発分の一部を留去することによってBTAを
析出させる。
(i) In the case of the concentration method, BTA is precipitated by boiling the reaction product liquid or boiling it under reduced pressure of about 50 to 500 Torr and distilling off a part of the volatile components.

またii)冷却法による場合は、反応生成液を例えば0
〜10℃に冷却することによりBTAを析出させる。
In addition, ii) When using the cooling method, the reaction product liquid is reduced to 0.
BTA is precipitated by cooling to ~10°C.

更にiii )濃縮・冷却法の場合は、i)およびii
)の手段を組合わせればよい。
Furthermore, iii) in the case of concentration/cooling method, i) and ii
) may be combined.

なお再結晶時のBTAの濃度は、10〜20重量%が好
ましく、この濃度で放冷すれば容易に粗BTAが析出す
る。
The concentration of BTA at the time of recrystallization is preferably 10 to 20% by weight, and crude BTA will easily precipitate if allowed to cool at this concentration.

BTAの析出量は、母液中に残存する硝酸濃度にも関係
し、硝酸濃度が高いとBTAの析出量は少なくなる。従
って前記第1工程である反応系に多量の硝酸を供給する
ことは好ましくない。
The amount of BTA precipitated is also related to the concentration of nitric acid remaining in the mother liquor, and the higher the nitric acid concentration, the lower the amount of BTA precipitated. Therefore, it is not preferable to supply a large amount of nitric acid to the reaction system in the first step.

BTA析出後の反応生成液は、フィルター、回転濾過機
などの常套の分離手段を用い、粗BTAと母液に分離す
ることができる。
The reaction product liquid after BTA precipitation can be separated into crude BTA and mother liquor using a conventional separation means such as a filter or a rotary filter.

なお本発明の方法に従えば、第1工程のDXE酸化反応
で副生ずる黄色化合物の生成量が非常に少ないために、
粗BTAを分離した母液の一部または全部を第1工程で
ある反応器にリサイクルすることができる。このリサイ
クルされる母液中に含まれる残存硝酸を考慮に入れて反
応器は供給する硝酸量およびその濃度を調節することに
よって、本発明方法における硝酸の原単位が下がるうえ
に、粗BTAの回収率が著しく向上する。但し母液全部
のリサイクルを何回も繰り返すと副生成物である黄色化
合物が蓄積するので、母液の50〜90重量%をリサイ
クルし、残りは廃棄するのが好ましい。
In addition, according to the method of the present invention, since the amount of yellow compound produced as a by-product in the DXE oxidation reaction in the first step is very small,
Part or all of the mother liquor from which the crude BTA has been separated can be recycled to the first step, the reactor. By taking into account the residual nitric acid contained in this recycled mother liquor and adjusting the amount and concentration of nitric acid supplied to the reactor, the basic unit of nitric acid in the method of the present invention can be reduced, and the recovery rate of crude BTA can be reduced. is significantly improved. However, if the whole mother liquor is recycled many times, a yellow compound as a by-product will accumulate, so it is preferable to recycle 50 to 90% by weight of the mother liquor and discard the rest.

(ハ)第3工程 かくて得られる粗BTAは、微量の副生成物である黄色
化合物を含むクリーム色または白色の粉末である。従っ
て第3工程では、再結晶溶媒として水を用い、粗BTA
を再結晶し、精製BTAを得る。かかる再結晶において
は、例えばPH6〜8の工業用水または蒸溜水を使用し
、まず粗BTA1kgに対し水5〜lokgを加え、6
0〜100℃に加温、溶解する。
(c) Third step The crude BTA thus obtained is a cream or white powder containing a trace amount of a yellow compound as a by-product. Therefore, in the third step, using water as the recrystallization solvent, crude BTA
is recrystallized to obtain purified BTA. In such recrystallization, for example, industrial water or distilled water with a pH of 6 to 8 is used, and 5 to 1 kg of water is first added to 1 kg of crude BTA.
Heat to 0-100°C to dissolve.

