JPS5910650B2 - Production method of high purity terephthalic acid - Google Patents

Production method of high purity terephthalic acid

Info

Publication number
JPS5910650B2
JPS5910650B2 JP15722577A JP15722577A JPS5910650B2 JP S5910650 B2 JPS5910650 B2 JP S5910650B2 JP 15722577 A JP15722577 A JP 15722577A JP 15722577 A JP15722577 A JP 15722577A JP S5910650 B2 JPS5910650 B2 JP S5910650B2
Authority
JP
Japan
Prior art keywords
terephthalic acid
acetic acid
temperature
oxidation reaction
oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15722577A
Other languages
Japanese (ja)
Other versions
JPS5490135A (en
Inventor
式保 板谷
建紀 永岡
輝雄 伊藤
幸正 重村
茂美 白木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Petrochemical Industries Ltd
Original Assignee
Mitsui Petrochemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Petrochemical Industries Ltd filed Critical Mitsui Petrochemical Industries Ltd
Priority to JP15722577A priority Critical patent/JPS5910650B2/en
Priority to FR7836670A priority patent/FR2413352A1/en
Priority to DE2856529A priority patent/DE2856529C2/en
Priority to US05/973,944 priority patent/US4241220A/en
Priority to GB7850079A priority patent/GB2014564B/en
Publication of JPS5490135A publication Critical patent/JPS5490135A/en
Publication of JPS5910650B2 publication Critical patent/JPS5910650B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明はエチレングリコールでエステル化し、引き続き
重合を行ういわゆる直接重合法によりポリエチレンテレ
フタレートを製造することができる高品質のテレフタル
酸の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing high-quality terephthalic acid by which polyethylene terephthalate can be produced by a so-called direct polymerization method in which esterification with ethylene glycol is followed by polymerization.

従来テレフタル酸を製造する方法として、一般にはパラ
キシレンを重金属を含む酸化触媒の存在下に酢酸溶媒中
で分子状酸素含有ガスで酸化する方法が広く採用されて
いる。又、この一段階の酸化反応により直接重合法でポ
リエステルを製造することのできる高品質のテレフタル
酸を製造する技術に関しても種々の方法が提案されてい
る。しかし、これらいずれの方法に従つても直接重合法
によるポリエステルの製造に使用することのできる高品
質のテレフタル酸を経済的に製造することは困難である
。たとえば特に一段階の酸化反応により直接重合に使用
することのできる高品質のテレフタル酸を製造するため
には、溶媒比、触媒組成、反応温度、分子状酸素含有ガ
スの供給量(排出ガス中の酸素ガスの含有量)並びに滞
留時間などの酸化反応条件を苛酷にしなければならない
。その結果、高品質のテレフタル酸が製造できたとして
も、いずれの場合にも酢酸溶媒の酸化分解が特に著しく
増加するので、経済的に高品質のテレフタ〃酸を製造す
ることはできない。したがつて従来の方法では、直接重
合用の高品質のテレフタル酸は、4−カルボキシベンズ
アルデヒドなどの酸化中間体及び着色物質などの不純物
をかなりの量で含有する粗テレフタル酸を接触水素化処
理、接触脱カルボニル化処理、再結晶処理などの精製処
理を施すことにより製造するのが通常であつた。
Conventionally, a widely used method for producing terephthalic acid is a method in which paraxylene is oxidized with a molecular oxygen-containing gas in an acetic acid solvent in the presence of an oxidation catalyst containing a heavy metal. Furthermore, various methods have been proposed for producing high-quality terephthalic acid, which can produce polyester by direct polymerization using this one-step oxidation reaction. However, by any of these methods, it is difficult to economically produce high-quality terephthalic acid that can be used for producing polyester by direct polymerization. For example, in order to produce high-quality terephthalic acid that can be used directly for polymerization, especially by a one-step oxidation reaction, the solvent ratio, catalyst composition, reaction temperature, supply amount of molecular oxygen-containing gas ( The oxidation reaction conditions, such as oxygen gas content) and residence time, must be severe. As a result, even if high-quality terephthalic acid can be produced, in both cases the oxidative decomposition of the acetic acid solvent increases significantly, making it impossible to economically produce high-quality terephthalic acid. Therefore, in conventional methods, high-quality terephthalic acid for direct polymerization is obtained by catalytic hydrogenation of crude terephthalic acid, which contains significant amounts of impurities such as oxidized intermediates such as 4-carboxybenzaldehyde and colored substances. It has usually been produced by performing purification treatments such as catalytic decarbonylation treatment and recrystallization treatment.

しかしながら、これらの接触水素化処理、接触脱カルボ
ニル化処理又は再結晶処理などの精製処理を施すことに
よつても、高品質のテレフタル酸を製造することはでき
るが、精製処理操作が煩雑であるので、必然的に製造コ
ストが高くなる。したがつて、これらの方法で精製した
テレフタル酸は経済性の面から直接重合用のテレフタル
酸に要求される要件を充分に満足するものではない。又
、パラキシレンの酸化反応により製造した粗テレフタル
酸を前記以外の方法によつて精製する方法に関しても、
多くの方法が提案されている。
However, although high-quality terephthalic acid can be produced by performing purification treatments such as catalytic hydrogenation treatment, catalytic decarbonylation treatment, or recrystallization treatment, the purification treatment operations are complicated. Therefore, manufacturing costs inevitably increase. Therefore, terephthalic acid purified by these methods does not fully satisfy the requirements for terephthalic acid for direct polymerization from an economic point of view. Also, regarding a method for purifying crude terephthalic acid produced by an oxidation reaction of paraxylene by a method other than the above,
Many methods have been proposed.

たとえば、第二コバルト触媒の存在下に低級脂肪族カル
ボン酸溶媒中で分子状酸素含有ガスで酸化することによ
つて得られる粗テレフタル酸を、酢酸などの低級脂肪族
カルボン酸中に混合した懸濁液を高温下で加熱処理する
方法が特公昭4413135号公報及び特開昭49−2
0141号公報等に提案され、又これらの方法と類似の
方法も特公昭47−7538号公報に提案されている。
しかしながら、これらの方法において前記公報の明細書
の実施例の記載からも明らかなように、いずれの方法で
も直接重合法によるポリエステルの製造に使用すること
のできる高品質のテレフタル酸は得られていない。又、
特開昭51−127037号公報(ペルキー国公開特許
公報、Belg.84O624号の対応特許)には、コ
バルト化合物、マンガン化合物及び臭素化合物からなる
触媒の存在下に160ないし180℃の温度でパラキシ
レンを分子状酸素含有ガスで酸化して得られた粗テレフ
タル酸を含む酸化反応生成混合物を、母液を分離するこ
となくそのまXの状態で酸化反応温度から50℃低い温
度と25℃高い温度に保持した後テレフタル酸を分離し
、次いで分離したテレフタル酸を母液又は新たな酢酸溶
媒中に懸濁化させ、該懸濁液を少なくとも100℃以上
具体的には約160℃までの温度に保持した後テレフタ
ル酸を分離することにより酢酸の酸化分解を抑制するこ
とができ、しかも直接重合法に使用することのできるテ
レフタル酸が製造できることが記載されている。
For example, crude terephthalic acid obtained by oxidation with a molecular oxygen-containing gas in a lower aliphatic carboxylic acid solvent in the presence of a cobalt II catalyst is suspended in a lower aliphatic carboxylic acid such as acetic acid. A method of heat-treating a suspension at high temperatures is disclosed in Japanese Patent Publication No. 4413135 and Japanese Patent Application Laid-open No. 49-2
0141, etc., and a method similar to these methods has also been proposed in Japanese Patent Publication No. 47-7538.
However, as is clear from the description of the examples in the specification of the above-mentioned publication, none of these methods yields high-quality terephthalic acid that can be used in the production of polyester by direct polymerization. . or,
JP-A-51-127037 (a corresponding patent to Belg. 84O624) describes the production of paraxylene at a temperature of 160 to 180°C in the presence of a catalyst consisting of a cobalt compound, a manganese compound and a bromine compound. The oxidation reaction product mixture containing crude terephthalic acid obtained by oxidizing with a molecular oxygen-containing gas is heated to a temperature 50°C lower and 25°C higher than the oxidation reaction temperature in state X without separating the mother liquor. After holding, the terephthalic acid was separated, and then the separated terephthalic acid was suspended in the mother liquor or fresh acetic acid solvent, and the suspension was maintained at a temperature of at least 100°C or more, specifically up to about 160°C. It is described that by separating post-terephthalic acid, oxidative decomposition of acetic acid can be suppressed, and terephthalic acid that can be directly used in polymerization methods can be produced.

しかしながら、この方法では一段階目の処理を粗テレフ
タル酸を含む酸化反応混合物から反応母液を分解するこ
となくそのまXの状態で行うために、精製効果が充分で
なく、得られるテレフタル酸は、特に4−カルボキシベ
ンズアルデヒド以外の着色不純物及びトルイル酸等の不
純物の含有率が多く、光学密度が大きいので、その結果
直接重合法に使用しても、同公報の実施例15からも明
らかなように、色相の良好なポリエチレンテレフタレー
トは得られていない。又、この方法で得られたテレフタ
ル酸は柱状結晶ないし針状結晶であり、直接重合法に使
用する場合にエチレングリコールとのスラリー性が良好
でないという大きな欠点がある。直接重合法によるポリ
エステルの製造用のテレフタル酸に要求される要件とし
て高純度であつて色相が優れていることだけでは充分と
は言い難い。直接重合法を採用する場合には、テレフタ
ル酸をほ父等モル量のエチレングリコールに混合して懸
濁液の状態で反応させることが必要である。このような
固液不均一反応系においては、重合原料のテレフタル酸
は攪拌混合性や懸濁液の輸送性等のスラリー性が良好で
あることが要求される。高純度テレフタル酸のエチレン
グリコール懸濁液のスラリー性を向上させるためには、
テレフタル酸の結晶形状が球状に近く、かつその平均粒
径が大きいことが必要である。したがつて、直接重合法
によるポリエステルの製造に使用されるテレフタル酸に
は高純度であつてかつ色相が優れていることに加えて、
スラリー性が良好であることが要求される。テレフタル
酸のスラリー性を向上させる方法として、特公昭45−
11488号公報には酢酸又は酢酸と水との混合溶媒の
ようにテレフタル酸に対する溶解度の小さい溶媒中で微
粒子状の高純度テレフタル酸を加熱処理する方法が提案
されており、特公昭49−20303号公報には同様に
酢酸又は水などのようにテレフタル酸に対する溶解度の
小さい溶媒中で粗大粒子状の高純度テレフタル酸を懸濁
液の状態で攪拌槽外の循環ポンプによつてポンプ攪拌処
理をする方法が提案されている。
However, in this method, the first stage treatment is carried out in the state of X without decomposing the reaction mother liquor from the oxidation reaction mixture containing crude terephthalic acid, so the purification effect is not sufficient, and the obtained terephthalic acid is In particular, the content of colored impurities other than 4-carboxybenzaldehyde and impurities such as toluic acid is high, and the optical density is high. However, polyethylene terephthalate with good hue has not been obtained. In addition, the terephthalic acid obtained by this method is in the form of columnar or needle crystals, and has a major drawback in that it does not have good slurry properties with ethylene glycol when used directly in polymerization methods. High purity and excellent hue are not sufficient requirements for terephthalic acid for producing polyester by direct polymerization. When direct polymerization is employed, it is necessary to mix terephthalic acid with equimolar amounts of ethylene glycol and react in the form of a suspension. In such a solid-liquid heterogeneous reaction system, the polymerization raw material terephthalic acid is required to have good slurry properties such as stirring and mixing properties and suspension transport properties. In order to improve the slurry properties of ethylene glycol suspensions of high purity terephthalic acid,
It is necessary that the crystal shape of terephthalic acid be close to spherical and that its average particle size be large. Therefore, in addition to being highly pure and having an excellent hue, terephthalic acid used in the production of polyester by direct polymerization has the following properties:
Good slurry properties are required. As a method for improving the slurry properties of terephthalic acid,
Japanese Patent Publication No. 11488 proposes a method of heat treating fine particles of high-purity terephthalic acid in a solvent with low solubility for terephthalic acid, such as acetic acid or a mixed solvent of acetic acid and water; Similarly, the publication states that coarse particles of high-purity terephthalic acid are suspended in a solvent such as acetic acid or water that has low solubility for terephthalic acid, and then pumped and stirred using a circulation pump outside the stirring tank. A method is proposed.

しかし前者の方法では、ペンゲル法によるテレフタル酸
アルカリ塩の水溶液から酸析によつて一旦生成したテレ
フタル酸のように平均粒径が数μあるいはそれ以下の微
粒子状のテレフタル酸を酢酸又は酢酸と水との混合溶媒
などに懸濁させ、その懸濁液を溶媒の沸点近くの温度ま
でカロ熱することにより微粒子状のテレフタル酸結晶の
平均粒径を増大させしかもその形状を球状に近い結晶と
するものである。又、後者の方法では、一旦晶出法によ
つて生成した平均粒径が50ないし200mμの粗大粒
子でありかつ細長い形状のテレフタル酸結晶を溶解度の
小さい溶媒中に懸濁させ、その懸濁液を常温付近の温度
で加熱することなくポンプ攪拌することによつてテレフ
タル酸結晶の平均粒径を減少させながら、見掛け密度を
向上させ、丸みを増した形状のテレフタル酸結晶を得る
ものである。これらのいずれの方法においても、原料と
して使用されるテレフタル酸は酸析法により生成した微
粒子状の高純度テレフタル酸あるいは晶出法等により生
成した粗大粒子状の高純度テレフタル酸であり、一旦生
成した高純度テレフタル酸を懸濁液の状態で処理するこ
とにより、スラリー性を向上させるものである。4−カ
ルボキシベンズアルデヒドなどの酸化中間体又は着色物
質をかなり多量に含む粗テレフタル酸を、前述のような
接触水素化処理、接触脱カルボニル化処理又は再結晶処
理等のような煩雑な精製法によることなく簡単な精製処
理操作によつて精製することができ、しかもその精製処
理操作と同時に結晶形状が球状に近く、平均粒径が大き
くかつスラリー性の良好な高純度テレフタル酸を製造す
ることができるならば酸化反応の段階における酢酸溶媒
の酸化分解を著しく抑制することができるので、前述の
一段階の酸化反応によつて直接高品質のテレフタル酸を
製造する方法に゛くらべて経済的にも有利になる。
However, in the former method, fine particulate terephthalic acid with an average particle size of several μm or less, such as terephthalic acid once generated by acid precipitation from an aqueous solution of an alkali terephthalic acid salt by the Pengel method, is mixed with acetic acid or acetic acid and water. By suspending the terephthalic acid in a mixed solvent, etc., and heating the suspension to a temperature close to the boiling point of the solvent, the average particle size of the finely divided terephthalic acid crystals is increased, and the shape becomes nearly spherical. It is something. In the latter method, terephthalic acid crystals, which are coarse particles with an average particle size of 50 to 200 mμ and have an elongated shape, are suspended in a solvent with low solubility, and the suspension is By stirring the terephthalic acid crystals with a pump at a temperature around room temperature without heating, the average particle size of the terephthalic acid crystals is reduced, the apparent density is improved, and terephthalic acid crystals with an increased roundness are obtained. In any of these methods, the terephthalic acid used as a raw material is either fine-particle high-purity terephthalic acid produced by acid precipitation method or coarse-particle high-purity terephthalic acid produced by crystallization method. The slurry property is improved by processing the high purity terephthalic acid in a suspension state. Crude terephthalic acid containing a considerable amount of oxidized intermediates or colored substances such as 4-carboxybenzaldehyde is subjected to complicated purification methods such as catalytic hydrogenation, catalytic decarbonylation, or recrystallization as described above. It can be purified through simple purification operations, and at the same time, it is possible to produce high-purity terephthalic acid that has a nearly spherical crystal shape, a large average particle size, and good slurry properties. If so, the oxidative decomposition of the acetic acid solvent during the oxidation reaction stage can be significantly suppressed, making it economically advantageous compared to the method of directly producing high-quality terephthalic acid through the one-step oxidation reaction described above. become.

本発明者等は、パラキシレンの一段階の酸化反応によつ
て酢酸溶媒の酸化分解が少なくしかも直接重合法による
ポリエステルの製造用の原料として使用することが可能
な高品質のテレフタル酸を経済的に製造することのでき
る方法について鋭意検討した結果、本発明に到達したも
のである。
The present inventors have developed an economical method of producing high-quality terephthalic acid through a one-step oxidation reaction of paraxylene, which causes less oxidative decomposition of the acetic acid solvent and which can be used as a raw material for the production of polyester by direct polymerization. The present invention was arrived at as a result of intensive study on a method that can produce the same.

すなわち本発明の目的は酢酸溶媒中でパラキシレンを一
段階で酸化することにより酢酸溶媒の酸化分解が少なく
、しかも直接重合が可能な高品質のテレフタル酸を経済
的に製造することのできる製造方法を提供することであ
る。本発明について概説すると、本発明は、(4)酢酸
溶媒中でコバルト化合物、マンガン化合物及び臭素化合
物を含む酸化触媒の存在下に170ないし230℃の温
度及び加圧の条件下でパラキシレンを分子状酸素含有ガ
スで酸化し、酸化反応によつて得られる酸化反応生成混
合物に含まれる粗テレフタル酸中の4−カルボキシベン
ズアルデヒドの含有率が500ないし3000ppmの
範囲にありかつ粗テレフタル酸の340mμでの光学密
度が0.3以下である酸化反応生成混合物を得、(B)
該混合物を酸化反応温度より30℃低い温度以下に冷却
することなく、その中に含まれる母液の60重量%以上
を分離して酸化反応器に循環させるとともに、(O残り
の該混合物に粗テレフタル酸に対する酢酸溶媒の重量比
が2ないし10の範囲になる割合の量の加熱酢酸を加え
て得た粗テレフタル酸の酢酸懸濁液を酸化反応温度ない
し240℃の範囲の温度で攪拌下に一次浸漬処理を施し
、(D次に150ないし220℃の範囲にあり、かつ一
次浸漬の温度よりも少なくとも10℃低い温度で攪拌下
に二次浸漬処理を施し、(ト)得られたテレフタル酸の
酢酸懸濁液からテレフタル酸を分離することを特徴とす
る高純度テレフタル酸の製造方法に関する。
In other words, the object of the present invention is to provide a production method that can economically produce high-quality terephthalic acid by oxidizing paraxylene in one step in an acetic acid solvent, thereby reducing oxidative decomposition of the acetic acid solvent and allowing direct polymerization. The goal is to provide the following. To summarize the present invention, (4) paraxylene is molecule-formed in an acetic acid solvent in the presence of an oxidation catalyst containing a cobalt compound, a manganese compound, and a bromine compound at a temperature of 170 to 230° C. and under pressure. The content of 4-carboxybenzaldehyde in the crude terephthalic acid contained in the oxidation reaction product mixture obtained by the oxidation reaction is in the range of 500 to 3000 ppm, and Obtaining an oxidation reaction product mixture having an optical density of 0.3 or less, (B)
Without cooling the mixture to a temperature 30°C lower than the oxidation reaction temperature, 60% by weight or more of the mother liquor contained therein is separated and recycled to the oxidation reactor, and the remaining mixture is added with crude terephthalate. An acetic acid suspension of crude terephthalic acid obtained by adding heated acetic acid in an amount such that the weight ratio of the acetic acid solvent to the acid is in the range of 2 to 10 is first stirred at a temperature in the range from the oxidation reaction temperature to 240°C. (D) Then, a secondary dipping treatment is performed under stirring at a temperature in the range of 150 to 220°C and at least 10°C lower than the temperature of the primary dipping, (g) the obtained terephthalic acid is The present invention relates to a method for producing high-purity terephthalic acid, which is characterized by separating terephthalic acid from an acetic acid suspension.