粗BTAに含まれる黄色化合物は、硝酸酸性水溶液には
溶解するが、水には溶解しないため、この水溶液を加温
状態、例えば60〜80℃で濾過し、黄色化合物を濾別
する。濾過後の水溶液を例えば20〜50℃まで冷却す
ることによって粗BTA1kgに対してBTAが0.9
2〜0.94kg程度析出する。
The yellow compound contained in the crude BTA is soluble in the nitric acidic aqueous solution, but not in water. Therefore, this aqueous solution is filtered under a heated state, for example, at 60 to 80° C., to remove the yellow compound. By cooling the aqueous solution after filtration to, for example, 20 to 50°C, BTA is reduced to 0.9 per kg of crude BTA.
Approximately 2 to 0.94 kg is precipitated.

再結晶後、遠心分離、濾過などの常套の分離手段を用い
、BTAを分離する。再結晶は、必要に応じ複数回実施
してもよく、分離後のBTAは50〜200℃程度で乾
燥し精製BTAとする。
After recrystallization, BTA is separated using conventional separation means such as centrifugation and filtration. Recrystallization may be performed multiple times as necessary, and the separated BTA is dried at about 50 to 200°C to obtain purified BTA.

なお水による再結晶では、再結晶後の母液にある程度の
BTAが溶解しており、これを廃棄するのは不合理であ
り、この母液は再結晶用に繰り返し使用するのが好まし
い。しかし水溶性の不純物が次第に蓄積してくるため、
より好ましくは5〜25重量%の母液を新しい水と入れ
替え再結晶用に繰り返し使用し、排出した母液は反応器
ヘリサイクルするのがよい。
Note that in recrystallization with water, a certain amount of BTA is dissolved in the mother liquor after recrystallization, and it is unreasonable to discard this, so it is preferable to use this mother liquor repeatedly for recrystallization. However, as water-soluble impurities gradually accumulate,
More preferably, 5 to 25% by weight of the mother liquor is replaced with fresh water and used repeatedly for recrystallization, and the discharged mother liquor is recycled to the reactor.

作用 以上のように本発明は、(イ)第1工程において特定の
濃度の硝酸と特定の温度下でDXEを酸化し、副生成物
の極めて少ないBTA反応生成液を得、(ロ)第2工程
においてこの反応生成液から粗BTAを析出・分離せし
め、(ハ)第3工程において粗BTAを水を用いて再結
晶させ精製BTAを得るものである。
Effects As described above, the present invention provides (a) oxidizing DXE with nitric acid at a specific concentration and under a specific temperature in the first step to obtain a BTA reaction product liquid with extremely few by-products, and (b) in the second step. In the step, crude BTA is precipitated and separated from this reaction product liquid, and (c) in the third step, the crude BTA is recrystallized using water to obtain purified BTA.

実施例 以下実施例を挙げ、本発明を更に具体的に説明するが、
本発明はかかる実施例に限定されるものではない。
EXAMPLES The present invention will be explained in more detail with reference to Examples below.
The present invention is not limited to such embodiments.

実施例1 1Cフラスコに98重量%硫酸300gをとり、滴下ロ
ートにO−キシレン424g(4mob)と90重量%
アセトアルデヒド水溶液50g(アセトアルデヒド1.
02mo4)の混合物を入れ、滴下した。この間フラス
コ内は十分攪拌し、外部より冷却して15〜20℃に保
つようにした。滴下終了後、20℃で1時間攪拌を続け
た後静置した=反応液は二相に分かれ上層は黒色であり
、この上層液を分離したところ380gあった。一方下
層液にn−ヘキサン200gを加え、2分間攪拌した後
静置して相分離し、この上層液をとり前の上層液に加え
た。次いで25重量%水酸化ナトリウム水溶液をこれに
数cc加え、よく攪拌したところ黒色をしていた液は、
明るい黄色に変化した。
Example 1 300g of 98% by weight sulfuric acid was placed in a 1C flask, and 424g (4 mob) of O-xylene and 90% by weight were added to the dropping funnel.
50 g of acetaldehyde aqueous solution (acetaldehyde 1.
02mo4) was added dropwise. During this time, the inside of the flask was sufficiently stirred and cooled from the outside to maintain the temperature at 15 to 20°C. After completion of the dropwise addition, stirring was continued for 1 hour at 20° C. and then allowed to stand. The reaction solution was separated into two phases, with the upper layer being black. When this upper layer was separated, it weighed 380 g. On the other hand, 200 g of n-hexane was added to the lower layer liquid, and after stirring for 2 minutes, the mixture was allowed to stand for phase separation, and this upper layer liquid was taken and added to the previous upper layer liquid. Next, several cc of 25% by weight aqueous sodium hydroxide solution was added to this and stirred well, resulting in a black liquid.
It turned bright yellow.

この液を蒸溜したところ、n−ヘキサン、0−キシレン
に続きDXE留分が留出した(5Torr、約160℃
)、DXE留分は192g (0,807mo jりで
あった。
When this liquid was distilled, a DXE fraction was distilled out following n-hexane and 0-xylene (5 Torr, approximately 160°C
), and the DXE fraction was 192 g (0,807 mo j).

5US−316製の37!オートクレーブに得られた]
)XE留分120g (0,504mo /)および3
0重量%硝酸1350g (硝酸6.43moβ)をと
り、攪拌しつつ温度を上げ135°Cにて1時間、16
0℃にて3時間反応させた。圧力、は65kg/−とな
った。放冷して60℃まで内湯を下げ、上部バルブを少
しづつ開いてガスを放出し常圧にした後、内部の液を抜
き出し黄緑色をした反応生成液を得た。
37 made of 5US-316! Obtained in autoclave]
) XE fraction 120g (0,504mo/) and 3
Take 1350 g of 0% by weight nitric acid (nitric acid 6.43 moβ), raise the temperature while stirring, and heat at 135°C for 1 hour.
The reaction was carried out at 0°C for 3 hours. The pressure was 65 kg/-. The inner hot water was allowed to cool down to 60°C, and the upper valve was gradually opened to release the gas to bring the pressure to normal pressure.The internal liquid was extracted to obtain a yellow-green reaction product liquid.

この反応生成液を200 T o r rの減圧下で約
70℃で蒸溜して水を留去し、全液量が850gになる
まで濃縮、放冷し析出物を濾過した。
This reaction product liquid was distilled at about 70° C. under a reduced pressure of 200 Torr to remove water, concentrated until the total liquid amount was 850 g, allowed to cool, and filtered the precipitate.

析出物は薄いクリーム色の粗BTAであった。The precipitate was pale cream-colored crude BTA.

この粗BTAを真空乾燥し重量を測定したところ149
 gであり、液体クロマトグラフィーによる分析では純
度は97.3%であった。
When this crude BTA was vacuum dried and its weight was measured, it was 149.
g, and the purity was 97.3% when analyzed by liquid chromatography.

この粗BTA100gおよび水500gをビーカーにと
り80℃に加熱し、粗BTAを溶解させ濾紙で濾過した
後、室温で冷却した。濾紙には掻く少量の黄色化合物が
付着していた。また濾過液には少量のBTA粉を加えて
結晶の核としBTAを再結晶させ、これを濾別し白色の
結晶を得た。これを真空乾燥したところ、92.5’g
あり、液体クロマトグラフィーによる純度は99.1%
であった。
100 g of this crude BTA and 500 g of water were placed in a beaker and heated to 80°C to dissolve the crude BTA, filtered through a filter paper, and then cooled to room temperature. A small amount of yellow compound was attached to the filter paper. Further, a small amount of BTA powder was added to the filtrate to serve as crystal nuclei to recrystallize BTA, which was filtered to obtain white crystals. When this was vacuum dried, it weighed 92.5'g.
Yes, purity is 99.1% by liquid chromatography
Met.