更に詳細に説明すると、本発明は、分子状酸素含有ガス
によるパラキシレンの液相酸化において得られる粗テレ
フタル酸中の4−カルボキシベンズアルデヒドの含有率
と酸化反応における酢酸溶媒の酸化分解率とは相反する
関係にあること、並びに粗テレフタル酸中の4−カルボ
キシベンズアルデヒドの含有率及びそのアルカリ水溶液
の光学密度と浸漬効果とが相関関係にことを見出したこ
とに基づくものである。
More specifically, the present invention provides that the content of 4-carboxybenzaldehyde in the crude terephthalic acid obtained in the liquid phase oxidation of paraxylene with a molecular oxygen-containing gas is contradictory to the oxidative decomposition rate of the acetic acid solvent in the oxidation reaction. This is based on the discovery that there is a correlation between the content of 4-carboxybenzaldehyde in crude terephthalic acid, the optical density of its alkaline aqueous solution, and the immersion effect.

更には、パラキシレンを比較的緩和な酸化条件下に酸化
することによつて4−カルボキシベンズアルデヒドなど
の不純物をかなり多量に含有する粗テレフタル酸含有酸
化反応混合物を得ることにより、酢酸溶媒の酸化分解を
積極的に抑制ししかもその結果得られた4−カルボキシ
ベンズアルデヒドの含有率が特定の範囲、すなわち50
0〜3000ppmの範囲にありかつ340mμでの光
学密度で示される着色不純物の含有量が特定値すなわち
0.3以下の粗テレフタル酸を含む酸化反応生成混合物
であれば、その酸化反応生成混合物をあまり冷却するこ
となくその中に含まれる一定量以上の母液を加熱酢酸で
置換分離して得られる酸化反応生成混合物を特定の温度
及び溶媒比の条件下において容易に実施することのでき
る二段階の浸漬処理操作を施すことによつて、形状が球
状であり、しかも粒子径が大きくかつエチレングリコー
ルとのスラリー性が良好であり、直接重合法によるポリ
エステルの製造に使用することが可能な高品質のテレフ
タル酸を製造することができることを見出したことに基
づくものである。更に、本発明の方法で得られたテレフ
タル酸は、従来直接重合法に使用できるとされてきた高
品質のテレフタル酸、たとえば、4−カルボキシベンズ
アルデヒドの含有率が300ppm以下であり、かつ3
40mμでの光学密度が0.05以下の高純度テレフタ
ル酸よりも4−カルボキシベンズアルデヒドの含有率が
高くしかも340mμでの光学密度が大きくても、直接
重合が可能であり、かつ色調の良好なポリエステルを製
造することができる。本発明のテレフタル酸の製造方法
において、従来から知られているようにパラキシレンは
酢酸溶媒中でコバルト化合物、マンガン化合物及び臭素
化合物を含む酸化触媒の存在下に高温加圧の条件下で分
子状酸素含有ガスによつて酸化される。
Furthermore, by oxidizing paraxylene under relatively mild oxidation conditions to obtain a crude terephthalic acid-containing oxidation reaction mixture containing a considerable amount of impurities such as 4-carboxybenzaldehyde, the oxidative decomposition of the acetic acid solvent was achieved. 4-carboxybenzaldehyde content within a specific range, namely 50
If the oxidation reaction product mixture contains crude terephthalic acid with a content of colored impurities in the range of 0 to 3000 ppm and an optical density at 340 mμ of a specific value, that is, 0.3 or less, the oxidation reaction product mixture is A two-step immersion process that can be easily carried out under specific temperature and solvent ratio conditions for the oxidation reaction product mixture obtained by replacing and separating a certain amount of the mother liquor contained therein with heated acetic acid without cooling. Through processing, high-quality terephthal has a spherical shape, large particle size, and good slurry properties with ethylene glycol, and can be used in the production of polyester by direct polymerization. This is based on the discovery that acids can be produced. Furthermore, the terephthalic acid obtained by the method of the present invention has a content of 4-carboxybenzaldehyde of 300 ppm or less, such as high-quality terephthalic acid that has conventionally been considered to be usable in direct polymerization methods, and
A polyester that can be directly polymerized and has a good color tone even though the content of 4-carboxybenzaldehyde is higher than that of high-purity terephthalic acid, which has an optical density at 40 mμ of 0.05 or less and has a higher optical density at 340 mμ. can be manufactured. In the method for producing terephthalic acid of the present invention, as is conventionally known, paraxylene is molecularized in an acetic acid solvent under high temperature and pressurized conditions in the presence of an oxidation catalyst containing a cobalt compound, a manganese compound, and a bromine compound. Oxidized by oxygen-containing gases.

ここで、コバルト化合物、マンガン化合物及び臭素化合
物を含む酸化触媒とは、反応系内においてコバルトイオ
ン、マンガンイオン及び臭素イオンを発生することので
きる酸化触媒である。通常は、コバルト化合物、マンガ
ン化合物及び臭素化合物からなる酸化触媒が使用される
。コバルト化合物、マンガン化合物及び臭素化合物から
なる必須の三触媒成分以外に他の金属触媒成分を含んで
いても差し支えない。本発明の方法において、コバルト
化合物、マンガン化合物及び臭素化合物からなる酸化触
媒を使用する際にその使用量は特に限定されないがコバ
ルト化合物の使用量は酢酸溶媒1tに対するコバルト原
子として0.1×10−5ないし5.0×10−5グラ
ム原子の範囲にあり、マンガン化合物の使用量はコバル
ト化合物に対する原子比として0.001ないし1.0
の範囲にあり、かつ臭素化合物の使用量はコバルト原子
とマンガン原子の和に対する原子比として1ないし4の
範囲にあることが好ましい。本発明の方法において、酸
化反応に使用される酢酸溶媒は純粋な酢酸である必要は
なく、通常水を5ないし15重量%の範囲で含有する酢
酸が使用される。
Here, the oxidation catalyst containing a cobalt compound, a manganese compound, and a bromine compound is an oxidation catalyst that can generate cobalt ions, manganese ions, and bromide ions in the reaction system. Typically, oxidation catalysts consisting of cobalt compounds, manganese compounds and bromine compounds are used. In addition to the three essential catalyst components consisting of a cobalt compound, a manganese compound, and a bromine compound, other metal catalyst components may be included. In the method of the present invention, when using an oxidation catalyst consisting of a cobalt compound, a manganese compound, and a bromine compound, the amount used is not particularly limited, but the amount of the cobalt compound used is 0.1 x 10 - as cobalt atoms per 1 ton of acetic acid solvent. 5 to 5.0 x 10-5 gram atoms, and the amount of manganese compound used is 0.001 to 1.0 as an atomic ratio to the cobalt compound.
The amount of the bromine compound used is preferably in the range of 1 to 4 as an atomic ratio to the sum of cobalt atoms and manganese atoms. In the method of the present invention, the acetic acid solvent used in the oxidation reaction does not need to be pure acetic acid, and acetic acid containing water in the range of 5 to 15% by weight is usually used.

酢酸溶媒の使用量はパラキシレンに対する重量比で通常
2ないし10,好ましくは3ないし6の範囲である。酸
化反応中における反応系内の母液中の水分濃度は通常は
5ないし15重量%、好ましくは7ないし12重量%の
範囲に維持される。本発明の酸化反応で使用される分子
状酸素含有ガスは通常は空気であるが、その他に酸素ガ
ス又は酸素ガスと他の不活性ガスとの任意の割合からな
る混合ガスであつてもよい。
The amount of acetic acid solvent used is usually in the range of 2 to 10, preferably 3 to 6 in weight ratio to paraxylene. The water concentration in the mother liquor in the reaction system during the oxidation reaction is usually maintained in the range of 5 to 15% by weight, preferably 7 to 12% by weight. The molecular oxygen-containing gas used in the oxidation reaction of the present invention is usually air, but may also be oxygen gas or a mixed gas of oxygen gas and other inert gas in any proportion.

酸化反応の際の分子状酸素含有ガスの供給量は、酸化反
応器からの排出ガス中の酸素濃度が通常2ないし8%、
好ましくは3ないし6%の範囲になるように供給される
。本発明の方法において、パラキシレンの酸化反応は高
温加圧の条件下で実施される。
The amount of molecular oxygen-containing gas supplied during the oxidation reaction is such that the oxygen concentration in the exhaust gas from the oxidation reactor is usually 2 to 8%.
It is preferably supplied in a range of 3 to 6%. In the method of the present invention, the oxidation reaction of paraxylene is carried out under high temperature and pressurized conditions.

反応温度は170ないし230℃の範囲であることが必
要であり、特に180ないし220℃の範囲にあること
が好ましい。酸化反応温度が170℃より低くなると、
酸化反応が不完全となり粗テレフタル酸中の4−カルボ
キシベンズアルデヒドの含有率が急激に増加し、又酸化
反応が不完全であることに帰因すると考えられる不純物
のために粗テレフタル酸の340mμでの光学密度が極
端に大きくなる。これらの品質は温度以外の酸化条件、
たとえば攪拌強度などにより改善することが困難であり
、本発明の精製方法を適用する4−カルボキシベンズア
ルデヒドの含有率が3000ppm以下でありかつ34
0mμでの光学密度が0.3以下を満足する粗テレフタ
ル酸を含有する酸化反応生成混合物は製造し難くなる。
その結果、次いで行うこの酸化反応生成混合物の浸漬処
理工程において、精製効果が著しく低下し、直接重合の
可能な高品質のテレフタル酸が得られなくなるばかりで
なく、これを精製するためには酸化反応温度より高い温
度に昇温して高温に加熱するために多量の熱量を要する
ようになるので経済性にも欠けるようになる。又、酸化
反応温度が230℃よりも高くなると、酸化が激しくな
り過ぎて4−カルボキシベンズアルデヒドの含有量ある
いは粗テレフタル酸の340mμでの光学密度からは推
量できない不純物が生成し、粗テレフタル酸の340m
μでの光学密度が0.3以下であつても一次浸漬処理で
の除去が不可能となる。その結果この粗テレフタル酸に
本発明の二段階の浸漬処理を施しても、このテレフタル
酸からは色調の良好なポリエステルは製造できなくなる
とともに、酢酸溶媒の酸化分解が増加するようになるの
で経済性にも欠けるようになる。酸化反応の際の圧力は
反応系内の酸化反応生成混合物を液相に保つに足る圧力
ならば任意である。
The reaction temperature must be in the range of 170 to 230°C, particularly preferably in the range of 180 to 220°C. When the oxidation reaction temperature is lower than 170℃,
The oxidation reaction was incomplete and the content of 4-carboxybenzaldehyde in the crude terephthalic acid rapidly increased, and the crude terephthalic acid was The optical density becomes extremely large. These qualities depend on oxidation conditions other than temperature,
For example, if the content of 4-carboxybenzaldehyde to which the purification method of the present invention is applied is 3000 ppm or less and 34
It becomes difficult to produce an oxidation reaction product mixture containing crude terephthalic acid that satisfies the optical density at 0 mμ of 0.3 or less.
As a result, in the subsequent immersion treatment process of the oxidation reaction product mixture, the purification effect is significantly reduced, and not only is it impossible to obtain high-quality terephthalic acid that can be directly polymerized, but also the oxidation reaction is necessary to purify this terephthalic acid. Since a large amount of heat is required to raise the temperature to a higher temperature and heat it to a high temperature, it also lacks economic efficiency. Furthermore, when the oxidation reaction temperature is higher than 230°C, the oxidation becomes too intense and impurities are produced that cannot be estimated from the content of 4-carboxybenzaldehyde or the optical density at 340 mμ of crude terephthalic acid.
Even if the optical density at μ is 0.3 or less, it will not be possible to remove it by the primary immersion treatment. As a result, even if this crude terephthalic acid is subjected to the two-step dipping treatment of the present invention, polyester with good color tone cannot be produced from this terephthalic acid, and oxidative decomposition of the acetic acid solvent increases, making it uneconomical. It also becomes lacking. The pressure during the oxidation reaction is arbitrary as long as it is sufficient to maintain the oxidation reaction product mixture in the reaction system in a liquid phase.

しかし、後述するように、蒸留塔を上部に連結した酸化
反応器を使用し、酸化反応により副生した水を蒸留除去
しながら酸化反応を行う場合には、反応圧力は反応溶媒
の沸騰を維持することのできる範囲内に保つことが必要
である。本発明のパラキシレンの液相酸素酸化反応は通
常攪拌下に実施される。
However, as will be explained later, when using an oxidation reactor with a distillation column connected to the top and performing the oxidation reaction while distilling off water produced by the oxidation reaction, the reaction pressure maintains the boiling of the reaction solvent. It is necessary to keep it within the possible range. The liquid phase oxygen oxidation reaction of paraxylene of the present invention is usually carried out under stirring.

その際の攪拌強度は任意であるが、攪拌強度は粗テレフ
タル酸中の不純物の性状並びに酸化反応器中の酢酸溶媒
の酸化分解に影響を及ぼすので適度であることが好まし
い。粗テレフタル酸中の不純物を次いで行う一次浸漬処
理で除去し易い性状とし、かつ酢酸の酸化分解を抑制す
ることによつてテレフタル酸の製造の際の経済性を高め
るためには、酸化反応系内の反応混合物を強力に撹拌す
ることにより、気液の接触を良くすることが好ましい。
たとえば、酸化反応の際に酢酸の分解を抑制するために
は、攪拌強度は酸化反応混合物1m3当たり通常は1.
0ないし10.0馬力の範囲にあり、1.5ないし5.
0馬力の範囲にあることがとくに好ましい。本発明の方
法において、パラキシレンの酸化反応用の酸化反応器と
しては、反応熱により気化した酢酸溶媒を反応器に凝縮
還流させることのできる凝縮還流器を上部に連結した通
常の酸化反応器を使用することもできるし、上部に蒸留
塔を連結した酸化反応器を使用することもできる。
The stirring intensity at this time is arbitrary, but is preferably moderate because it affects the properties of impurities in the crude terephthalic acid and the oxidative decomposition of the acetic acid solvent in the oxidation reactor. In order to make the impurities in crude terephthalic acid easily removable in the subsequent primary immersion treatment and to improve the economic efficiency of producing terephthalic acid by suppressing the oxidative decomposition of acetic acid, it is necessary to It is preferable to strongly stir the reaction mixture to improve gas-liquid contact.
For example, in order to suppress the decomposition of acetic acid during the oxidation reaction, the stirring intensity is usually 1.5 mm per cubic meter of the oxidation reaction mixture.
Ranges from 0 to 10.0 horsepower, 1.5 to 5.
It is particularly preferable that it be in the range of 0 horsepower. In the method of the present invention, the oxidation reactor for the oxidation reaction of para-xylene is an ordinary oxidation reactor having a condensing reflux device connected to the upper part, which can condense and reflux the acetic acid solvent vaporized by the reaction heat into the reactor. It is also possible to use an oxidation reactor with a distillation column connected to the top.

これらの酸化反応器のうちでは、酸化反応で副生した水
を反応熱を利用することにより反応系外に容易に蒸留除
去することができ、しかも反応系内の母液中の水分の濃
度を好適な範囲内に容易に制御することができることか
ら、上部に蒸留塔を連結した酸化反応器を本発明の方法
に使用することが好ましい。本発明の方法において、パ
ラキシレンの酸化反応によつて得られる酸化反応生成混
合物はその中に含まれる粗テレフタル酸中の4−カルボ
キシベンズアルデヒドの含有率が500ないし3000
ppmの範囲にありかつ粗テレフタル酸の340mμで
の光学密度が0.3以下であるような酸化反応生成混合
物であることが必要であるこの酸化反応生成混合物に含
まれる粗テレフタル酸中の4カルボキシベンズアルデヒ
ドの含有率を500ppmより少なくしようとすると、
酸化反応において酢酸溶媒比(対パラキシレン重量)を
大きくする、酸化反応温度を高くする、触媒濃度を変化
させる、触媒濃度を高くする、反応系内の母液中の水分
濃度を低下させる、分子状酸素含有ガスの供給量を増加
する排出ガス中の酸素ガス濃度を増加する等これらのう
ちの少なくともいずれかの方法により酸化反応条件を苛
酷にする必要がある。
In these oxidation reactors, the water by-produced in the oxidation reaction can be easily distilled out of the reaction system by utilizing the reaction heat, and the water concentration in the mother liquor in the reaction system can be adjusted to a suitable level. It is preferable to use an oxidation reactor with a distillation column connected to the upper part in the method of the present invention because it can be easily controlled within a certain range. In the method of the present invention, the oxidation reaction product mixture obtained by the oxidation reaction of paraxylene has a content of 4-carboxybenzaldehyde in crude terephthalic acid of 500 to 3000.
4 carboxy in the crude terephthalic acid contained in this oxidation reaction product mixture. When trying to reduce the content of benzaldehyde to less than 500 ppm,
Increasing the acetic acid solvent ratio (to para-xylene weight) in the oxidation reaction, increasing the oxidation reaction temperature, changing the catalyst concentration, increasing the catalyst concentration, decreasing the water concentration in the mother liquor in the reaction system, molecular It is necessary to make the oxidation reaction conditions harsher by at least one of these methods, such as increasing the amount of oxygen-containing gas supplied or increasing the oxygen gas concentration in the exhaust gas.