得られた白色結晶のBTA50g (0,14moβ)
をフラスコに入れ無水酢酸140g(1,37moI2
)を加え、蒸溜カラムヲ付ケ、窒素下、常圧で蒸溜し酢
酸および無水酢酸の一部を合計70cc留出させた時点
で蒸溜を中止し、缶部のフラスコを放冷した。フラスコ
の内容物が室温になってから30分間放置し、BTDA
を析出させ濾別した。
Obtained white crystal BTA 50g (0.14moβ)
into a flask and add 140 g of acetic anhydride (1,37 moI2
) was added, a distillation column was attached, and the mixture was distilled under nitrogen at normal pressure. When a total of 70 cc of acetic acid and acetic anhydride had been distilled out, the distillation was stopped and the flask was allowed to cool. After the contents of the flask come to room temperature, let it stand for 30 minutes and add the BTDA.
was precipitated and separated by filtration.

析出したB T I) Aを80℃、ITOrrにて真
空乾燥して白色のBTDA4.1.9g(0,13mo
β)を得た。
The precipitated BTI) A was vacuum dried at 80°C and ITOrr to obtain 4.1.9 g of white BTDA (0.13 mo
β) was obtained.

実施例2 SUS−316製の100ccオートクレーブに実施例
1と同じ方法で得たDXE留分4g(16,8m  m
oj2)および30重量%硝酸45g(硝酸214m 
 moI!、)をとり、攪拌しつつ160℃に急激に昇
温してこの温度で4時間反応させた。圧力は内温が16
0℃になった時点で18kg/a(となり、最終的に5
0kg/−となった。
Example 2 4 g of the DXE fraction (16.8 mm
oj2) and 45 g of 30 wt% nitric acid (nitric acid 214 m
moI! , ) was taken, the temperature was rapidly raised to 160° C. while stirring, and the reaction was allowed to proceed at this temperature for 4 hours. Pressure is internal temperature is 16
When the temperature reached 0℃, it became 18 kg/a (and finally 5
It became 0 kg/-.

次いで室温まで冷却したところ、35kg/ctIlに
なったので、徐々にガスを放出して常圧に戻し反応生成
液を100ccフラスコに移した。
Then, when it was cooled to room temperature, the pressure became 35 kg/ctIl, so the gas was gradually released to return to normal pressure, and the reaction product liquid was transferred to a 100 cc flask.

この反応生成液を200Torrにて液量が半分になる
まで約70℃で加熱濃縮し、冷却し、析出物を濾過した
ところ、白色の粗BTAであった。この粗BTAを真空
乾燥し重量を測定したところ、3.55g (BTAと
して9.9mmo#)であり、液体クロマトグラフィー
による純度は98.1%であった。
This reaction product liquid was heated and concentrated at about 70° C. at 200 Torr until the liquid volume was reduced to half, cooled, and the precipitate was filtered, which revealed white crude BTA. When this crude BTA was vacuum dried and its weight was measured, it was found to be 3.55 g (9.9 mmo# as BTA), and the purity as determined by liquid chromatography was 98.1%.

得られた粗BTA3gに蒸溜水12gを加え、95℃で
溶解しそのまま冷却してBTAを再結晶させた。再結晶
させた白色のB’TAを濾別し、−真空乾燥した後、そ
の純度を液体クロマトグライーにて測定したところ、9
9.6%であった。
12 g of distilled water was added to 3 g of the obtained crude BTA, and the mixture was dissolved at 95° C., and then cooled to recrystallize BTA. The recrystallized white B'TA was filtered and vacuum-dried, and its purity was measured using liquid chromatography.
It was 9.6%.

比較例1 実施例2と同じオートクレーブを使用し、実施例1と同
じ方法で得たDXE留分4g(16,8m  mo7り
および422重丸硝酸32g(硝酸213m  no/
)を入れ、攪拌しつつ160℃に急速に昇温した。この
ときの圧力は内温か160℃に達した時点で30kg/
−となり、反応開始4時間後には85kg/catとな
った。 その後は実施例2と同様にして粗BTAを分離
した。得られた粗BTAは薄い黄褐色をしており、収量
は2.80g、純度はり7.5%であった。
Comparative Example 1 Using the same autoclave as in Example 2, 4 g of DXE fraction (16.8 m MO7) obtained in the same manner as in Example 1 and 32 g of 422-fold nitric acid (nitric acid 213 m NO/
) and the temperature was rapidly raised to 160°C while stirring. The pressure at this time is 30 kg/ when the internal temperature reaches 160°C.
-, and 85 kg/cat 4 hours after the start of the reaction. Thereafter, crude BTA was separated in the same manner as in Example 2. The obtained crude BTA had a light yellowish brown color, the yield was 2.80 g, and the purity was 7.5%.

しかしこの粗BTAは実施例2と同様に水を使用して再
結晶させてもクリーム色であり純度も98.7%と低か
った。この再結晶して得たBTA2.0gに無水酢酸6
gを加えて実施例1と同様に蒸溜し、酢酸および無水酢
酸の一部を合計2.5cc留出させた後で缶液を冷却し
、BTDAを析出させた。このBTDAを濾別し一18
0℃、l To r rにて真空乾燥した。
However, even when this crude BTA was recrystallized using water as in Example 2, it remained cream-colored and had a low purity of 98.7%. To 2.0 g of BTA obtained by this recrystallization, 6 acetic anhydrides were added.
After distilling a total of 2.5 cc of acetic acid and a portion of acetic anhydride in the same manner as in Example 1, the bottom liquid was cooled to precipitate BTDA. This BTDA was filtered out.
Vacuum drying was performed at 0° C. and 1 Torr.

得られたBTDAは、薄いクリーム色であり白色となら
ず、液体クロマトグラフィーによる純度も98.5%と
低かった。
The obtained BTDA was a pale cream color, not white, and its purity as determined by liquid chromatography was as low as 98.5%.

比較例2 実施例2と同じオートクレーブを使用し、実施例1と同
じ方法で得たDXE留分4g(16,8m  mol)
および20重量%硝酸67.5g (硝酸214m  
mob)をとり、攪拌しつつ160℃に急速に昇温した
Comparative Example 2 DXE fraction 4g (16.8m mol) obtained using the same autoclave as Example 2 and the same method as Example 1
and 20% by weight nitric acid 67.5g (nitric acid 214m
mob) was taken, and the temperature was rapidly raised to 160° C. while stirring.

このときの圧力は内湯が160℃に達した時点で20k
g/、fflとなり、反応開始6時間後には108kg
/cdとなった。次いでオートクレーブを放冷し、ガス
を放出して常圧に戻し、内容液をフラスコに移し2 ’
OOT o r rにて25cc程度になるまで濃縮し
た。冷却して析出物を濾過し乾燥したところ、白色の粗
BTp、2.65gを得た。この粗BTAの純度は97
.7%であった。実施例2に比較して収量が低く、また
2倍以上の耐圧度を有するオートクレーブが必要であり
、粗B T Aを析出させるために多量の水を留去させ
ねばならなかった。
The pressure at this time is 20k when the indoor bath reaches 160℃.
g/, ffl, and 108 kg 6 hours after the start of the reaction.
/cd. Next, the autoclave was allowed to cool, the gas was released to return it to normal pressure, and the contents were transferred to a flask for 2'
It was concentrated to about 25 cc using an OOT o r r. After cooling, the precipitate was filtered and dried to obtain 2.65 g of white crude BTp. The purity of this crude BTA is 97
.. It was 7%. The yield was lower than that in Example 2, and an autoclave having twice the pressure resistance was required, and a large amount of water had to be distilled off in order to precipitate crude BTA.