その結果不純物が質的に変化し、本発明の精製処理によ
つてこの酸化反応生成混合物を精製しても、直接重合法
によつて製造したポリエステルの色調が悪化し又、酢酸
溶媒の酸化分解が急激に増加するようになつて経済的に
テレフタル酸を製造することができなくなるので、酸化
反応生成混合物に含まれる粗テレフタル酸中の4−カル
ボキシベンズアルデヒドの含有率は500ppm以上で
あることが必要である。一方、酸化反応生成混合物中に
含まれる粗テレフタル酸中の4−カルボキシベンズアル
デヒドの含有率が3000ppmより多くなると、4−
カルボキシベンズアルデヒド以外の反応中間体に帰因す
る不純物が急激に増加し、これに本発明の方法を適用し
ても精製効果は著しく低下し、直接重合法によりポリエ
チレンテレフタレートを製造することは困難となるので
、反応生成混合物中の4−カルボキシベンズアルデヒド
の含有率は300ppm以下であることが必要である。
又、反応生成混合物中に含まれる粗テレフタル酸中の4
−カルボキシベンズアルデヒドの含有率が前記範囲内で
あつても、粗テレフタル酸の340mμでの光学密度が
0.3より大きい場合には、次いで行う一次浸漬処理及
び二次浸漬処理によつて直接重合が可能な高品質のテレ
フタル酸を得ることはできない。したがつて、酸化反応
生成混合物中の粗テレフタル酸の340mμでの光学密
度は0.3以下であることが必要である。又、酢酸溶媒
の酸化分解をさらに少なくししかも高品質のテレフタル
酸をより経済的に製造するためには、本発明の方法で使
用される酸化反応生成混合物は、その中に含まれる粗テ
レフタル酸中の4−カルボキシベンズアルデヒドの含有
率が600ないし2500ppmの範囲にありかつ粗テ
レフタル酸の340mμでの光学密度が0.2以下にあ
る酸化反応生成混合物であることが好ましい。ここで、
酸化反応生成混合物に含まれる粗テレフタル酸中の4−
カルボキシベンズアルデヒドの含有率とは、酸化反応器
から一部を取り出した高温高圧の酸化反応生成混合物を
冷却後f過分離し、室温で酢酸洗浄、水洗浄及び乾燥し
て得られる粗テレフタル酸中の4−カルボキシベンズア
ルデヒドをポーラログラフイ一によつて測定した値であ
る。又、340mμでの光学密度とは、前記粗テレフタ
ル酸7.5Pを2規定の水酸化カリウム水溶液50i1
L1に溶解したものを340mμにおいてセル長1C!
nのセルを用いて測定した光学密度である。本発明の方
法において、パラキシレンの酸化反応によつて酸化反応
生成混合物に含まれる粗テレフタル酸中の4−カルボキ
シベンズアルデヒドの含有率が500ないし3000p
pmの範囲にありかつ粗テレフタル酸の光学密度が0.
3以下である酸化反応生成混合物を製造するためには、
前述のようにパラキシレンに対する酢酸溶媒比、酸化反
応温度、触媒組成、触媒濃度、反応系内の母液中の水分
濃度、分子状酸素含有ガスの供給量(排出ガス中の酸素
ガス濃度)、撹拌強度等の酸化反応条件を前記の範囲内
において適宜に選択することにより達成することができ
る。
As a result, the impurities change qualitatively, and even if this oxidation reaction product mixture is purified by the purification treatment of the present invention, the color tone of the polyester produced by the direct polymerization method deteriorates, and the oxidative decomposition of the acetic acid solvent The content of 4-carboxybenzaldehyde in the crude terephthalic acid contained in the oxidation reaction product mixture needs to be 500 ppm or more, as the 4-carboxybenzaldehyde content in the crude terephthalic acid contained in the oxidation reaction product mixture must be 500 ppm or more. It is. On the other hand, when the content of 4-carboxybenzaldehyde in the crude terephthalic acid contained in the oxidation reaction product mixture exceeds 3000 ppm, 4-
Impurities attributable to reaction intermediates other than carboxybenzaldehyde rapidly increase, and even if the method of the present invention is applied to this, the purification effect decreases significantly, making it difficult to produce polyethylene terephthalate by direct polymerization method. Therefore, the content of 4-carboxybenzaldehyde in the reaction product mixture must be 300 ppm or less.
In addition, 4 in the crude terephthalic acid contained in the reaction product mixture
- Even if the content of carboxybenzaldehyde is within the above range, if the optical density of crude terephthalic acid at 340 mμ is greater than 0.3, direct polymerization will not occur in the subsequent primary dipping treatment and secondary dipping treatment. It is not possible to obtain terephthalic acid of the highest possible quality. Therefore, it is necessary that the optical density of crude terephthalic acid in the oxidation reaction product mixture at 340 mμ be 0.3 or less. Furthermore, in order to further reduce the oxidative decomposition of the acetic acid solvent and to more economically produce high-quality terephthalic acid, the oxidation reaction product mixture used in the method of the present invention should contain the crude terephthalic acid contained therein. The oxidation reaction product mixture is preferably one in which the content of 4-carboxybenzaldehyde is in the range of 600 to 2,500 ppm and the optical density of crude terephthalic acid at 340 mμ is 0.2 or less. here,
4- in the crude terephthalic acid contained in the oxidation reaction product mixture
The content of carboxybenzaldehyde is the content of carboxybenzaldehyde in the crude terephthalic acid obtained by removing a portion of the high-temperature, high-pressure oxidation reaction product mixture from the oxidation reactor, cooling it, over-separating it, washing it with acetic acid, washing it with water, and drying it at room temperature. This is a value measured by polarography for 4-carboxybenzaldehyde. In addition, the optical density at 340 mμ means that the crude terephthalic acid 7.5P is dissolved in a 2N potassium hydroxide aqueous solution 50i1
Cell length 1C when dissolved in L1 at 340mμ!
It is an optical density measured using a cell of n. In the method of the present invention, the content of 4-carboxybenzaldehyde in the crude terephthalic acid contained in the oxidation reaction product mixture by the oxidation reaction of paraxylene is 500 to 3000 p.
pm range and the optical density of crude terephthalic acid is 0.
In order to produce an oxidation reaction product mixture of 3 or less,
As mentioned above, the acetic acid solvent ratio to paraxylene, oxidation reaction temperature, catalyst composition, catalyst concentration, water concentration in the mother liquor in the reaction system, supply amount of molecular oxygen-containing gas (oxygen gas concentration in exhaust gas), stirring This can be achieved by appropriately selecting oxidation reaction conditions such as strength within the above range.

本発明の方法では、前述のように酸化反応により得られ
た酸化反応生成混合物から60重量%以上の母液を分離
して酸化反応器に循環させるとともに、残りの粗テレフ
タル酸を含む酸化反応生成混合物に加熱酢酸を加えるこ
とによつて得られる粗テレフタル酸の酢酸懸濁液を高温
で攪拌する一次浸漬処理が施される。
In the method of the present invention, as described above, 60% by weight or more of the mother liquor is separated from the oxidation reaction product mixture obtained by the oxidation reaction and recycled to the oxidation reactor, and the oxidation reaction product mixture containing the remaining crude terephthalic acid is separated. A primary immersion treatment is performed in which a suspension of crude terephthalic acid in acetic acid obtained by adding heated acetic acid to the mixture is stirred at a high temperature.

酸化反応生成混合物からの母液の分離は、酸化反応温度
より30℃低い温度以下に冷却することなく実施するこ
とが必要であり、酸化反応温度より20℃低い温度以下
に冷却することなく実施することが特に好ましい。又、
その際の酸化反応生成混合物からの母液の分離割合は、
酸化反応生成混合物中に含まれる母液の60重量%以上
の範囲とすることが必要である。酸化反応生成混合物か
らの母液の分離が反応温度より30℃以上低い温度で実
施されると、母液中に含まれる4−カルボキシベンズア
ルデヒドや着色不純物が粗テレフタル酸中に吸蔵され、
粗テレフタル酸中の4−カルボキシベンズアルデヒドの
含有率が増加し、340mμでの光学密度が大きくなる
。そQ結果次の一次浸漬処理工程における精製への負担
が大きくなるばかりでなく、分離した母液を酸化反応器
に循環再使用する際にも又残りの酸化反応生成混合物の
一次浸漬処理を行う際にも再び加熱する必要が生ずるの
で、使用熱量の面からも経済性に欠けるようになる。又
、酸化反応生成混合物からの母液の分離割合が60重量
%より低下すると、母液中に溶解している4−カルボキ
シベンズアルデヒド等の不純物が浸漬槽中に多量に含ま
れるようになるので、浸漬処理による充分な精製効果が
得られなくなるばかりでなく、これらの不純物が縮合を
起こしてさらに着色を促進させるようになる。以上の方
法により分離された母液は酸化反応系に循環再使用され
る。
Separation of the mother liquor from the oxidation reaction product mixture must be carried out without cooling below a temperature of 30°C below the oxidation reaction temperature, and must be carried out without cooling below a temperature of 20°C below the oxidation reaction temperature. is particularly preferred. or,
The separation rate of the mother liquor from the oxidation reaction product mixture at that time is
It is necessary that the amount is 60% by weight or more of the mother liquor contained in the oxidation reaction product mixture. When the mother liquor is separated from the oxidation reaction product mixture at a temperature 30°C or more lower than the reaction temperature, 4-carboxybenzaldehyde and colored impurities contained in the mother liquor are occluded in the crude terephthalic acid.
The content of 4-carboxybenzaldehyde in the crude terephthalic acid increases, and the optical density at 340 mμ increases. As a result, not only does the burden on purification in the next primary immersion treatment process increase, but also when the separated mother liquor is recycled to the oxidation reactor and when performing the primary immersion treatment of the remaining oxidation reaction product mixture. Since it becomes necessary to heat the product again, it becomes uneconomical in terms of the amount of heat used. In addition, if the separation ratio of the mother liquor from the oxidation reaction product mixture is lower than 60% by weight, a large amount of impurities such as 4-carboxybenzaldehyde dissolved in the mother liquor will be contained in the dipping tank, so the dipping treatment may be difficult. Not only does it become impossible to obtain a sufficient purification effect, but also these impurities cause condensation, further promoting coloring. The mother liquor separated by the above method is recycled and reused in the oxidation reaction system.

その際、母液中に多量の水が存在する場合には、必要に
応じて母液中の水分濃度が適度の範囲になるまで水を蒸
留除去した後循環再使用することもできるし不足する触
媒成分を補充した後循環再使用することもできる。酸化
反応において、前述のように上部に蒸留塔を直接連結し
た酸化反応器を使用し、酸化反応により副生した水を蒸
留除去しながら反応系内の母液中の水分濃度を一定の範
囲に維持しながら反応を行う場合には、分離した母液は
系外の蒸留塔で脱水処理を施すことなくそのまま酸化反
応器に循環再使用することができるので好適である。本
発明の方法において、、酸化反応生成混合物から母液を
分離する方法としては、通常の遠心分離器、液体サイク
ロン等の遠心力を利用した分離法が採用されるが、高温
加圧下における分離を容易に行うことのできる液体サイ
クロンを採用することが好ましい。
At that time, if there is a large amount of water in the mother liquor, if necessary, the water can be distilled off until the water concentration in the mother liquor reaches an appropriate range, and then recycled and reused. It can also be recycled and reused after being refilled. In the oxidation reaction, as mentioned above, an oxidation reactor with a distillation column directly connected to the top is used, and the water concentration in the mother liquor in the reaction system is maintained within a certain range while removing the water by-produced by the oxidation reaction by distillation. In the case where the reaction is carried out while the reaction is being carried out, the separated mother liquor can be recycled and reused as it is in the oxidation reactor without being subjected to dehydration treatment in a distillation column outside the system, which is suitable. In the method of the present invention, a separation method using centrifugal force such as an ordinary centrifuge or hydrocyclone is used to separate the mother liquor from the oxidation reaction product mixture, but separation under high temperature and pressure is easy. It is preferable to use a hydrocyclone that can perform

たとえば、本発明の方法において、酸化反応生成混合物
から液体サイクロンを使用して母液を分離する方法とし
て本出願人が特願昭52−96176号明細書において
提案した酸化反応生成混合物中の母液を液体サイクロン
に側流として供給した加熱酢酸で置換することにより分
離することもできる。その結果得られた粗テレフタル酸
の酢酸懸濁液をそのまま次の一次浸漬処理に使用するこ
ともできる。本発明の方法では、酸化反応生成混合物か
ら母液の60重量%以上を分離して得られる残りの酸化
反応生成混合物に加熱酢酸を加え、一次浸漬処理が施さ
れる。
For example, in the method of the present invention, the method of separating the mother liquor from the oxidation reaction product mixture using a hydrocyclone was proposed by the present applicant in Japanese Patent Application No. 52-96176. Separation can also be achieved by displacement with heated acetic acid fed as a side stream to the cyclone. The resulting suspension of crude terephthalic acid in acetic acid can also be used as it is in the next primary dipping treatment. In the method of the present invention, heated acetic acid is added to the remaining oxidation reaction product mixture obtained by separating 60% by weight or more of the mother liquor from the oxidation reaction product mixture, and a primary immersion treatment is performed.

その際、粗テレフタル酸の酢酸懸一,濁液中の粗テレフ
タル酸に対する酢酸溶媒の重量比は2ないし10の範囲
にあることが必要であり、とくに3ないし8の範囲にあ
ることが好ましい。又、一次浸漬処理の際の温度は、酸
化反応温度ないし240℃の範囲にあることが必要であ
り、酸化反応温度より10℃高い温度ないし230℃の
範囲にあることが好ましい。又、一次浸漬処理の際の温
度が酸化反応温度より低い温度では充分な精製効果が現
われなくなり、240℃よりも高くなるとテレフタル酸
の340mμでの光学密度並びに直接重合により製造し
たポリエチレンテレフタレートの色相が低下するように
なる。この一次浸漬処理の際の粗テレフタル酸懸濁液中
の粗テレフタル酸に対する酢酸溶媒の重量比が2より小
さくなると一次浸漬処理による精製効果が現われ難くな
り、10より大きくなつてもそれ以上の精製効果が現わ
れなくなるばかりでなく、多量の加熱酢酸を必要とする
ようになるので使用熱量の面からも経済性に欠けるよう
になる。
In this case, when the crude terephthalic acid is suspended in acetic acid, the weight ratio of the acetic acid solvent to the crude terephthalic acid in the suspension must be in the range of 2 to 10, particularly preferably in the range of 3 to 8. Further, the temperature during the primary dipping treatment needs to be in the range from the oxidation reaction temperature to 240°C, and preferably in the range from 10°C higher than the oxidation reaction temperature to 230°C. Furthermore, if the temperature during the primary dipping treatment is lower than the oxidation reaction temperature, a sufficient purification effect will not be obtained, and if it is higher than 240°C, the optical density at 340 mμ of terephthalic acid and the hue of polyethylene terephthalate produced by direct polymerization will decrease. begins to decline. If the weight ratio of the acetic acid solvent to the crude terephthalic acid in the crude terephthalic acid suspension in this primary immersion treatment is less than 2, the purification effect of the primary immersion treatment will be difficult to appear; Not only is this method ineffective, but it also requires a large amount of heated acetic acid, making it uneconomical in terms of the amount of heat used.

又、この浸漬処理の際の粗テレフタル酸の酢酸懸濁液の
酢酸溶媒中の水の含有率は通常3ないし25重量%の範
囲であり、懸濁液の酢酸溶媒中の水の含有率が特に5な
いし20重量%の範囲にあると浸漬処理による精製効果
とりわけ4−カルボキシベンズアルデヒドの除去効果が
大きくなるので好ましい。本発明の方法において、粗テ
レフタル酸の酢酸懸濁液の一次浸漬処理により充分な精
製効果を得るためには、懸濁液中の粗テレフタル酸に対
する酢酸溶媒比及び処理温度は前記の範囲にあることが
必要である。
Further, during this immersion treatment, the content of water in the acetic acid solvent of the suspension of crude terephthalic acid in acetic acid is usually in the range of 3 to 25% by weight, and the content of water in the acetic acid solvent of the suspension is In particular, a content in the range of 5 to 20% by weight is preferable because the purification effect by dipping treatment, especially the effect of removing 4-carboxybenzaldehyde, becomes greater. In the method of the present invention, in order to obtain a sufficient purification effect by the primary immersion treatment of crude terephthalic acid in acetic acid suspension, the acetic acid solvent ratio and treatment temperature to crude terephthalic acid in the suspension should be within the above ranges. It is necessary.

懸濁液中の粗テレフタル酸に対する酢酸溶媒比、処理温
度並びに酢酸溶媒中の水の含有率は粗テレフタル酸の精
製効果に相互に関連して影響を及ぼすものであり更に優
れた精製効果を得るためには、前記の酢酸溶媒比並びに
処理温度の範囲内にありかつ一般式 〔式中、tは一次浸漬処理の温度(℃)を示しXは粗テ
レフタル酸に対する酢酸溶媒の重量比を示し、mは酢酸
溶媒中の水分含有率(重量%)を示す。
The ratio of the acetic acid solvent to the crude terephthalic acid in the suspension, the treatment temperature, and the content of water in the acetic acid solvent are mutually related to influence the purification effect of the crude terephthalic acid, and an even better purification effect can be obtained. In order to achieve this, the acetic acid solvent ratio and treatment temperature must be within the ranges described above, and the general formula [where t represents the temperature (°C) of the primary immersion treatment, and X represents the weight ratio of the acetic acid solvent to crude terephthalic acid, m indicates the water content (% by weight) in the acetic acid solvent.

〕を満足する条件下に一次浸漬処理を施すことが好まし
い。本発明の方法において、一次浸漬処理は前記諸条件
下で攪拌下に実施される。
] It is preferable to perform the primary immersion treatment under conditions that satisfy the following. In the method of the present invention, the primary immersion treatment is carried out under the above conditions and with stirring.

その際の攪拌強度は任意であるが、優れた精製効果を得
るためには適度な撹拌条件下に一次浸漬処理を施すこと
が好ましい。また、一次浸漬処理による充分な効果を得
るためには、浸漬時間は30分以上であることが好まし
い。
Although the stirring intensity at that time is arbitrary, in order to obtain an excellent purification effect, it is preferable to perform the primary immersion treatment under appropriate stirring conditions. Further, in order to obtain sufficient effects from the primary immersion treatment, the immersion time is preferably 30 minutes or more.

本発明の方法において、酸化反応生成混合物から母液の
60重量%以上を分離して得られる残りの酸化反応生成
混合物には加熱酢酸が加えられ、懸濁液中の粗テレフタ
ル酸に対する酢酸溶媒比が前記特定の範囲に調整された
後、一次浸漬処理に供される。
In the method of the present invention, heated acetic acid is added to the remaining oxidation reaction product mixture obtained by separating 60% by weight or more of the mother liquor from the oxidation reaction product mixture, and the acetic acid solvent ratio to crude terephthalic acid in the suspension is adjusted. After being adjusted to the specific range, it is subjected to a primary immersion treatment.