比較例3 実施例2と同じオートクレーブを使用し、実施例1と同
じ方法で得たDXE留分4g(16,8+ffi mo
 i!、)および30重量%硝酸45g(硝酸214m
  mob)をとり、攪拌しつつ110℃に急速に昇温
した。このときの圧力は内温が110℃に達した時点で
2kg/cdとなり、そのまま10時間反応したところ
26kg / callまで上昇した。ついでオートク
レーブを放冷してガスを放出し常圧に戻し、実施例2と
同様に粗BTAを3.25g得た。得られた粗BTAは
薄黄色であり、その純度は89.3%であった。 この
粗BTA3.0gを水12gに加え、加熱したところ不
溶部分があり、80℃にてこれを濾過し濾液を5℃に冷
却してBTAを析出させ濾別し乾燥した。精製BTAは
クリiム色であり、その純度は98.8%であった。
Comparative Example 3 Using the same autoclave as in Example 2, 4 g of DXE fraction (16,8+ffi mo
i! ) and 45 g of 30% nitric acid (214 m of nitric acid
mob) was taken, and the temperature was rapidly raised to 110° C. while stirring. The pressure at this time became 2 kg/cd when the internal temperature reached 110°C, and when the reaction continued for 10 hours, the pressure rose to 26 kg/call. Then, the autoclave was allowed to cool, gas was released, and the pressure was returned to normal pressure to obtain 3.25 g of crude BTA in the same manner as in Example 2. The obtained crude BTA was pale yellow in color and its purity was 89.3%. When 3.0 g of this crude BTA was added to 12 g of water and heated, an insoluble portion was found, which was filtered at 80° C., and the filtrate was cooled to 5° C. to precipitate BTA, which was filtered and dried. The purified BTA was cream colored and its purity was 98.8%.

このように反応温度が低いと黄色の副生成物が生じ、選
択率が悪化することが分かる。またこの場合再結晶法に
より精製は可能であるが、精製物の純度は実施例2に劣
ることが分かった。
It can be seen that when the reaction temperature is low as described above, yellow by-products are produced and the selectivity is deteriorated. In this case, it was found that although purification was possible by recrystallization, the purity of the purified product was inferior to that of Example 2.

実施例3 実施例1と同様に実験を進め、粗BTAを濾別した。こ
のときの濾液の一部をとって分析したところ、濾液には
3.6重量%のBTA、5重量%の硝酸および約1.0
重量%の不明分が含まれていた。
Example 3 The experiment was carried out in the same manner as in Example 1, and crude BTA was filtered off. When a part of the filtrate was analyzed, the filtrate contained 3.6% by weight of BTA, 5% by weight of nitric acid, and about 1.0% by weight of BTA.
Contains unknown weight percentage.

この濾液695gと61重量%硝酸607gおよび蒸溜
水48gを混合してBTAl、9重量%、不明分0.5
重量%を含む30重量%硝酸水溶液1350gを得た。
695 g of this filtrate, 607 g of 61% by weight nitric acid, and 48 g of distilled water were mixed to obtain BTAl, 9% by weight, and 0.5% unknown.
1350 g of a 30% by weight aqueous nitric acid solution containing % by weight was obtained.

この液とDXE留分120gを3βオートクレーブに充
填し、攪拌しつつ温度を上げ125℃にて1時間、16
0℃にて3時間反応させ放冷した。
This liquid and 120 g of the DXE fraction were charged into a 3β autoclave, and the temperature was raised while stirring to 125°C for 1 hour.
The mixture was reacted at 0° C. for 3 hours and allowed to cool.

次いでガスを放出し内容液をフラスコに移して200 
T o r rにて減圧蒸溜し、液量が約850gにな
るまで?Ii!L放冷し、析出物を濾過し粗BTAを得
た。
Next, the gas was released and the contents were transferred to a flask for 200 ml.
Distill under reduced pressure at Torr until the liquid volume reaches about 850g? Ii! The mixture was allowed to cool, and the precipitate was filtered to obtain crude BTA.

得られた粗BTAは薄いクリーム色をしており、真空乾
燥したところ、173gあった。液体クロマトグラフィ
ーによる分析では、純度97.1%であり実施例1とほ
ぼ同様であった。
The obtained crude BTA had a light cream color and weighed 173 g when vacuum dried. Analysis by liquid chromatography showed that the purity was 97.1%, which was almost the same as in Example 1.

それゆえ実施例1と比較して約24g収量が増加した。Therefore, the yield increased by about 24 g compared to Example 1.

この粗BTA80gおよび水400gをビーカーにとり
、加熱して80℃とし溶解させ50℃まで冷却した後、
濾紙で濾過し更に25℃まで冷却してBTAを再結晶さ
せた。析出物を濾過し、真空乾燥し74.5gの、液体
クロマトグラフィーによる純度が99..1%の白色B
TAを得た。次にこの濾過時の濾液のうち300gをと
り、これに水100gおよび粗BTA80gを加え、加
熱溶解し50℃で濾過した後冷却し再結晶して、濾別し
乾燥し、77.5gの液体クロマ1−グラフィーによる
純度が99.0%の白色のBTAが得られた。
80 g of this crude BTA and 400 g of water were placed in a beaker, heated to 80°C, dissolved, and cooled to 50°C.
The mixture was filtered through a filter paper and further cooled to 25°C to recrystallize BTA. The precipitate was filtered and dried under vacuum to yield 74.5 g, with a purity of 99.5 g by liquid chromatography. .. 1% white B
I got a TA. Next, take 300 g of the filtrate from this filtration, add 100 g of water and 80 g of crude BTA, heat and dissolve, filter at 50°C, cool and recrystallize, separate by filtration and dry. A white BTA with a purity of 99.0% by chromatography was obtained.

発明の効果 以上のように本発明によれば、反応速度が大で副生成物
が少ない高純度の白色のBTAを得ることができ、また
第2工程および/または第3工程で得られた母液をリサ
イクルすれば極めて経済的に工程を運転することもでき
る。
Effects of the Invention As described above, according to the present invention, high-purity white BTA with a high reaction rate and few by-products can be obtained, and the mother liquor obtained in the second step and/or the third step can be obtained. If recycled, the process can be run extremely economically.

Claims (1)

【特許請求の範囲】 1、次の各工程を含むことを特徴とするベンゾフェノン
テトラカルボン酸の製造方法 (イ)ビス(ジメチルフェニル)エタンを、濃度25〜
40重量%の硝酸を用い、温度 120〜170℃下で酸化反応せしめる第1工程。 (ロ)反応生成液を、濃縮するか、冷却するか、もしく
は濃縮後冷却して粗ベンゾフェノンテトラカルボン酸を
析出・分離する第2工程。 (ハ)粗ベンゾフェノンテトラカルボン酸を、再結晶溶
媒として水を用い再結晶する第3工程。 2、粗ベンゾフェノンテトラカルボン酸を 析出・分離した後の母液の一部または全部を第1工程に
リサイクルする特許請求の範囲第1項記載のベンゾフェ
ノンテトラカルボン酸の製造方法。 3、粗ベンゾフェノンテトラカルボン酸を再結晶した後
の母液の一部または全部を再結晶溶媒として第3工程に
リサイクルする特許請求の範囲第1項または第2項記載
のベンゾフェノンテトラカルボン酸の製造方法。
[Claims] 1. A method for producing benzophenone tetracarboxylic acid, characterized by including the following steps: (a) bis(dimethylphenyl)ethane at a concentration of 25 to
The first step is to carry out an oxidation reaction using 40% by weight of nitric acid at a temperature of 120 to 170°C. (b) A second step of concentrating or cooling the reaction product liquid, or cooling after concentration to precipitate and separate crude benzophenonetetracarboxylic acid. (c) A third step of recrystallizing crude benzophenonetetracarboxylic acid using water as a recrystallization solvent. 2. The method for producing benzophenone tetracarboxylic acid according to claim 1, wherein part or all of the mother liquor after precipitating and separating the crude benzophenone tetracarboxylic acid is recycled to the first step. 3. The method for producing benzophenonetetracarboxylic acid according to claim 1 or 2, wherein part or all of the mother liquor after recrystallizing the crude benzophenonetetracarboxylic acid is recycled to the third step as a recrystallization solvent. .
JP13663084A 1984-07-03 1984-07-03 Preparation of benzophenonetetracarboxylic acid Pending JPS6117536A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13663084A JPS6117536A (en) 1984-07-03 1984-07-03 Preparation of benzophenonetetracarboxylic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13663084A JPS6117536A (en) 1984-07-03 1984-07-03 Preparation of benzophenonetetracarboxylic acid