その際、残りの酸化反応生成混合物に加えられる加熱酢
酸として次のような加熱酢酸を使用すると、溶媒の加熱
のために反応熱を利用することができるのでとくに好ま
しい。すなわち、酸化反応器として上部に凝縮還流器を
連結した反応器を使用した場合には凝縮還流器から還流
する酢酸の一部を前記加熱酢酸として使用することがで
き、又上部に蒸留塔を直接連結した酸化反応器を使用し
た場合には、蒸留塔の塔底部から還流する酢酸の一部又
は蒸留塔側部から抜き出した酢酸を加熱酢酸として使用
することもできる。後者の方法を採用すると蒸留塔から
の酢酸の抜き出し位置を適宜に選ぶことにより、浸漬処
理に好都合な水含有率の酢酸を得ることができるのでと
くに好ましい。本発明の方法において、前述の方法によ
り一次浸漬処理を施したテレフタル酸の酢酸懸濁液には
、次いで二次浸漬処理が施される。
In this case, it is particularly preferable to use the following heated acetic acid as the heated acetic acid added to the remaining oxidation reaction product mixture, since the heat of reaction can be utilized for heating the solvent. That is, when a reactor with a condensing reflux device connected to the upper part is used as an oxidation reactor, a part of the acetic acid refluxed from the condensing reflux device can be used as the heated acetic acid, and a distillation column can be directly connected to the upper part of the acetic acid. When connected oxidation reactors are used, part of the acetic acid refluxing from the bottom of the distillation column or acetic acid extracted from the side of the distillation column can also be used as the heated acetic acid. The latter method is particularly preferred because acetic acid having a water content suitable for immersion treatment can be obtained by appropriately selecting the position from which acetic acid is extracted from the distillation column. In the method of the present invention, the terephthalic acid suspension in acetic acid that has been subjected to the primary immersion treatment by the method described above is then subjected to a secondary immersion treatment.

この二次浸漬処理においては、前記一次浸漬処理により
粗テレフタル酸中の4−カルボキシベンズアルデヒドな
どの酸化中間体及び着色物質等の不純物を酢酸溶媒中に
選択的に抽出して得られるテレフタル酸の酢酸懸濁液を
一次浸漬温度よりは低い特定の温度で浸漬処理すること
により、一次浸漬処理によつて酢酸溶媒中に抽出された
前記不純物を再びテレフタル酸中に含有させることなく
、テレフタル酸の結晶をその形状が球状であり、しかも
粒径が大きくかつエチレングリコールとのスラリー性の
良好なテレフタル酸結晶に調製するものである。この二
次浸漬処理の温度は150ないし220℃の範囲にあり
、かつ一次浸漬の温度より少なくとも10℃低い温度で
あることが必要であり特に160ないし200℃の範囲
にあり、一次浸漬の温度より少なくとも20℃低い温度
であることが好ましい。二次浸漬処理の温度が150℃
より低くなると、形状が球状でありしかも粒径が大きく
かつエチレングリコールとのスラリー性の良好なテレフ
タル酸結晶が得られなくなり、しかもテレフタル酸中の
4−カルボキシベンズアルデヒド等の不純物の含有量が
増加するようになる。又、二次浸漬処理の温度が220
℃より高くなつても形状が球状で粒径が大きくかつエチ
レングリコールとのスラリー性の良好なテレフタル酸が
得られなくなり、柱状もしくは針状結晶等の微粉末状結
晶が多く生成するようになる。二次浸漬処理の際の温度
が前記の150ないし220℃の範囲にあつても、一次
浸漬処理の際の温度と二次浸漬処理の際の温度差が10
℃未満であるならば、同様に形状が球状で粒径が大きく
かつエチレングリコールとのスラリー性の良好なテレフ
タル酸は得られ難くなる。本発明の方法では、この二次
浸漬処理は前記の温度条件下において攪拌下に実施され
る。
In this secondary dipping treatment, the acetic acid of terephthalic acid obtained by selectively extracting impurities such as oxidized intermediates such as 4-carboxybenzaldehyde and colored substances from the crude terephthalic acid into an acetic acid solvent by the primary dipping treatment is By immersing the suspension at a specific temperature lower than the primary immersion temperature, the impurities extracted into the acetic acid solvent during the primary immersion treatment are prevented from being incorporated into the terephthalic acid again, and crystals of terephthalic acid are formed. The purpose is to prepare terephthalic acid crystals that are spherical in shape, large in particle size, and have good slurry properties with ethylene glycol. The temperature of this secondary immersion treatment must be in the range of 150 to 220°C and at least 10°C lower than the temperature of the primary immersion, especially in the range of 160 to 200°C and lower than the temperature of the primary immersion. Preferably the temperature is at least 20°C lower. Temperature of secondary immersion treatment is 150℃
If it is lower, it becomes impossible to obtain terephthalic acid crystals that are spherical in shape, have a large particle size, and have good slurry properties with ethylene glycol, and the content of impurities such as 4-carboxybenzaldehyde in terephthalic acid increases. It becomes like this. In addition, the temperature of the secondary immersion treatment was 220℃.
Even if the temperature rises above .degree. C., terephthalic acid with a spherical shape, large particle size, and good slurry properties with ethylene glycol cannot be obtained, and many fine powder crystals such as columnar or acicular crystals are produced. Even if the temperature during the secondary immersion treatment is within the above range of 150 to 220°C, the temperature difference between the temperature during the primary immersion treatment and the temperature during the secondary immersion treatment is 10°C.
If the temperature is less than 0.degree. C., it will be difficult to obtain terephthalic acid which has a spherical shape, a large particle size, and good slurry properties with ethylene glycol. In the method of the present invention, this secondary immersion treatment is carried out under the above-mentioned temperature conditions and with stirring.

精製されたテレフタル酸の結晶の形状が球状でありしか
も粒径が大きくかつエチレングリコールとのスラリー性
の良好な結晶とするためには、適度な撹拌条件下に二次
浸漬処理を施すことが好ましい。攪拌強度があまり大き
くなると粒径は小さくなり、又、攪拌強度があまり小さ
くなると針状結晶もしくは柱状結晶のテレフタル酸が生
成するようになる。二次浸漬処理の効果を充分に発現さ
せるためには、浸漬時間は30分以上であることが好ま
しい一次浸漬処理の施されたテレフタル酸の酢酸懸濁液
に続いて二次浸漬処理を施すためには、前述のように系
内の温度を下げることが必要である。
In order to obtain crystals of purified terephthalic acid that are spherical in shape, have a large particle size, and have good slurry properties with ethylene glycol, it is preferable to perform a secondary dipping treatment under moderate stirring conditions. . If the stirring intensity becomes too high, the particle size becomes small, and if the stirring intensity becomes too small, needle-like or columnar crystals of terephthalic acid will be produced. In order to fully express the effect of the secondary immersion treatment, the immersion time is preferably 30 minutes or more, since the secondary immersion treatment is performed following the acetic acid suspension of terephthalic acid that has been subjected to the primary immersion treatment. As mentioned above, it is necessary to lower the temperature within the system.

その際、一次浸漬処理槽からテレフタル酸の酢酸懸濁液
を一次浸漬処理槽の圧力よりは低い圧力に保たれた二次
浸漬処理槽にフラツシユさせる方法を採用することによ
り、系内の温度を急激に低下させることも可能であるが
、徐冷する方法を採用することもできる。本発明の方法
により、二次浸漬処理の施されたテレフタル酸の酢酸懸
濁液を従来から行われている常法に従つて処理すること
により、高品質のテレフタル酸を得ることができる。
At this time, the temperature in the system is reduced by flashing the acetic acid suspension of terephthalic acid from the primary immersion treatment tank into the secondary immersion treatment tank, which is maintained at a lower pressure than the primary immersion treatment tank. Although it is possible to lower the temperature rapidly, it is also possible to adopt a method of slow cooling. According to the method of the present invention, high quality terephthalic acid can be obtained by treating a suspension of terephthalic acid in acetic acid that has been subjected to the secondary immersion treatment according to a conventional method.

たとえば、二次浸漬処理の施されたテレフタル酸の酢酸
懸濁液を常圧下にフラツシユさせることによつて急冷す
るか、又は徐冷することによつてテレフタル酸の酢酸懸
濁液を取り出し、この懸濁液から遠心分離法などによつ
てテレフタル酸を沢別し、次いで洗浄及び乾燥すること
により高品質のテレフタル酸を得ることができる。本発
明の方法により直接重合用の高品質のテレフタル酸を製
造するための装置の1例を添付図面に示した。
For example, a suspension of terephthalic acid in acetic acid that has been subjected to a secondary immersion treatment is rapidly cooled by flashing it under normal pressure, or a suspension of terephthalic acid in acetic acid is taken out by slow cooling. High quality terephthalic acid can be obtained by separating terephthalic acid from the suspension by centrifugation or the like, followed by washing and drying. An example of an apparatus for producing high quality terephthalic acid for direct polymerization according to the method of the invention is shown in the accompanying drawing.

この図の装置により本発明の方法を具体的に説明する。
パラキシレン、酸化触媒及び酢酸溶媒からなる反応混合
物及び空気はそれぞれ反応混合物供給ライン12及び空
気供給ライン13から酸化反応器10に連続的に供給さ
れる。酸化反応器10には撹拌器11が装備されており
、酸化反応器内の反応混合物を所定の温度のもとで一定
の滞留時間撹拌することにより、パラキシレンは酸化さ
れてテレフタル酸となり、酸化反応生成混合物は粗テレ
フタル酸の酢酸懸濁液となる。酸化反応生成混合物であ
る粗テレフタル酸の酢酸懸濁液は、酸化反応器10から
酸化反応生成混合物抜き取りライン14及びバルブ15
を通して第一受器30に送入される。第一受器30では
酸化反応生成混合物は酸化反応温度より30℃低い温度
以下、好ましくは20℃低い温度以下に冷却されないよ
うに保温され、攪拌機31によつて攪拌されている。酸
化反応混合物を酸化反応器10から第一受器30に抜き
出す際に、圧力低下が起こる場合に発生する酢酸蒸気は
第一受器上部のライン32及び冷却器33を通つて凝縮
し、ライン34を通して第一受器に還流する。一方、酸
化反応で副生した水は酸化反応器からの排出ガス及び気
化した酢酸の蒸気と共に酸化反応器10の上部に直接連
結された棚段式蒸留塔20に導かれ、酸化反応で副生し
た水を酸化反応を行いながら反応熱を利用して蒸留分離
することにより、酸化反応器内の母液中の水分濃度は一
定に維持される。蒸留により蒸留塔20の塔頂からの濃
縮された水蒸気を含む排出ガスは、ライン21及び冷却
器22を通つて凝縮され、凝縮した水一酢酸溶液は凝縮
液受器23に入る。凝縮液受器23中の水を主として含
む水一酢酸溶液の一部は凝縮水抜き取りライン26より
除去され、他の部分は蒸留塔20の塔頂に還流される。
冷却器22によつて凝縮しなかつた気体は排出ガスライ
ン25より排出される。一方、第一受器30中の酸化反
応生成混合物は、テレフタル酸の酢酸懸濁液抜き取りラ
イン35、ポンプ36及び液体サイクロン供給ライン3
7を通して液体サイクロン40に供給され所定の温度に
おいて酸化反応生成混合物中の母液が所定の割合で分離
され、分離された母液は分離母液戻しライン41を通し
て酸化反応器10に返される。所定の割合で母液が分離
された残りの酸化反応生成混合物は液体サイクロン40
の底部の粗テレフタル酸の酢酸懸濁液抜き取りライン4
2から取り出し、酸化反応器10の上部の蒸留塔塔側部
の加熱酢酸抜き取りライン27から取り出した所定の濃
度の水を含む加熱酢酸と共に熱交換器43で所定の温度
に加熱して第一次浸漬槽50に供給される。第一次浸漬
槽50中では粗テレフタル酸の酢酸懸濁液中の粗テレフ
タル酸に対する酢酸溶媒の重量比及び温度が特定の範囲
に維持され、粗テレフタル酸の酢酸懸濁液は攪拌機51
によつて所定の時間攪拌しながら一次浸漬処理が施され
る。一次浸漬処理の施された粗テレフタル酸の酢酸懸濁
液は第一次浸漬槽50の底部の抜き取りライン52、バ
ルブ53及び第二次浸漬槽供給口54を通して第二次浸
漬槽60に供給される。第二次浸漬槽60中では、テレ
フタル酸の酢酸懸濁液は第一次浸漬槽よりは低い特定の
温度において攪拌機61で所定の時間攪拌しながら二次
浸漬処理が施される。第一次浸漬槽から第二次浸漬槽に
テレフタル酸の酢酸懸濁液を移す際には系の温度の低下
に伴つて圧力の低下が起こる。その際第二次浸漬槽中の
酢酸溶媒の一部は気化して第二次浸漬槽土部のライン6
5及び冷却器66を通つて凝縮し、第二次浸漬槽中に還
流する。したがつて、第二次浸漬槽の圧力を調整するこ
とにより温度を調整することができる。二次浸漬処理の
施されたテレフタル酸の酢酸懸濁液は、第二次浸漬槽の
底部の抜き取りライン62、バルブ63及びライン64
を通して第二受器70に送られる。第二受器70の圧力
は通常大気圧に維持されかつその温度は大気圧下におけ
る酢酸の沸点あるいはそれ以下に維持されており、第二
受器70中ではテレフタル酸の酢酸懸濁液は撹拌機71
によつて撹拌されている。第二受器中のテレフタル酸の
酢酸懸濁液は、第二受器底部の抜き取リライン72、ポ
ンプ73及び遠心分離機供給ラインJモVを通して遠心分
離機80に供給される。遠心分離機80の取り出しライ
ン81からテレフタル酸が得られ、溶媒抜き取りライン
82から酢酸溶媒が得られる。遠心分離機から取り出し
たテレフタル酸は、必要に応じて酢酸及び水などで更に
洗浄した後乾燥することにより、高品質のテレフタル酸
が得られる。又、遠心分離機から回収された酢酸溶媒は
そのまま若しくは必要に応じて蒸留などによつて精製し
た後再使用される。以上に詳述した添付図面に示すテレ
フタル酸の製造装置は、本発明の方法を実施するための
装置の1例を示したものであつて、本発明の方法はこれ
に限定されるものではない。本発明の方法によれば、酢
酸溶媒の分解を著しく抑制することのできる比較的緩和
な酸化条件下で酸化することによつて得られる粗テレフ
タル酸であつても、4−カルボキシベンズアルデヒドの
含有率が前記特定の範囲内にありかつ340mμでの光
学密度が特定の範囲内の粗テレフタル酸であるならば、
簡単でしかも前記の特殊な条件下で行う二段の浸漬処理
操作によつて直接重合法によるポリエステルの製造に使
用することのできる高品質のテレフタル酸を製造するこ
とができ、しかも酸化反応の際の酢酸溶媒の酸化分解を
少なくすることができるので、その製造コストが低くな
るという利点がある。
The method of the present invention will be specifically explained using the apparatus shown in this figure.
A reaction mixture consisting of paraxylene, an oxidation catalyst and an acetic acid solvent, and air are continuously supplied to the oxidation reactor 10 from a reaction mixture supply line 12 and an air supply line 13, respectively. The oxidation reactor 10 is equipped with a stirrer 11, and by stirring the reaction mixture in the oxidation reactor at a predetermined temperature for a fixed residence time, para-xylene is oxidized to terephthalic acid and oxidized. The reaction product mixture becomes a suspension of crude terephthalic acid in acetic acid. The suspension of crude terephthalic acid in acetic acid, which is the oxidation reaction product mixture, is passed through the oxidation reaction product mixture extraction line 14 and the valve 15 from the oxidation reactor 10.
is fed into the first receiver 30 through the In the first receiver 30, the oxidation reaction product mixture is kept warm so as not to be cooled below a temperature 30°C lower than the oxidation reaction temperature, preferably below a temperature 20°C lower, and is stirred by a stirrer 31. When the oxidation reaction mixture is withdrawn from the oxidation reactor 10 into the first receiver 30, the acetic acid vapor generated when a pressure drop occurs passes through the line 32 and the cooler 33 in the upper part of the first receiver and condenses into the line 34. reflux to the first receiver through the On the other hand, the water produced as a by-product in the oxidation reaction is led to the tray distillation column 20 directly connected to the upper part of the oxidation reactor 10, together with the exhaust gas from the oxidation reactor and vaporized acetic acid vapor. The water concentration in the mother liquor in the oxidation reactor can be maintained constant by distilling and separating the oxidized water using the reaction heat while performing the oxidation reaction. The exhaust gas containing concentrated water vapor from the top of the distillation column 20 due to distillation is condensed through a line 21 and a cooler 22, and the condensed water-monoacetic acid solution enters a condensate receiver 23. A portion of the water-monoacetic acid solution containing mainly water in the condensate receiver 23 is removed through the condensate withdrawal line 26, and the other portion is refluxed to the top of the distillation column 20.
Gas that is not condensed by the cooler 22 is discharged from the exhaust gas line 25. On the other hand, the oxidation reaction product mixture in the first receiver 30 is transferred to the terephthalic acid acetic acid suspension withdrawal line 35, the pump 36 and the hydrocyclone supply line 3.
The mother liquor in the oxidation reaction product mixture is separated at a predetermined ratio at a predetermined temperature, and the separated mother liquor is returned to the oxidation reactor 10 through a separated mother liquor return line 41. The remaining oxidation reaction product mixture from which the mother liquor has been separated at a predetermined ratio is passed through a liquid cyclone 40.
Acetic acid suspension extraction line 4 of crude terephthalic acid at the bottom of
2 and heated to a predetermined temperature in a heat exchanger 43 together with heated acetic acid containing water of a predetermined concentration taken out from a heated acetic acid withdrawal line 27 on the side of the distillation column at the top of the oxidation reactor 10, and then heated to a predetermined temperature in a heat exchanger 43. It is supplied to the dipping tank 50. In the primary dipping tank 50, the weight ratio and temperature of the acetic acid solvent to the crude terephthalic acid in the suspension of crude terephthalic acid in acetic acid are maintained within a specific range, and the suspension of crude terephthalic acid in acetic acid is
The primary immersion treatment is performed while stirring for a predetermined period of time. The acetic acid suspension of crude terephthalic acid that has been subjected to the primary dipping treatment is supplied to the secondary dipping tank 60 through the extraction line 52 at the bottom of the primary dipping tank 50, the valve 53, and the secondary dipping tank supply port 54. Ru. In the second dipping tank 60, the suspension of terephthalic acid in acetic acid is subjected to a secondary dipping treatment while being stirred for a predetermined time by a stirrer 61 at a specific temperature lower than that in the first dipping tank. When transferring the terephthalic acid suspension in acetic acid from the primary dipping tank to the secondary dipping tank, a drop in pressure occurs as the temperature of the system drops. At this time, a part of the acetic acid solvent in the secondary dipping tank is vaporized and
5 and condenser 66 and reflux into the secondary soaking tank. Therefore, the temperature can be adjusted by adjusting the pressure of the secondary immersion tank. The acetic acid suspension of terephthalic acid that has been subjected to the secondary dipping treatment is carried out through a extraction line 62, a valve 63 and a line 64 at the bottom of the secondary dipping tank.
and is sent to the second receiver 70 through. The pressure in the second receiver 70 is normally maintained at atmospheric pressure and the temperature is maintained at or below the boiling point of acetic acid at atmospheric pressure, and the acetic acid suspension of terephthalic acid is stirred in the second receiver 70. Machine 71
It is stirred by The acetic acid suspension of terephthalic acid in the second receiver is fed to the centrifuge 80 through the withdrawal reline 72 at the bottom of the second receiver, the pump 73 and the centrifuge feed line JMOV. Terephthalic acid is obtained from the take-off line 81 of the centrifuge 80, and acetic acid solvent is obtained from the solvent take-off line 82. The terephthalic acid taken out from the centrifuge is further washed with acetic acid and water, if necessary, and then dried to obtain high quality terephthalic acid. Further, the acetic acid solvent recovered from the centrifuge is reused as it is or after being purified by distillation or the like if necessary. The terephthalic acid production apparatus shown in the attached drawings detailed above is one example of the apparatus for carrying out the method of the present invention, and the method of the present invention is not limited thereto. . According to the method of the present invention, even in crude terephthalic acid obtained by oxidizing under relatively mild oxidation conditions that can significantly suppress the decomposition of the acetic acid solvent, the content of 4-carboxybenzaldehyde is is within the specified range and the optical density at 340 mμ is within the specified range,
By a simple two-stage dipping operation carried out under the above-mentioned special conditions, it is possible to produce high-quality terephthalic acid that can be used in the production of polyester by direct polymerization. Since the oxidative decomposition of the acetic acid solvent can be reduced, there is an advantage that the manufacturing cost is low.

次に、本発明の方法を実施例によつて具体的に説明する
Next, the method of the present invention will be specifically explained using examples.

なお、以下の実施例及び比較例はいずれも添付図面に示
した装置を使用して実施した。又、テレフタル酸(TA
)中の4−カルボキシベンズアルデヒド(4−CBA)
の含有率はポーラログラフイ一によつて測定し、テレフ
タル酸の光学密度(0.D.)はテレフタル酸を15重
量%の濃度で含有する2規定水酸化カリウム水溶液を1
儂のセルを用いて340mμで測定した値である。テレ
フタル酸結晶の形状は光学顕微鏡による目視で判定し、
又その結晶の平均粒径は標準プールでテレフタル酸を篩
い分け、その篩い下の分布をゴーダン・シユマンプロツ
トし、50%粒子径で示した。又、ポリエチレンテレフ
タレート(PET)は、テレフタル酸50rとエチレン
グリコール75Vをフラスコに入れ、窒素気流中で20
0℃でエステル化した後、20〜の三酸化アンチモンを
触媒に用いて、温度285℃及び圧力0.1m7!TH
g以下の条件で重縮合して得たものである。ポリエチレ
ンテレフタレートの色調は、色差計で反射光を測定した
外観色のうちb値〔黄色(イ)〜青色白〕で示した。b
値が小さいほど色調が良好である。実施例 1 蒸留塔付酸化反応器10に酢酸10.81<g、水1.
2k9、酢酸コバルト6011酢酸マンガン30y1テ
トラブロムエタン31fを張り込み、反応器の温度を1
90℃及び圧力を11kg/Crliに保持し、バラキ
シレン3kg/Hr、酢酸15.8kg/Hr,水2.
6kg/Hr、酢酸コバルト18r/Hr、酢酸マンガ
ン97/Hr及びテトラブロムエタン9.3t/Hrか
らなる混合物を反応混合物供糺レーン12より連続的に
酸化反応器に送り込みながら、排ガス中の酸素濃度が5
%となるように空気を約4。
Note that the following Examples and Comparative Examples were all carried out using the apparatus shown in the attached drawings. In addition, terephthalic acid (TA
) in 4-carboxybenzaldehyde (4-CBA)
The content of terephthalic acid was measured by polarography, and the optical density (0.D.) of terephthalic acid was determined by measuring the optical density (0.D.) of terephthalic acid by measuring 1% of a 2N potassium hydroxide aqueous solution containing 15% by weight of terephthalic acid.
This is a value measured at 340 mμ using my cell. The shape of terephthalic acid crystals was determined visually using an optical microscope.
The average particle size of the crystals was determined by sieving terephthalic acid in a standard pool, performing a Gaudin-Schulman plot of the distribution under the sieve, and showing the 50% particle size. Polyethylene terephthalate (PET) can be prepared by putting 50 r of terephthalic acid and 75 V of ethylene glycol in a flask and heating it for 20 min in a nitrogen stream.
After esterification at 0°C, a temperature of 285°C and a pressure of 0.1 m7 using 20 ~ antimony trioxide as a catalyst! T.H.
It is obtained by polycondensation under the following conditions. The color tone of polyethylene terephthalate was indicated by the b value [yellow (A) to blue-white] among the external colors measured by reflected light with a color difference meter. b
The smaller the value, the better the color tone. Example 1 10.81<g of acetic acid and 1.0g of water were placed in an oxidation reactor 10 with a distillation column.
2k9, cobalt acetate 6011, manganese acetate 30y1, tetrabromoethane 31f, and the temperature of the reactor was set to 1.
Maintaining the temperature at 90°C and the pressure at 11 kg/Crli, 3 kg/Hr of baraxylene, 15.8 kg/Hr of acetic acid, and 2.0 kg/Hr of water were added.
While continuously feeding a mixture consisting of 6 kg/Hr, cobalt acetate 18 r/Hr, manganese acetate 97/Hr, and tetrabromoethane 9.3 t/Hr to the oxidation reactor from the reaction mixture supply lane 12, the oxygen concentration in the exhaust gas was is 5
% air to about 4%.

2NM3A−パラキシレンの割合で空気供給ライン13
より送り込み、連続酸化反応を行つた。
Air supply line 13 with a proportion of 2NM3A-paraxylene
A continuous oxidation reaction was carried out.

このとき蒸留塔20内の加熱酢酸の一部を蒸留塔塔側の
加熱酢酸抜き取りライン27を通し、又還流液の一部を
凝縮水抜き取りライン26より抜き取り、反応混合物中
の水濃度を10%重量に保つた。又、反応混合物は1f
!I当り3馬力の撹拌強度で攪拌した。反応生成混合物
は、滞留時間が1hrとなるように設定した液面計の信
号に基づいて、190℃を保つたままライン14、バル
ブ15及び第一受器30を通つて液体サイクロン40へ
送り母液の70重量%(8.41<g/Hr)を分離し
、分離した母液は分離母液戻しライン41を通して反応
器へ戻した。
At this time, a part of the heated acetic acid in the distillation column 20 is passed through the heated acetic acid withdrawal line 27 on the distillation column side, and a part of the reflux liquid is withdrawn from the condensed water withdrawal line 26 to reduce the water concentration in the reaction mixture to 10%. Had to keep it in weight. Also, the reaction mixture is 1f
! Stirring was carried out at a stirring intensity of 3 horsepower per I. The reaction product mixture is sent to the hydrocyclone 40 through the line 14, valve 15, and first receiver 30 while maintaining the temperature at 190°C based on the signal from the liquid level gauge, which is set so that the residence time is 1 hr. 70% by weight (8.41<g/Hr) of the sample was separated, and the separated mother liquor was returned to the reactor through the separated mother liquor return line 41.

濃縮した反応混合物へ反応器に連結した蒸留塔の塔側か
ら85重量%の加熱酢酸をライン27を通して14.8
kg/Hrで加えた後、熱交換器43で加熱し、第一次
浸漬槽50へ送り込んだ。この混合物中でテレフタル酸
に対する溶媒比は重量比で4となり、溶媒中の水濃度は
14重量%となつた。第一次浸漬槽の温度を220℃及
び圧力を18kg/Cf!iとして、撹拌した。第一次
浸漬槽での滞留時間を1hrとした後、テレフタル酸の
酢酸懸濁液混合物を温度190℃及び圧力を8kg/C
rAに維持した第二次浸漬槽60へ送り込み、混合物を
攪拌しながら1hrの滞留の後、第二受器70へ送り、
常圧にした後、遠心分離機80で固液分離し洗浄後、固
体部のテレフタル酸を乾燥した。得られたテレフタル酸
の評価結果を表1に示した。実施例 2 蒸留塔付酸化反応器10に酢酸10.8kg、水1.2
kg、酢酸コバルト487、酢酸マンガン2437、テ
トラブロムエタン257を張り込み反応器の温度を21
0℃及び圧力を15kg/Cdに保持し、パラキシレン
3kg/Hr、酢酸20.7kg/Hr、水2.3kV
hr、酢酸コバルト19y//FLrl酢酸マンガン1
0y/Hr及びテトラブロムエタン10y/Hrからな
る混合物を反応混合物供給ライン12より連続的に酸化
反応器に送り込みながら排ガス中の酸素濃度が7%とな
るように空気を約4.6NM3A9−パラキシレンの割
合で空気供給ライン13より送り込み連続酸化反応を行
つた。
85% by weight of heated acetic acid was added to the concentrated reaction mixture from the column side of the distillation column connected to the reactor through line 27 at 14.8
After adding at a rate of kg/Hr, it was heated in a heat exchanger 43 and sent to the primary immersion tank 50. In this mixture, the ratio of solvent to terephthalic acid was 4 by weight, and the concentration of water in the solvent was 14% by weight. The temperature of the primary immersion tank is 220℃ and the pressure is 18kg/Cf! The mixture was stirred as i. After a residence time of 1 hr in the first soaking tank, the terephthalic acid acetic acid suspension mixture was mixed at a temperature of 190°C and a pressure of 8kg/C.
The mixture is sent to a secondary soaking tank 60 maintained at rA, and after residence for 1 hour while stirring the mixture, is sent to a second receiver 70.
After bringing the pressure to normal pressure, solid-liquid separation was performed using a centrifuge 80, and after washing, the terephthalic acid in the solid portion was dried. Table 1 shows the evaluation results of the obtained terephthalic acid. Example 2 10.8 kg of acetic acid and 1.2 kg of water were placed in the oxidation reactor 10 with a distillation column.
kg, cobalt acetate 487, manganese acetate 2437, and tetrabromoethane 257, and the temperature of the reactor was set to 21.
Maintaining 0°C and pressure at 15 kg/Cd, paraxylene 3 kg/Hr, acetic acid 20.7 kg/Hr, water 2.3 kV
hr, cobalt acetate 19y//FLrl manganese acetate 1
While a mixture consisting of 0y/Hr and tetrabromoethane 10y/Hr is continuously fed into the oxidation reactor from the reaction mixture supply line 12, air is added to about 4.6NM3A9-paraxylene so that the oxygen concentration in the exhaust gas is 7%. A continuous oxidation reaction was carried out by feeding air from the air supply line 13 at a rate of .

このとき蒸留塔20内の加熱酢酸の一部を蒸留塔塔側の
加熱酢酸抜き取りライン27を通し、又還流液の一部を
凝縮水抜き取りライン26より抜き取り反応混合物中の
水濃度を10重量%に保つた。又反応混合物は1m3当
り3馬力の攪拌強度で攪拌した。反応生成混合物は滞留
時間が1hrとなるように設定した液面計の信号に基づ
いて200℃に保つたままのライン14、バルブ15及
び第一受器30を通つて液体サイクロン40へ送り、母
液の60重量%(7.2k9/Hr)を分離し、分離し
た母液は分離母液戻しライン41を通じて反応器へ戻し
た。
At this time, a part of the heated acetic acid in the distillation column 20 is passed through the heated acetic acid withdrawal line 27 on the distillation column side, and a part of the reflux liquid is withdrawn from the condensed water withdrawal line 26 to bring the water concentration in the reaction mixture to 10% by weight. I kept it. The reaction mixture was also stirred at a stirring intensity of 3 horsepower per m3. The reaction product mixture is sent to the hydrocyclone 40 through the line 14, the valve 15, and the first receiver 30, which are kept at 200°C, based on the signal from the liquid level gauge, which is set so that the residence time is 1 hr, and the mother liquor is The separated mother liquor was returned to the reactor through the separated mother liquor return line 41.

濃縮した反応混合物へ反応器に連結した蒸留塔の塔側か
ら90重量%の加熱酢酸をライン27を通して18.2
k9/Hrで加えた後、熱交換器43で加熱し、第一次
浸漬槽50へ送り込んだ。この混合物中でテレフタル酸
に対する溶媒比は重量比で5となり、溶媒中の水濃度は
10重量%となつた。第一次浸漬槽の温度を220℃及
び圧力を18kg/Cdとして攪拌した。第一次浸漬槽
での滞留時間を1hrとした後、テレフタル酸の酢酸懸
濁液混合物を温度を190℃及び圧力を8kg/Cdに
維持した第二次浸漬槽60へ送り込み、混合物を攪拌し
ながら1hrの滞留の後、第二受器70へ送り、常圧に
した後、遠心分離機80で固液分離し、洗浄後、固体部
のテレフタル酸を乾燥した。得られたテレフタル酸の評
価結果を表1に示した。実施例 3 ノ 蒸留塔付酸化反応器10に酢酸10.8k9、水1.2
kg、酢酸コバルト487、酢酸マンガン0.0257
、テトラブロムエタン25rを張り込み、反応器の温度
を190℃及び圧力を11k9/Cdに保持し、パラキ
シレンを3kg/Hr、酢酸31.4kg/Hrl水5
.4kg/Hrl酢酸コバルト9.67/Hrl酢酸マ
ンガン0.05y/Hr及びテトラブロムエタン57/
Hrを反応混合物供給ライン12より連続的に酸化反応
器に送り込みながら排ガス中の酸素濃度が5%となるよ
うに空気を約4.2NM3/K9−パラキシレンの割合
で空気供給ライン13より送り込み連続酸化反応を行つ
た。
18.2 90% by weight heated acetic acid is passed through line 27 from the column side of the distillation column connected to the reactor to the concentrated reaction mixture.
After adding at a rate of k9/Hr, it was heated in a heat exchanger 43 and sent to the primary immersion tank 50. In this mixture, the ratio of solvent to terephthalic acid was 5 by weight, and the concentration of water in the solvent was 10% by weight. Stirring was carried out at a temperature of 220° C. and a pressure of 18 kg/Cd in the first immersion tank. After the residence time in the first dipping tank was set to 1 hr, the terephthalic acid suspension mixture in acetic acid was sent to the second dipping tank 60 maintained at a temperature of 190° C. and a pressure of 8 kg/Cd, and the mixture was stirred. After residence for 1 hour, the mixture was sent to a second receiver 70, brought to normal pressure, separated into solid and liquid using a centrifuge 80, and after washing, the terephthalic acid in the solid portion was dried. Table 1 shows the evaluation results of the obtained terephthalic acid. Example 3 Acetic acid 10.8 k9 and water 1.2 were added to the oxidation reactor 10 with a distillation column.
kg, cobalt acetate 487, manganese acetate 0.0257
, 25r of tetrabromoethane was charged, the temperature of the reactor was maintained at 190°C and the pressure was maintained at 11k9/Cd, paraxylene was charged at 3kg/Hr, acetic acid was charged at 31.4kg/Hrl, water was charged at 5
.. 4kg/Hrl cobalt acetate 9.67/Hrl manganese acetate 0.05y/Hr and tetrabromoethane 57/
While continuously feeding Hr into the oxidation reactor from the reaction mixture supply line 12, air was continuously fed from the air supply line 13 at a ratio of about 4.2NM3/K9-paraxylene so that the oxygen concentration in the exhaust gas was 5%. An oxidation reaction was carried out.

このとき蒸留塔20内の加熱酢酸の一部を蒸留塔塔側部
の加熱酢酸抜き取りライン27を通して、又還流液の一
部を凝縮水抜き取りライン26より抜き取り、反応混合
物中の水濃度を10重量%に保つた。又反応混合物は1
m3当り3馬力の攪拌強度で撹拌した。反応生成混合物
は、滞留時間が1hrとなるように設定した液面計の信
号に基づいて190℃を保つたままライン14、バルブ
15及び第一受器30を通して液体サイクロン40へ送
り母液の80重量%(9.6k9/Hr)を分離し、分
離した母液は分離母液戻しライン41を通して反応器へ
戻した。
At this time, a part of the heated acetic acid in the distillation column 20 is passed through the heated acetic acid withdrawal line 27 on the side of the distillation column, and a part of the reflux liquid is withdrawn from the condensed water withdrawal line 26, so that the water concentration in the reaction mixture is reduced to 10% by weight. %. Also, the reaction mixture is 1
Stirring was carried out at a stirring intensity of 3 horsepower per m3. The reaction product mixture is sent to the hydrocyclone 40 through the line 14, valve 15, and first receiver 30 while maintaining the temperature at 190°C based on the signal from the liquid level gauge, which is set so that the residence time is 1 hr, and 80% by weight of the mother liquor. % (9.6k9/Hr) and the separated mother liquor was returned to the reactor through the separated mother liquor return line 41.

濃縮した反応混合物へ反応器に連結した蒸留塔の塔側か
ら85重量%の加熱酢酸をライン27を通して34.4
kgArで加えた後、熱交換器43で加熱し、第一次浸
漬槽50へ送り込んだ。この混合物でテレフタル酸に対
する溶媒比は重量比で8となり、溶媒中の水濃度は15
重量%となつた。第一次浸漬槽の温度を210℃及び圧
力を15k9/Cdとして攪拌した。第一次浸漬槽での
滞留時間を1hrとした後、テレフタル酸の酢酸懸濁液
混合物を温度を160℃及び圧力を5kg/Cdに維持
した第二次浸漬槽60へ送り込み、混合物を攪拌しなが
ら1hrの滞留の後第二受器70へ送り常圧にした後、
遠心分離機80で固液分離し洗浄後、固体部のテレフタ
ル酸を乾燥した。得られたテレフタル酸の評価結果を表
1に示した。実施例 4 蒸留塔付酸化反応器10に酢酸10.8kg、水1、2
kg、酢酸コバルト60y1酢酸マンガン157、テト
ラブロムエタン31yを張り込み反応器の温度を80℃
及び圧力を10kg/Cdに保持し、バラキシレン3k
g/Hrl酢酸29.6kg/Hrl水7.2kg/H
rl酢酸コバルト6y/Hrl酢酸マンガン1.57/
Hr及びテトラブロムエタン32/Hr−からなる混合
物を反応混合物供給ライン12より連続的に酸化反応器
に送り込みながら排ガス中の酸素濃度が2%となるよう
に空気を約3.3NM3/Kg−パラキシレンの割合で
空気供給ライン13より送り込み、連続酸化反応を行つ
た。
85% by weight of heated acetic acid was added to the concentrated reaction mixture from the column side of the distillation column connected to the reactor through line 27 at 34.4 mL.
After adding kgAr, it was heated in a heat exchanger 43 and sent to the primary immersion tank 50. In this mixture, the solvent ratio to terephthalic acid was 8 by weight, and the water concentration in the solvent was 15.
Weight%. Stirring was carried out at a temperature of the first immersion tank of 210° C. and a pressure of 15k9/Cd. After the residence time in the first dipping tank was set to 1 hr, the terephthalic acid acetic acid suspension mixture was sent to the second dipping tank 60 maintained at a temperature of 160° C. and a pressure of 5 kg/Cd, and the mixture was stirred. After staying for 1 hour, it is sent to the second receiver 70 and brought to normal pressure.
After solid-liquid separation with a centrifuge 80 and washing, the solid portion of terephthalic acid was dried. Table 1 shows the evaluation results of the obtained terephthalic acid. Example 4 10.8 kg of acetic acid and 1 and 2 pieces of water were placed in an oxidation reactor 10 equipped with a distillation column.
kg, 60y of cobalt acetate, 157y of manganese acetate, and 31y of tetrabromoethane, and the temperature of the reactor was set to 80℃.
and the pressure was maintained at 10 kg/Cd, and the baraxylene 3k
g/Hrl acetic acid 29.6kg/Hrl water 7.2kg/H
rl cobalt acetate 6y/Hrl manganese acetate 1.57/
While a mixture of Hr and tetrabromoethane 32/Hr- is continuously fed into the oxidation reactor from the reaction mixture supply line 12, air is added at a rate of approximately 3.3NM3/Kg-para so that the oxygen concentration in the exhaust gas is 2%. A continuous oxidation reaction was carried out by feeding xylene through the air supply line 13 at a ratio of xylene.