Publications (1)

Publication Number Publication Date
JPS6117536A true JPS6117536A (en) 1986-01-25

Family

ID=15179796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13663084A Pending JPS6117536A (en) 1984-07-03 1984-07-03 Preparation of benzophenonetetracarboxylic acid

Country Status (1)

Country Link
JP (1) JPS6117536A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6116399A (en) * 1996-06-12 2000-09-12 Fichtel & Sachs Ag Friction clutch for a motor vehicle and an operation device for the operation, especially pneumatic operation, of a friction clutch
JP2004217586A (en) * 2003-01-16 2004-08-05 Mitsubishi Gas Chem Co Inc Method for producing aromatic polycarboxylic acid and acid anhydride thereof
JP2020105440A (en) * 2018-12-28 2020-07-09 株式会社ダイセル High-purity 3,4-epoxycyclohexylmethyl methacrylate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6116399A (en) * 1996-06-12 2000-09-12 Fichtel & Sachs Ag Friction clutch for a motor vehicle and an operation device for the operation, especially pneumatic operation, of a friction clutch
JP2004217586A (en) * 2003-01-16 2004-08-05 Mitsubishi Gas Chem Co Inc Method for producing aromatic polycarboxylic acid and acid anhydride thereof
JP2020105440A (en) * 2018-12-28 2020-07-09 株式会社ダイセル High-purity 3,4-epoxycyclohexylmethyl methacrylate

Similar Documents

Publication Publication Date Title
JPS59106435A (en) Production of high-purity terephthalic acid
JP2002193887A (en) Method for producing iodonium salt compound
JPS582222B2 (en) Production method of aromatic polycarboxylic acid
EP0220855B1 (en) Process for recovering 4,4' dihydroxydiphenyl sulfone from an isomer mixture
CN115010592B (en) Preparation method of 4-bromophthalic acid
JPS6117536A (en) Preparation of benzophenonetetracarboxylic acid
KR20230092892A (en) Method for producing fluorenone
JPS6148492B2 (en)
US3954840A (en) 1,3,5,7-Naphthalenetetracarboxylic acids and process for preparation thereof
JPH02256647A (en) Preparation of 2,4-dihydroxybenzoic acid
EP1199298B1 (en) Process for producing refined pyromellitic acid and refined pyromellitic anhydride
CN113801125B (en) Preparation method of cyclic anhydride
JPS5914015B2 (en) Method for producing 3,3',4,4'-biphenyltetracarboxylic acid salt
JPH0667865B2 (en) Purification method of dihydroxynaphthalene
CN116283893B (en) Preparation method of thiohydroxy acetic anhydride
JP2002097185A (en) Method for producing aromatic tetracarboxylic dianhydride
JP2815071B2 (en) Method for producing dichlorodiphenyl sulfone
JPS6245559A (en) Production of 2-hydroxybiphenyl-3-carboxylic acid
JPS5910650B2 (en) Production method of high purity terephthalic acid
JPS61161276A (en) Production of benzophenonetetracarboxylic acid dianhydride
JPH045252A (en) Production of 4,4'-dihydroxy-3,3',5,5'-tetramethyl-diphenylmethane
JPH04182452A (en) Production of aliphatic dicarboxylic acid monoester
JPS59137431A (en) Production of trimethylolheptane
JPS62149650A (en) Production of aromatic bisaniline
JPH0580459B2 (en)