このとき蒸留塔20内の加熱酢酸の一部を蒸留塔塔側の
加熱酢酸抜き取りライン27を通し、又還流液の一部を
凝縮水抜き取りライン26より抜き取り、反応混合物中
の水濃度を10重量%に保つた。又反応混合物は1FF
!J当り3馬力の攪拌強度で攪拌した。反応生成混合物
は滞留時間が1hrとなるように設定した液面形の信号
に基づいて180℃に保つたままライン14、バルブ1
5及び第一受器30を通して、液体サイクロン40へ送
り母液の90重量%(10.8k9/Hr)を分離し分
離した母液は分離母液戻しライン41を通して反応器へ
戻した。濃縮した反応混合物へ反応器に連結した蒸留塔
の塔側から80重量%の加熱酢酸をライン27を通して
35.61<g/Hrで加えた後、熱交換器43で加熱
し、第一次浸漬槽50へ送り込んだ。この混合物中でテ
レフタル酸に対する溶媒比は重量比で8となり、溶媒中
の水濃度は20重量%となつた。第一次浸漬槽の温度2
10℃及び圧力15kg/Cdの条件下で撹拌した。第
一次浸漬槽での滞留時間を1hrとした後、テレフタル
酸の酢酸懸濁液混合物を温度を160℃及び圧力を51
<g/Cdに維持した第二次浸漬槽60へ送り込み、混
合物を攪拌しながら1hrの滞留の後、第二受器70へ
送り、常圧にした後、遠心分離機80で固液分離し、洗
浄後固体部のテレフタル酸を乾燥した。得られたテレフ
タル酸の評価結果を表1に示した。実施例 5 蒸留塔付酸化反応器10に酢酸10.8kg、水1.2
1<g、酢酸コバルト90y,酢酸マンガン30f,テ
トラブロムエタン427を張り込み反応器の温度を17
0℃及び圧力を9k9/Crliに保持し、パラキシレ
ン3kg/h1−、酢酸29.61<g/Hrl水7.
2k9/Hrl酢酸コバルト97/Hr−、酢酸マンガ
ン37/Hr及びテトラブロムエタン4.2f/Hrか
らなる混合物を反応混合物供給ライン12より連続的に
酸化反応器に送り込みながら、排ガス中のつ酸素濃度が
2%となるように空気を約3.3NM3/Kg−バラキ
シレンの割合で空気供給ライン13より送り込み、連続
反応を行つた。
At this time, a part of the heated acetic acid in the distillation column 20 is passed through the heated acetic acid withdrawal line 27 on the distillation column side, and a part of the reflux liquid is withdrawn from the condensed water withdrawal line 26, so that the water concentration in the reaction mixture is reduced to 10% by weight. %. Also, the reaction mixture is 1FF
! Stirring was carried out at a stirring intensity of 3 horsepower per J. The reaction product mixture is kept at 180°C based on the liquid level signal set so that the residence time is 1 hr, and is passed through line 14 and valve 1.
5 and the first receiver 30 to a hydrocyclone 40 to separate 90% by weight (10.8 k9/Hr) of the mother liquor, and the separated mother liquor was returned to the reactor through a separated mother liquor return line 41. 80% by weight heated acetic acid was added to the concentrated reaction mixture from the column side of the distillation column connected to the reactor through line 27 at a rate of 35.61<g/Hr, and then heated in a heat exchanger 43 to form the first immersion. It was sent to tank 50. In this mixture, the ratio of solvent to terephthalic acid was 8 by weight, and the concentration of water in the solvent was 20% by weight. Temperature of primary immersion tank 2
Stirring was carried out under conditions of 10° C. and a pressure of 15 kg/Cd. After a residence time of 1 hr in the first soaking tank, the terephthalic acid suspension mixture in acetic acid was heated to a temperature of 160°C and a pressure of 51°C.
The mixture was sent to a secondary soaking tank 60 maintained at <g/Cd, and after residence for 1 hr while stirring the mixture, was sent to a second receiver 70, brought to normal pressure, and solid-liquid separated by a centrifuge 80. After washing, the solid portion of terephthalic acid was dried. Table 1 shows the evaluation results of the obtained terephthalic acid. Example 5 10.8 kg of acetic acid and 1.2 kg of water were placed in the oxidation reactor 10 with a distillation column.
1<g, 90y of cobalt acetate, 30f of manganese acetate, and 427g of tetrabromoethane were charged, and the temperature of the reactor was set to 17g.
Maintaining 0°C and pressure at 9k9/Crli, paraxylene 3kg/h1-, acetic acid 29.61<g/Hrl water7.
While continuously feeding a mixture consisting of 2k9/Hrl cobalt acetate 97/Hr-, manganese acetate 37/Hr and tetrabromoethane 4.2f/Hr to the oxidation reactor from the reaction mixture supply line 12, the oxygen concentration in the exhaust gas was Air was fed through the air supply line 13 at a ratio of about 3.3 NM3/Kg-varaxylene so that the ratio was 2%, and a continuous reaction was carried out.

このとき蒸留塔20内の加熱酢酸の一部を蒸留塔塔側の
加熱酢酸抜き取りライン27を通して又還流液の一部を
凝縮水抜き取りライン26より抜き取り、反応混合物中
の水濃度を10重量%に保つた。又反応混合物は1d当
り3馬力の攪拌強度で攪拌した。反応生成混合物は滞留
時間が1hrとなるように設定した液面計の信号に基づ
いて170℃を保つたままライン14、バルブ15及び
第一受器30を通して液体サイクロン40へ送り、母液
の90重量%(10.8kg/Hr)を分離し、分離し
た母液は分離母液戻しライン41を通して反応器へ戻し
た。
At this time, a part of the heated acetic acid in the distillation column 20 is passed through the heated acetic acid withdrawal line 27 on the distillation column side, and a part of the reflux liquid is withdrawn from the condensed water withdrawal line 26 to bring the water concentration in the reaction mixture to 10% by weight. I kept it. The reaction mixture was stirred at a stirring intensity of 3 horsepower per d. The reaction product mixture is sent to the hydrocyclone 40 through the line 14, valve 15, and first receiver 30 while maintaining the temperature at 170°C based on the signal from the liquid level gauge, which is set so that the residence time is 1 hr, and the 90% weight of the mother liquor is % (10.8 kg/Hr) and the separated mother liquor was returned to the reactor through the separated mother liquor return line 41.

濃縮した反応混合物へ反応器に連結した蒸留塔の塔側か
ら80重量%の加熱酢酸をライン27を通して35.6
kg/?で加えた後、熱交換器43で加熱し、第一次浸
漬槽50へ送り込んT4この混合物中でテレフタル酸に
対する溶媒比は重量比で8となり、溶媒中の水濃度は2
0重量%となつた。第一次浸漬槽の温度を210℃及び
圧力を151<9/CF7fとして攪拌した。第一次浸
漬槽での滞留時間を1hrとした後、テレフタル酸の酢
酸懸濁液混合物を温度190℃及び圧力を81<f!/
Cdに維持した第二次浸漬槽60へ送り込み、混合物を
攪拌しながら1hrの滞留の後、第二受器70へ送り込
み常圧にした後、遠心分離機80で固液分離し、洗浄後
固体部のテレフタル酸を乾燥した。得られたテレフタル
酸の評価結果を表1に示した。比較例 1蒸留塔付酸化
反応器10に酢酸10.8kg、水1.2kg、酢酸コ
バルト60y,酢酸マンガン6f7、テトラブロムエタ
ン317を振り込み、反応器の温度を240℃及び圧力
を25kg/Crilに保持し、パラキシレン3kg/
Hr,酢酸23.6kfI/Hrl水4kg/Hrl酢
酸コバルト187/Hr酢酸マンガン1.87/Hr及
びテトラブロムエタン963f/Hrからなる混合物を
反応混合物供給ライン12より連続的に酸化反応器に送
り込みながら排ガス中の酸素濃度が5%となるように空
気を約4.2NM3/Kgパラキシレンの割合で空気供
給ライン13より送り込み、連続酸化反応を行つた。
80% by weight heated acetic acid was passed through line 27 from the column side of the distillation column connected to the reactor to the concentrated reaction mixture.
kg/? After adding T4, it is heated in a heat exchanger 43 and sent to the primary immersion tank 50. In this mixture, the solvent ratio to terephthalic acid is 8 by weight, and the water concentration in the solvent is 2.
It became 0% by weight. Stirring was carried out at a temperature of the first immersion tank of 210° C. and a pressure of 151<9/CF7f. After a residence time of 1 hr in the primary soaking tank, the terephthalic acid suspension mixture in acetic acid was heated to a temperature of 190°C and a pressure of 81<f! /
The mixture is sent to a secondary soaking tank 60 maintained at Cd, and after residence for 1 hour while stirring, the mixture is sent to a second receiver 70 and brought to normal pressure, and solid-liquid separation is performed by a centrifuge 80. After washing, the solid of terephthalic acid was dried. Table 1 shows the evaluation results of the obtained terephthalic acid. Comparative Example 1 10.8kg of acetic acid, 1.2kg of water, 60y of cobalt acetate, 6f7 of manganese acetate, and 317% of tetrabromoethane were charged into the oxidation reactor 10 with a distillation column, and the temperature of the reactor was set to 240°C and the pressure was set to 25kg/Crill. Hold and paraxylene 3kg/
While continuously feeding a mixture consisting of Hr, acetic acid 23.6 kfI/Hrl water 4 kg/Hrl cobalt acetate 187/Hr manganese acetate 1.87/Hr and tetrabromoethane 963 f/Hr from the reaction mixture supply line 12 to the oxidation reactor. Air was fed through the air supply line 13 at a rate of about 4.2 NM3/Kg paraxylene so that the oxygen concentration in the exhaust gas was 5%, and a continuous oxidation reaction was carried out.

このとき蒸留塔内の加熱酢酸の一部を蒸留塔塔側の加熱
酢酸抜き取りライン27を通し、又還流液の一部を凝縮
水抜き取りライン26より抜き取り、反応混合物中の水
濃度を10重量%に保つた。又、反応混合物は1m3当
り3馬力の撹拌強度で攪拌した。反応生成混合物は滞留
時間が1hr−となるように 5設定した液面計の信号
に基づいて240℃を保つたままライン14、バルブ1
5及び第一受器30を通して液体サイクロン40へ送り
、母液の70重量%(8.4kg/Hr)を分離し、分
離した母液は分離母液戻しライン41を通して反応器へ
戻した。1濃縮した反応混合物へ反応器に連結した蒸留
塔の塔側から85重量%の加熱酢酸をライン27を通し
て24kg/Hrで加えた後、熱交換器43で加熱し、
第一次浸漬槽50へ送り込んだ。
At this time, a part of the heated acetic acid in the distillation column is passed through the heated acetic acid withdrawal line 27 on the distillation column side, and a part of the reflux liquid is withdrawn from the condensed water withdrawal line 26, so that the water concentration in the reaction mixture is 10% by weight. I kept it. The reaction mixture was also stirred at a stirring intensity of 3 horsepower per m3. The reaction product mixture is heated to line 14 and valve 1 while maintaining the temperature at 240°C based on the signal from the liquid level gauge set in 5 so that the residence time is 1 hr.
5 and the first receiver 30 to a hydrocyclone 40 to separate 70% by weight (8.4 kg/Hr) of the mother liquor, and the separated mother liquor was returned to the reactor through the separated mother liquor return line 41. 1. To the concentrated reaction mixture, 85% by weight of heated acetic acid was added from the column side of the distillation column connected to the reactor through line 27 at 24 kg/Hr, and then heated with heat exchanger 43,
It was sent to the primary dipping tank 50.

この混合物中でテレフタル酸に対する溶媒比は重量比で
6となり、溶媒中の水濃度は14重量%となつた。第一
次浸漬槽の温度を230℃及び圧力を20kg/Crl
iとして攪拌した。第一次浸漬槽での滞留時間を1hr
とした後、テレフタル酸の酢酸懸濁液混合物を温度20
0℃及び圧力を10kg/Cdに維持した第二次浸漬槽
60へ送り込み、混合物を攪拌しながら1hr−の滞留
の後、第二受器70へ送り、常圧にした後、遠心分離機
80で固液分離し、洗浄後固体部のテレフタル酸を乾燥
した。得られたテレフタル酸の評価結果を表1に示した
。比較例 2 蒸留塔付酸化反応器10に酢酸10.8kg、水1.2
kg、酢酸コバルト547、酢酸マンガン2.77、テ
トラブロムエタン327を振り込み反応器の温度を20
0℃及び圧力を12kg/CrAに保持し、パラキシレ
ン3kg/Hrl酢酸15.8kν1ら水2,6kg/
Hr、酢酸コバルト117/Hrl酢酸マンガン0.5
7/Hr−及びテトラブロムエタン6.47/Hrから
なる混合物を反応混合物供給ライン12より連続的に酸
化反応器に送り込みながら排ガス中の酸素濃度が5%と
なるように空気を約4.2NM3/Kg−パラキシレン
の割合で空気供給ライン13より送り込み、連続酸化反
応を行つた。
In this mixture, the ratio of solvent to terephthalic acid was 6 by weight, and the concentration of water in the solvent was 14% by weight. The temperature of the primary immersion tank is 230℃ and the pressure is 20kg/Crl.
The mixture was stirred as i. Residence time in the primary immersion tank is 1 hr.
After that, the terephthalic acid suspension mixture in acetic acid was heated to a temperature of 20°C.
The mixture is sent to a secondary soaking tank 60 maintained at 0°C and a pressure of 10 kg/Cd, and after residence for 1 hour while stirring the mixture, is sent to a second receiver 70, brought to normal pressure, and then transferred to a centrifuge 80. After solid-liquid separation and washing, the solid portion of terephthalic acid was dried. Table 1 shows the evaluation results of the obtained terephthalic acid. Comparative Example 2 10.8 kg of acetic acid and 1.2 kg of water were placed in the oxidation reactor 10 with a distillation column.
kg, cobalt acetate 547, manganese acetate 2.77, and tetrabromoethane 327, and the temperature of the reactor was set to 20
Maintaining 0°C and pressure at 12 kg/CrA, paraxylene 3 kg/Hrl acetic acid 15.8 kν1, water 2.6 kg/
Hr, cobalt acetate 117/Hrl manganese acetate 0.5
While continuously feeding a mixture consisting of 7/Hr- and tetrabromoethane 6.47/Hr into the oxidation reactor from the reaction mixture supply line 12, about 4.2NM3 of air was added so that the oxygen concentration in the exhaust gas was 5%. /Kg-paraxylene was fed through the air supply line 13 to carry out a continuous oxidation reaction.

このとき蒸留塔内の加熱酢酸の一部を蒸留塔塔側の加熱
酢酸抜き取りライン27を通して又還流液の一部を凝縮
水抜き取りライン26より抜き取り、反応混合物中の水
濃度を10重量%に保つた。又反応重合物は1m3当り
3馬ガの攪拌強度で攪拌した。] θ 反応生成混合物は滞留時間が1hrとなるように設定し
た液面計の信号に基づいて200℃に保つたままライン
14、バルブ15及び第一受器30を通して液体サイク
ロン40へ送り、母液の80重量%、(9.6kg/H
r)を分離し、分離した母液は分離母液戻しライン41
を通して反応器へ戻した。
At this time, a part of the heated acetic acid in the distillation column is passed through the heated acetic acid withdrawal line 27 on the distillation column side, and a part of the reflux liquid is withdrawn from the condensed water withdrawal line 26 to maintain the water concentration in the reaction mixture at 10% by weight. Ta. The reaction polymer was stirred at a stirring intensity of 3 m3/m3. ] θ The reaction product mixture is sent to the hydrocyclone 40 through the line 14, valve 15, and first receiver 30 while being maintained at 200°C based on the signal from the liquid level gauge whose residence time is set to 1 hr, and the mother liquor is 80% by weight, (9.6kg/H
r), and the separated mother liquor is sent to the separated mother liquor return line 41.
was returned to the reactor.

濃縮した反応混合物へ反応器に連結した蒸留塔の塔側か
ら85重量%の加熱酢酸をライン27を通して16kg
/Hr匂口えた後、熱交換器43で加熱し、第一次浸漬
槽50へ送り込んだ。この混合物中でテレフタル酸に対
する溶媒比は重量比で4となり、溶媒中の水濃度は14
重量%となつた。第一次浸漬槽の温度を220℃及び圧
力を18kg/Cdとして撹拌した。第一次浸漬槽での
滞留時間を1hrとした後、テレフタル酸の懸濁液混合
物を温度冫180℃及び圧力を8kg/Cwiに維持し
た第二次浸漬槽60へ送り込み、混合物を撹拌しながら
1hrの滞留の後、第二受器70へ送り、常圧にした後
、遠心分離機80で固液分離し、洗浄後固体部のテレフ
タル酸を乾燥した。得られたテレフタル酸の評価結果を
表1に示した。比較例 3 蒸留塔付酸化反応器10に酢酸10.8kg、水1,2
kg、酢酸コバルト30f1酢酸マンガン22y、臭化
コバルト78.5tを張り込み、反応器の温度を160
℃及び圧力を7kg/Cdに保持し、パラキシレン3k
9/Hrl酢酸43.7kg/Hrl水2.3k9/H
rl酢酸コバルト3f7/Hrl酢酸マンガン2y/H
r及び臭化コバルト8y/Hrからなる混合物を反応混
合物供給ライン12より連続的に酸化反応器に送り込み
ながら、排ガス中の酸素濃度が5%となるように空気を
約4.2NM3/Kg−パラキシレンの割合で空気供給
ライン13より送り込み、連続酸化反応を行つた。
16 kg of 85% by weight heated acetic acid was passed through line 27 from the column side of the distillation column connected to the reactor to the concentrated reaction mixture.
/Hr, then heated in a heat exchanger 43 and fed into a primary dipping tank 50. In this mixture, the ratio of solvent to terephthalic acid was 4 by weight, and the concentration of water in the solvent was 14.
Weight%. Stirring was carried out at a temperature of 220° C. and a pressure of 18 kg/Cd in the first immersion tank. After the residence time in the first dipping tank was set to 1 hr, the terephthalic acid suspension mixture was sent to the second dipping tank 60 maintained at a temperature of 180°C and a pressure of 8 kg/Cwi, while stirring the mixture. After residence for 1 hr, the mixture was sent to a second receiver 70, brought to normal pressure, separated into solid and liquid using a centrifuge 80, and after washing, the terephthalic acid in the solid portion was dried. Table 1 shows the evaluation results of the obtained terephthalic acid. Comparative Example 3 10.8 kg of acetic acid and 1.2 kg of water were placed in the oxidation reactor 10 with a distillation column.
kg, cobalt acetate 30f1, manganese acetate 22y, and cobalt bromide 78.5t, and the temperature of the reactor was set to 160℃.
℃ and pressure at 7 kg/Cd, paraxylene 3k
9/Hrl acetic acid 43.7kg/Hrl water 2.3k9/H
rl cobalt acetate 3f7/Hrl manganese acetate 2y/H
While continuously feeding a mixture of 8y/Hr of cobalt bromide and cobalt bromide into the oxidation reactor from the reaction mixture supply line 12, air was pumped in at a rate of about 4.2NM3/Kg-Par so that the oxygen concentration in the exhaust gas was 5%. A continuous oxidation reaction was carried out by feeding xylene through the air supply line 13 at a ratio of xylene.

このとき蒸留塔内の加熱酢酸の一部を蒸留塔塔側の加熱
酢酸抜き取りライン27を通し又還流液の一部を凝縮水
抜き取りライン26より抜き取り、反応混合物中の水濃
度を10重量%に保つた。又反応混合物は1m1当り3
馬力の攪拌強度で攪拌した。反応生成混合物は蒸留時間
が1hrとなるように設定した液面計の信号に基づいて
160℃を保つたままライン14、バルブ15及び第一
受器30を通して、液体サイクロン40へ送り母液の9
0重量%(10.8kg/Hr)を分離し、分離した母
液は分離母液戻しライン41を通して反応器へ戻した。
At this time, a part of the heated acetic acid in the distillation column is passed through the heated acetic acid withdrawal line 27 on the distillation column side, and a part of the reflux liquid is withdrawn from the condensed water withdrawal line 26 to bring the water concentration in the reaction mixture to 10% by weight. I kept it. Also, the reaction mixture was
Stirring was carried out at a stirring intensity of horse power. The reaction product mixture is sent to the hydrocyclone 40 through the line 14, valve 15 and first receiver 30 while maintaining the temperature at 160°C based on the signal from the liquid level gauge, which is set so that the distillation time is 1 hr.
0% by weight (10.8 kg/Hr) was separated, and the separated mother liquor was returned to the reactor through the separated mother liquor return line 41.

濃縮した反応混合物へ反応器に連結した蒸留塔の塔側か
ら95重量%の加熱酢酸をライン27を通して44.8
k9/Hrで加えた後、熱交換器43で加熱し、第一次
浸漬槽50へ送り込んだ。この混合物中でテレフタル酸
に対する溶媒比は重量比で10となり、溶媒中の水濃度
は5重量%となつた。第一次浸漬槽の温度を230℃及
び圧力を20kg/iとし攪拌した。第一次浸漬槽での
滞留時間1hrとした後、テレフタル酸の酢酸懸濁液混
合物を温度を200℃及び圧力を10kg/dに維持し
た第二次浸漬槽60へ送り込み、混合物を攪拌しながら
1hrの滞留の後、第二受器70へ送り、常圧にした後
、遠心分離機80で固液分離し、洗浄後固体部のテレフ
タル酸を乾燥した。得られたテレフタル酸の評価結果を
表1に示した。比較例 4 蒸留塔付酸化反応器10に酢酸10.8kg、水1.2
kg、酢酸コバルト60y1酢酸マンガン30r1臭化
ナトリウム37tを張り込み、反応器の温度を180℃
及び圧力を10kg/Cdに保持し、パラキシレン3k
g/Hr,酢酸29.6kg/Hrl水7.2kg/H
rl酢酸コバルト6f/Hrl酢酸マンガン3t/Hr
及び臭化ナトリウム4y/Hr−からなる混合物を反応
混合物供給ライン12より連続的に 二酸化反応器に送
り込みながら排ガス中の酸素濃度が5%となるように空
気を約4.2NM3//1<g−パラキシレンの割合で
空気供給ライン13より送り込み、連続酸化反応を行つ
た。
95% by weight heated acetic acid was passed through line 27 from the column side of the distillation column connected to the reactor to the concentrated reaction mixture.
After adding at a rate of k9/Hr, it was heated in a heat exchanger 43 and sent to the primary immersion tank 50. In this mixture, the ratio of solvent to terephthalic acid was 10 by weight, and the concentration of water in the solvent was 5% by weight. The temperature of the first immersion tank was set to 230° C. and the pressure was set to 20 kg/i for stirring. After a residence time of 1 hr in the first dipping tank, the terephthalic acid suspension mixture in acetic acid was sent to the second dipping tank 60 maintained at a temperature of 200°C and a pressure of 10 kg/d, while stirring the mixture. After residence for 1 hr, the mixture was sent to a second receiver 70, brought to normal pressure, separated into solid and liquid using a centrifuge 80, and after washing, the terephthalic acid in the solid portion was dried. Table 1 shows the evaluation results of the obtained terephthalic acid. Comparative Example 4 10.8 kg of acetic acid and 1.2 kg of water were placed in the oxidation reactor 10 with a distillation column.
kg, cobalt acetate 60y1, manganese acetate 30r1, sodium bromide 37t, and the temperature of the reactor was set to 180℃.
and the pressure was maintained at 10 kg/Cd, paraxylene 3k
g/Hr, acetic acid 29.6kg/Hrl water 7.2kg/Hr
rl cobalt acetate 6f/Hrl manganese acetate 3t/Hr
While continuously feeding a mixture consisting of sodium bromide and sodium bromide 4y/Hr- into the dioxide reactor from the reaction mixture supply line 12, about 4.2NM3//1<g of air was added so that the oxygen concentration in the exhaust gas was 5%. - Paraxylene was fed through the air supply line 13 in a continuous oxidation reaction.

このとき蒸留塔内の加熱酢酸の一部を蒸留塔塔側の加熱
酢酸抜き取り jライン27を通し、又還流液の一部を
凝縮水抜き取りライン26より抜き取り、反応混合物中
の水濃度を10重量%に保つた。又反応混合物は1d当
り3馬力の撹拌強度で撹拌した。反応生成混合物は滞留
時間が1hrとなるように 5設定した液面計の信号に
基づいて、180℃に保つたままライン14、バルブ1
5及び第一受器30を通して液体サイクロン40へ送り
、母液の90重量%(10.8kg/Hr)を分離し、
分離した母液は分離母液戻しライン41を通して反応器
へ ィ戻した。
At this time, a part of the heated acetic acid in the distillation column is passed through the heated acetic acid extraction line 27 on the distillation column side, and a part of the reflux liquid is extracted from the condensed water extraction line 26, and the water concentration in the reaction mixture is reduced to 10% by weight. %. The reaction mixture was stirred at a stirring intensity of 3 horsepower per d. The reaction product mixture is kept at 180°C and connected to line 14 and valve 1 based on the signal from the liquid level gauge set at 5 so that the residence time is 1 hr.
5 and the first receiver 30 to the hydrocyclone 40 to separate 90% by weight (10.8 kg/Hr) of the mother liquor,
The separated mother liquor was returned to the reactor through the separated mother liquor return line 41.

濃縮した反応混合物へ反応器に連結した蒸留塔の塔側か
ら80重量%の加熱酢酸をライン27を通して35.6
kg/Hrで加えた後、熱交換器43で加熱し、第一次
浸漬槽50へ送り込んだ。]この混合物中でテレフタル
酸に対する溶媒比は重量比で8となり溶媒中の水濃度は
20重量%となつた。
80% by weight heated acetic acid was passed through line 27 from the column side of the distillation column connected to the reactor to the concentrated reaction mixture.
After adding at a rate of kg/Hr, it was heated in a heat exchanger 43 and sent to the primary immersion tank 50. ] In this mixture, the ratio of solvent to terephthalic acid was 8 by weight, and the concentration of water in the solvent was 20% by weight.

第一次浸漬槽の温度を220℃及び圧力を18kg/C
dとして攪拌した。第一次浸漬槽での滞留時間を1hr
とした後、テレフタル酸の酢酸懸濁液混合物を温度を1
90℃及び圧力を8kg/CF7lに維持した第二次浸
漬槽60へ送り込み、混合物を撹拌しながら1hrの滞
留の後、第二受器70へ送り、常圧にした後、遠心分離
機80で固液分離し、洗浄液固体部のテレフタル酸を乾
燥した。得られたテレフタル酸の評価結果を表1に示し
た。比較例 5蒸留塔付酸化反応器10に酢酸10.8
kg、水1.2kg、酢酸コバルト36V1酢酸マンガ
ン3.6t1テトラブロムエタン18.67を張り込み
、反応器の温度を220℃及び圧力を181<g/Cd
に保持し、パラキシレン3kg/Hr、酢酸15.8k
g/Hr−、水2.6kg/Hr−、酢酸コバルト10
.8?/Hrl酢酸マンガン1.1f7/Hr及びテト
ラブロムエタン5.6t/Hrからなる混合物を反応混
合物供給ライン12より連続的に酸化反応器に送り込み
ながら、排ガス中の酸素濃度が2%となるように空気を
約3.3NM3/Kg−パラキシレンの割合で空気供給
ライン13より送り込み、連続酸化反応を行つた。
The temperature of the primary immersion tank is 220℃ and the pressure is 18kg/C.
The mixture was stirred as d. Residence time in the primary immersion tank is 1 hr.
After that, the terephthalic acid suspension mixture in acetic acid was brought to a temperature of 1
The mixture was sent to a secondary soaking tank 60 maintained at 90°C and a pressure of 8 kg/CF7l, and after residence for 1 hour while stirring, was sent to a second receiver 70, brought to normal pressure, and then centrifuged by a centrifuge 80. Solid-liquid separation was performed, and terephthalic acid in the solid portion of the washing liquid was dried. Table 1 shows the evaluation results of the obtained terephthalic acid. Comparative Example 5 Acetic acid 10.8 in oxidation reactor 10 with distillation column
1.2 kg of water, 36 V of cobalt acetate, 3.6 t of manganese acetate, 18.67 t of tetrabromoethane, and the temperature of the reactor was set to 220°C and the pressure was set to 181<g/Cd.
Paraxylene 3kg/Hr, acetic acid 15.8k
g/Hr-, water 2.6kg/Hr-, cobalt acetate 10
.. 8? /Hrl A mixture consisting of 1.1f7/Hr of manganese acetate and 5.6t/Hr of tetrabromoethane was continuously fed into the oxidation reactor from the reaction mixture supply line 12, while adjusting the oxygen concentration in the exhaust gas to 2%. Air was fed through the air supply line 13 at a ratio of about 3.3 NM3/Kg-paraxylene to carry out a continuous oxidation reaction.

このとき蒸留塔内の加熱酢酸の一部を蒸留塔塔側の加熱
酢酸抜き取りライン27を通し、又還流液の一部を凝縮
水抜き取りライン26より抜き取り、反応混合物中の水
濃度を10重量%に保つた。又反応混合物は1イ当り3
馬力の攪拌強度で撹拌した。反応生成混合物は滞留時間
が1hrとなるように設定した液面計の信号に基づいて
190℃に保つたまま、ライン14、バルブ15及び第
一受器30を通して液体サイクロン40へ送り母液の7
0重量%(8.4kg/Hr−)を分離し、分離した母
液は分離母液戻しライン41を通して反応器へ戻した。
At this time, a part of the heated acetic acid in the distillation column is passed through the heated acetic acid withdrawal line 27 on the distillation column side, and a part of the reflux liquid is withdrawn from the condensed water withdrawal line 26, so that the water concentration in the reaction mixture is 10% by weight. I kept it. Also, the reaction mixture is 3 per i
Stirring was carried out at a stirring intensity of horse power. The reaction product mixture is sent to the hydrocyclone 40 through the line 14, valve 15, and first receiver 30, while maintaining the temperature at 190°C based on the signal from the liquid level gauge, which is set to have a residence time of 1 hr.
0% by weight (8.4 kg/Hr-) was separated, and the separated mother liquor was returned to the reactor through the separated mother liquor return line 41.

濃縮した反応混合物へ反応器に連結した蒸留塔の塔側か
ら85重量%の加熱酢酸をライン27を通して14.8
kg/Hrで加えた後、熱交換器43で加熱し、第一次
浸漬槽50へ送り込んだ。この混合物中でテレフタル酸
に対する溶媒比は重量比で4となり、溶媒中の水濃度は
14重量%となつた。第一次浸漬槽の温度を220℃及
び圧力を18kg/Cdとして攪拌した。第一次浸漬槽
での滞留時間を1hrとした後、テレフタル酸の酢酸懸
濁液混合物を温度を190℃及び圧力を8kg/Crl
lに維持した第二次浸漬槽60へ送り込み、混合物を攪
拌しながら1hrの滞留の後、第二受器70へ送り、常
圧にした後、遠心分離機80で固液分離し、洗浄後固体
部のテレフタル酸を乾燥した。得られたテレフタル酸の
評価結果を表1に示した。上ビ車交例 6蒸留塔付酸
化反応器10に酢酸10.8k9、水1.2kg、酢酸
コバルト907、酢酸マンガン15V1テトラブロムエ
タン36yを張り込み反応器の温度を160℃及び圧力
を7k9/Cdに保持し、パラキシレン3k9/Hr、
酢酸29.6kg/Hrl水7.2kg/Hr、酢酸コ
バルト97/Hr、酢酸マンガン1.5t/Hr−及び
テトラブロムエタン3,6y/Hrからなる混合物を反
応混合物供給ライン12より連続的に酸化反応器に送り
込みながら排ガス中の酸素濃度が7%となるように空気
を約4.6NM3/Kg−パラキシレンの割合で空気供
給ライン13より送り込み、連続酸化反応を行つた。
85% by weight of heated acetic acid was added to the concentrated reaction mixture from the column side of the distillation column connected to the reactor through line 27 at 14.8
After adding at a rate of kg/Hr, it was heated in a heat exchanger 43 and sent to the primary immersion tank 50. In this mixture, the ratio of solvent to terephthalic acid was 4 by weight, and the concentration of water in the solvent was 14% by weight. Stirring was carried out at a temperature of 220° C. and a pressure of 18 kg/Cd in the first immersion tank. After a residence time of 1 hr in the first soaking tank, the terephthalic acid acetic acid suspension mixture was heated to a temperature of 190°C and a pressure of 8 kg/Crl.
The mixture was sent to a secondary soaking tank 60 maintained at a constant temperature of 1 hr, and after residence for 1 hr while stirring, was sent to a second receiver 70 where it was brought to normal pressure, solid-liquid separation was performed using a centrifuge 80, and after washing. The solid portion of terephthalic acid was dried. Table 1 shows the evaluation results of the obtained terephthalic acid. Example 6: Fill the oxidation reactor 10 with a distillation column with 10.8k9 of acetic acid, 1.2kg of water, 907 cobalt acetate, 15V of manganese acetate, 36y of tetrabromoethane, and set the temperature of the reactor to 160°C and the pressure to 7k9/Cd. Paraxylene 3k9/Hr,
A mixture consisting of 29.6 kg/Hr of acetic acid, 7.2 kg/Hr of water, 97/Hr of cobalt acetate, 1.5 t/Hr of manganese acetate, and 3,6y/Hr of tetrabromoethane is continuously oxidized from the reaction mixture supply line 12. While being fed into the reactor, air was fed through the air supply line 13 at a rate of about 4.6 NM3/Kg-paraxylene so that the oxygen concentration in the exhaust gas became 7%, thereby carrying out a continuous oxidation reaction.

このとき蒸留塔内の加熱酢酸の一部を蒸留塔塔側の加熱
酢酸抜き取りライン27を通し、又還流液の一部を凝縮
水抜き取りライン26より抜き取り、反応混合物中の水
濃度を10重量%に保つた。又反応混合物は1m3当り
3馬力の撹拌強度で攪拌した。反応生成混合物は滞留時
間が1hr−となるように設定した液面計の信号に基づ
いて160℃に保つたままライン14、バルブ15及び
第一受器30を通して液体サイクロン40へ送り、母液
の90重量%(10,8k9/Hr)を分離し、分離し
た母液は分離母液戻しライン41を通して反応器へ戻し
た。濃縮した反応混合物へ反応器に連結した蒸留塔の塔
側から80重量%の加熱酢酸をライン27を通して35
.6kg/Hrで加えた後、熱交換器43で加熱し第一
浸漬槽50へ送り込んだ。この混合物中でテレフタル酸
に対する溶媒比は重量比で8となり、溶媒中の水濃度は
20重量%となつた。第一次浸漬槽の温度を210℃及
び圧力を151<9/Cr7Lとし、攪拌した。第一次
浸漬槽での滞留時間を1hrとした後、テレフタル酸の
酢酸懸濁液混合物を温度を190℃及び圧力を8k9/
Cdに維持した第二次浸漬槽60へ送り込み、混合物を
攪拌しながら1hrの滞留の後、第二受器70へ送り、
常圧にした後、遠心分離機80で固液分離し、洗浄後固
体部のテレフタル酸を乾燥した。得られたテレフタル酸
の評価結果を表1に示した。σσ 実施例6〜7及び比較例7 実施例1において液体サイクロン40での母液の分離温
度をそれぞれ170℃(実施例6)180℃(実施例7
)及び155℃(比較例7)とした以外は、すべて実施
例1と同様の方法によりテレフタル酸を製造した。
At this time, a part of the heated acetic acid in the distillation column is passed through the heated acetic acid withdrawal line 27 on the distillation column side, and a part of the reflux liquid is withdrawn from the condensed water withdrawal line 26, so that the water concentration in the reaction mixture is 10% by weight. I kept it. The reaction mixture was also stirred at a stirring intensity of 3 horsepower per m3. The reaction product mixture is sent to the hydrocyclone 40 through the line 14, valve 15 and first receiver 30 while being maintained at 160°C based on the signal from the liquid level gauge, which is set to have a residence time of 1 hr. % by weight (10.8k9/Hr) was separated, and the separated mother liquor was returned to the reactor through the separated mother liquor return line 41. 80% by weight heated acetic acid is passed through line 27 to the concentrated reaction mixture from the column side of the distillation column connected to the reactor (35).
.. After adding at a rate of 6 kg/Hr, it was heated in a heat exchanger 43 and sent to the first immersion tank 50. In this mixture, the ratio of solvent to terephthalic acid was 8 by weight, and the concentration of water in the solvent was 20% by weight. The temperature of the first immersion tank was set to 210° C., the pressure was set to 151<9/Cr7L, and the mixture was stirred. After a residence time of 1 hr in the first soaking tank, the terephthalic acid suspension mixture in acetic acid was heated to a temperature of 190°C and a pressure of 8k9/min.
The mixture is sent to a secondary soaking tank 60 maintained at Cd, and after residence for 1 hour while stirring the mixture, is sent to a second receiver 70.
After bringing the pressure to normal pressure, solid-liquid separation was performed using a centrifugal separator 80, and after washing, terephthalic acid in the solid portion was dried. Table 1 shows the evaluation results of the obtained terephthalic acid. σσ Examples 6 to 7 and Comparative Example 7 In Example 1, the separation temperature of the mother liquor in the hydrocyclone 40 was 170°C (Example 6) and 180°C (Example 7).
) and 155°C (Comparative Example 7), terephthalic acid was produced in the same manner as in Example 1.

得られたテレフタル酸の評価結果を表2に示した。実施
例 8 実施例1において反応混合物供給ライン12より送り込
む原料中の、酢酸を23.7k9/Hr、水を3.9k
g/Hr,酢酸コバルトを247/Hrl酢酸マンガン
を127/Hrl及びテトラブロムエタンを12.4y
/Hrとし、蒸留塔塔側の加熱酢酸抜き取りライン27
を通して加える85重量%の加熱酢酸量を22,8kg
/Hrとし、第一次浸漬槽の温度を220℃及び圧力を
18k9/c殖第二次浸漬槽の温度を180℃及び圧力
を7kg/Cdとした以外は、すべて実施例1と同様の
方法によりテレフタル酸を製造した。
The evaluation results of the obtained terephthalic acid are shown in Table 2. Example 8 In Example 1, the raw materials fed from the reaction mixture supply line 12 contained acetic acid at 23.7 k9/Hr and water at 3.9 k9/Hr.
g/Hr, cobalt acetate 247/Hrl manganese acetate 127/Hrl and tetrabromoethane 12.4y
/Hr, and the heated acetic acid extraction line 27 on the distillation column side
Add 22.8 kg of 85% by weight heated acetic acid through
/Hr, and the temperature of the primary soaking tank was 220°C and the pressure was 18k9/c. The temperature of the secondary soaking tank was 180°C and the pressure was 7kg/Cd, but the same method as in Example 1. Terephthalic acid was produced by

得られたテレフタル酸の評価結果を表2に示した。実施
例 9 実施例8において、液体サイクロン40での母液の分離
割合を80重量%とし、蒸留塔塔側の加熱酢酸抜き取り
ライン27を通して加える加熱酢酸の量を25.2kg
/Hrとし、又反応器10へ反応混合物供給ライン12
より供給する原料中の酢酸を23、6k9/′Hrl水
を4.0kg/Hrl酢酸コバルトを127/Hr−、
酢酸マンガンを6y/Hr及びテトラブロムエタンを6
.2y/Hrとした以外は、すべて実施例8と同様の方
法によりテレフタル酸を製造した。
The evaluation results of the obtained terephthalic acid are shown in Table 2. Example 9 In Example 8, the separation ratio of the mother liquor in the liquid cyclone 40 was set to 80% by weight, and the amount of heated acetic acid added through the heated acetic acid withdrawal line 27 on the distillation column side was 25.2 kg.
/Hr, and the reaction mixture supply line 12 to the reactor 10
Acetic acid in the raw materials supplied from
Manganese acetate 6y/Hr and tetrabromoethane 6y/Hr
.. Terephthalic acid was produced in the same manner as in Example 8 except that the ratio was 2y/Hr.

得られたテレフタル酸の評価結果を表2に示した。実施
例 10 実施例8において、液体サイクロン40での母液の分離
割合を90重量%とし、蒸留塔塔側の加熱酢酸抜き取り
ライン27を通して加える加熱酢酸の量を26.4k9
/Hrとし、又反応器10へ反応混合物供給ライン12
より供給する原料中の酢酸を23.4kg/Hrl水を
4.11<g/Hrl酢酸コバルトを67/Hr、酢酸
マンガンを37/Hr及びテトラブロムエタンを3.1
7/Hrとした以外は、すべて実施例8と同様の方法に
よりテレフタル酸を製造した。
The evaluation results of the obtained terephthalic acid are shown in Table 2. Example 10 In Example 8, the separation ratio of the mother liquor in the liquid cyclone 40 was 90% by weight, and the amount of heated acetic acid added through the heated acetic acid withdrawal line 27 on the distillation column side was 26.4k9.
/Hr, and the reaction mixture supply line 12 to the reactor 10
Acetic acid in raw materials supplied from 23.4 kg/Hr, water 4.11 < g/Hr, cobalt acetate 67/Hr, manganese acetate 37/Hr, and tetrabromoethane 3.1
Terephthalic acid was produced in the same manner as in Example 8 except that the ratio was 7/Hr.

得られたテレフタル酸の評価結果を表2に示した。比較
例 8 実施例8において液体サイクロン40での母液の分離割
合を50重量%とし、蒸留塔塔側の加熱酢酸抜き取りラ
イン27を通して加える加熱酢酸の量を21,6kg/
Hrl又反応器10・へ反応混合物供給ライン12より
供給する原料中の酢酸を23.8kI猜、水を3.8k
9/Hrl酢酸コバルトを307/Hrl酢酸マンガン
を15f7/Hr及びテトラブロムエタンを15.5t
/Hr−とした以外は、すべて実施例8と同様の方法に
よりテレフタル酸を製造した。
The evaluation results of the obtained terephthalic acid are shown in Table 2. Comparative Example 8 In Example 8, the separation ratio of the mother liquor in the liquid cyclone 40 was set to 50% by weight, and the amount of heated acetic acid added through the heated acetic acid withdrawal line 27 on the distillation column side was 21.6 kg/
Also, in the raw materials supplied to the reactor 10 from the reaction mixture supply line 12, 23.8 kI of acetic acid and 3.8 k of water were added.
9/Hrl cobalt acetate 307/Hrl manganese acetate 15f7/Hr and tetrabromoethane 15.5t
Terephthalic acid was produced in the same manner as in Example 8 except that /Hr- was used.

得られたテレフタル酸の評価結果を表2に小した。実施
例 11 実施例1において、第一次浸漬槽の温度を230℃及び
圧力を201<g/Cdl第二次浸漬槽の温度を200
℃及び圧力を10kg/Cdとし、又、第一次浸漬槽の
テレフタル酸に対する溶媒比を重量比で2とするため蒸
留塔塔側の加熱酢酸抜き取りライン27を通して加える
加熱酢酸の量を5.61<g/Hrとし、反応器10へ
反応混合物供給ライン12より供給する原料中の酢酸を
8.01<g/Hr及び水を1.21<g/Hrとした
以外は、すべて実施例1と同様の方法でテレフタル酸を
製造した。
The evaluation results of the obtained terephthalic acid are summarized in Table 2. Example 11 In Example 1, the temperature of the primary dipping tank was set to 230°C and the pressure was set to 201<g/Cdl.The temperature of the secondary dipping tank was set to 200°C.
The temperature and pressure were set to 10 kg/Cd, and the amount of heated acetic acid added through the heated acetic acid withdrawal line 27 on the distillation column side was 5.61 to set the solvent ratio to terephthalic acid in the first immersion tank to be 2 by weight. <g/Hr, acetic acid in the raw materials supplied from the reaction mixture supply line 12 to the reactor 10 was set at 8.01<g/Hr, and water was set at 1.21<g/Hr. Terephthalic acid was produced in a similar manner.

得られたテレフタル酸の評価結果を表3に示した。実施
例 12 実施例1において、第一次浸漬槽の温度を230℃及び
圧力を201<g/Ctli、第二次浸漬槽の温度を2
00℃及び圧力を10kg/Cdとし、又、第一次浸漬
槽のテレフタル酸に対する溶媒比を重量比で3とするた
め蒸留塔塔側の加熱酢酸抜き取りライン27を通して加
える加熱酢酸を10.2kg/Hrとし、反応器10へ
反応混合物供給ライン12より供給する原料中の酢酸を
11.9kg/Hr及び水を1.9kg/Hrとした以
外は、すべて実施例1と同様の方法でテレフタル酸を製
造した。
Table 3 shows the evaluation results of the obtained terephthalic acid. Example 12 In Example 1, the temperature of the primary immersion tank was set to 230°C and the pressure was set to 201<g/Ctli, and the temperature of the second immersion tank was set to 2.
00°C and the pressure was 10 kg/Cd, and in order to make the solvent ratio to terephthalic acid in the primary dipping tank 3 by weight, 10.2 kg/Cd of heated acetic acid was added through the heated acetic acid extraction line 27 on the distillation column side. Terephthalic acid was produced in the same manner as in Example 1, except that the acetic acid and water in the raw materials supplied from the reaction mixture supply line 12 to the reactor 10 were 11.9 kg/Hr and 1.9 kg/Hr, respectively. Manufactured.

得られたテレフタル酸の評価結果を表3に示した。J/
実施例 13 実施例1において、第一次浸漬槽の温度を230℃及び
圧力を20k9/Cdl第二次浸漬槽の温度を200℃
及び圧力を10k9/Cdとし、又、第一次浸漬槽のテ
レフタル酸に対する溶媒比を重量比で4とするために蒸
留塔塔側の加熱酢酸抜き取りライン27を通して加える
加熱酢酸の量を14.8kg/Hrとし、反応器10へ
反応混合物供給ライン12より供給する原料中の酢酸を
15.8kg/Hr及び水を2.6kg/Hrとした以
外は、すべて実施例1と同様の方法でテレフタル酸を製
造した。
Table 3 shows the evaluation results of the obtained terephthalic acid. J/
Example 13 In Example 1, the temperature of the primary dipping tank was 230°C and the pressure was 20k9/Cdl. The temperature of the secondary dipping tank was 200°C.
In order to set the pressure to 10k9/Cd, and to make the solvent ratio to terephthalic acid in the primary dipping tank 4 by weight, the amount of heated acetic acid added through the heated acetic acid withdrawal line 27 on the distillation column side was 14.8 kg. /Hr, and terephthalic acid was produced in the same manner as in Example 1, except that the amount of acetic acid in the raw materials supplied from the reaction mixture supply line 12 to the reactor 10 was 15.8 kg/Hr, and the amount of water was 2.6 kg/Hr. was manufactured.

得られたテレフタル酸の評価結果を表3に示した。上ヒ
車交例 9実施例1において、第一次浸漬槽の温度を
230℃及び圧力を20kg/Crli.第二次浸漬槽
の温度を200℃及び圧力を10kg/Cr!iとし、
又、第一次浸漬槽のテレフタル酸に対する溶媒比を重量
比で1,5とするために蒸留塔塔側の加熱酢酸抜き取り
ライン27を通して加える加熱酢酸の量を3.3kg/
Hrとし、反応器10へ反応混合物供給ライン12より
供給する原料中の酢酸を6.0k9/Hr及び水を0,
9kg/Hrとした以外はすべて実施例1と同様の方法
でテレフタル酸を製造した。
Table 3 shows the evaluation results of the obtained terephthalic acid. Vehicle Exchange Example 9 In Example 1, the temperature of the primary immersion tank was 230°C and the pressure was 20kg/Crli. The temperature of the secondary immersion tank is 200℃ and the pressure is 10kg/Cr! i,
In addition, in order to make the solvent ratio to terephthalic acid in the primary immersion tank 1.5 by weight, the amount of heated acetic acid added through the heated acetic acid extraction line 27 on the distillation column side was 3.3 kg/
Hr, acetic acid in the raw materials supplied from the reaction mixture supply line 12 to the reactor 10 is 6.0k9/Hr, and water is 0.
Terephthalic acid was produced in the same manner as in Example 1 except that the amount was 9 kg/Hr.

得られたテレフタル酸の評価結果を表3に示した。実施
例 14実施例1において、第一次浸漬槽の温度を20
0℃及び圧力を13kg/Cdl第二次浸漬槽の温度を
180℃及び圧力を7kf!/Cdとし、又第一次浸漬
槽のテレフタル酸に対する溶媒比を重量比で6とするた
めに蒸留塔塔側の加熱酢酸抜き取りライン27を通して
加える加熱酢酸の量を24.0kg/]1)−とし、反
応器10へ反応混合物供給ライン12より供給する原料
中の酢酸を23.6kg/Hr及び水を4.0kg/H
rとした以外はすべて実施例1と同様の方法でテレフタ
ル酸を製造した。
Table 3 shows the evaluation results of the obtained terephthalic acid. Example 14 In Example 1, the temperature of the primary immersion bath was set to 20
0℃ and pressure 13kg/Cdl Secondary soaking tank temperature 180℃ and pressure 7kf! /Cd, and in order to make the solvent ratio to terephthalic acid in the primary dipping tank 6 by weight, the amount of heated acetic acid added through the heated acetic acid withdrawal line 27 on the distillation column side was 24.0 kg/]1)- The acetic acid and water in the raw materials supplied from the reaction mixture supply line 12 to the reactor 10 are 23.6 kg/Hr and 4.0 kg/H, respectively.
Terephthalic acid was produced in the same manner as in Example 1 except that r was used.

得られたテレフタル酸の評価結果を表3に示した。実施
例 15 実施例1において、第一次浸漬槽の温度を200℃及び
圧力を13kg/Crli、第二次浸漬槽の温度を18
0℃及び圧力を7kg/Cdとし、又第一次浸漬槽のテ
レフタル酸に対する溶媒比を重量比で8とするために蒸
留塔塔側の加熱酢酸抜き取りライン27を通して加える
加熱酢酸の量を33.2kg/Hrとし、反応器10へ
反応混合物供給ライン12より供給する原料中の酢酸を
31.4kg/Hr及び水を5.4kg/h1−とした
以外はすべて実施例1と同様の方法でテレJャ^ル酸を製
造した。
Table 3 shows the evaluation results of the obtained terephthalic acid. Example 15 In Example 1, the temperature of the primary immersion tank was 200°C and the pressure was 13 kg/Crli, and the temperature of the secondary immersion tank was 18
The amount of heated acetic acid added through the heated acetic acid withdrawal line 27 on the distillation column side was set to 33.0°C and the pressure was set to 7 kg/Cd, and the solvent ratio to terephthalic acid in the primary soaking tank was set to 8 by weight. 2 kg/Hr, acetic acid in the raw materials supplied from the reaction mixture supply line 12 to the reactor 10 was changed to 31.4 kg/Hr, and water was changed to 5.4 kg/H1- in the same manner as in Example 1. Produced Jallic acid.

得られたテレフタル酸の評価結果を表3に示した。実施
例16〜17及び比較例10 実施例3において、第1次浸漬槽の温度及び圧力条件を
、それぞれ実施例16では温度を190℃及び圧力を9
k!9/Cdl実施例17では温度を200℃及び圧力
を13k9/Cdl比較例10では温度を180℃及び
圧力を71<g/Cdとした以外はすべて実施例3と同
様の方法でテレフタル酸を製造した。
Table 3 shows the evaluation results of the obtained terephthalic acid. Examples 16 to 17 and Comparative Example 10 In Example 3, the temperature and pressure conditions of the primary immersion tank were changed to 190°C and 90°C in Example 16, respectively.
k! Terephthalic acid was produced in the same manner as in Example 3, except that in 9/Cdl Example 17, the temperature was 200°C and the pressure was 13k9/Cdl Comparative Example 10, the temperature was 180°C and the pressure was 71<g/Cd. did.

得られたテレフタル酸の評価結果を表4に示した。実施
例 18 実施例3において、液体サイクロン40による酸化反応
母液の分離割合を90重量%とし、第一次浸漬槽の温度
を230℃及び圧力を20kg/Cdl第二次浸漬槽の
温度を200℃及び圧力を10kg/Cwi.又、第一
次浸漬槽のテレフタル酸に対する溶媒比を重量比で6と
しかつ水濃度を10重量%とするために、蒸留塔塔側の
加熱酢酸抜き取りライン27を通して90重量%の加熱
酢酸を26.4kg/Hrで加え、更に反応器10へ反
応混合物供給ライン12より供給する原料中の酢酸を2
4.9kv/Hr,水を2.7kg/Hr−、酢酸コバ
ルトを0.05y/Hr,及びテトラブロムエタンを2
.5V/Hrとした以外は、すべて実施例3と同様の方
法でテレフタル酸を製造した。
Table 4 shows the evaluation results of the obtained terephthalic acid. Example 18 In Example 3, the separation ratio of the oxidation reaction mother liquor by the liquid cyclone 40 was 90% by weight, the temperature of the primary immersion tank was 230°C, the pressure was 20kg/Cdl, and the temperature of the secondary immersion tank was 200°C. and pressure 10kg/Cwi. In addition, in order to make the solvent ratio to terephthalic acid in the primary immersion tank 6 by weight and the water concentration to 10% by weight, 90% by weight of heated acetic acid was added to 26% by weight through the heated acetic acid withdrawal line 27 on the distillation column side. .4 kg/Hr, and further acetic acid in the raw material supplied to the reactor 10 from the reaction mixture supply line 12.
4.9kv/Hr, water 2.7kg/Hr-, cobalt acetate 0.05y/Hr, and tetrabromoethane 2
.. Terephthalic acid was produced in the same manner as in Example 3 except that the voltage was 5 V/Hr.

得られたテレフタル酸の評価結果を表4に示した。比較
例 11 実施例17において、第一次浸漬槽の温度を250℃及
び圧力を23kg/Cdとした以外はすべて実施例17
と同様の方法でテレフタル酸を製造した。
Table 4 shows the evaluation results of the obtained terephthalic acid. Comparative Example 11 All the same procedures as in Example 17 except that the temperature of the primary immersion tank was 250°C and the pressure was 23 kg/Cd.
Terephthalic acid was produced in a similar manner.

得られたテレフタル酸の評価結果を表4に示した。実施
例19〜21及び比較例12〜13 実施例13において第二次浸漬槽の温度及び圧力条件を
それぞれ実施例19では温度を180℃及び圧力を7k
g/Cdl実施例20では温度を160℃及び圧力を5
1<g/CriL、実施例21では温度を150℃及び
圧力を5k9/Cdl比較例12では温度を230℃及
び圧力を14k9/c武比較例13では温度を140℃
及び圧力を5kg/Cdとした以外はすべて実施例13
と同様の方法でテレフタル酸を製造した。
Table 4 shows the evaluation results of the obtained terephthalic acid. Examples 19 to 21 and Comparative Examples 12 to 13 In Example 13, the temperature and pressure conditions of the secondary immersion tank were changed to 180°C and 7K in Example 19, respectively.
g/Cdl In Example 20, the temperature was 160°C and the pressure was 5
1<g/CriL, In Example 21, the temperature was 150°C and the pressure was 5k9/Cdl. In Comparative Example 12, the temperature was 230°C and the pressure was 14k9/c. In Comparative Example 13, the temperature was 140°C.
Example 13 except that the pressure was 5 kg/Cd.
Terephthalic acid was produced in a similar manner.

得られたテレフタル酸の評価結果を表5に示した。Table 5 shows the evaluation results of the obtained terephthalic acid.

【図面の簡単な説明】[Brief explanation of drawings]

添付図面は本発明を実施するに当り、使用する装置の一
例の系統図を示す。 図中主たる符号の説明は次のとおりである。10・・・
・・・酸化反応器、12・・・・・・反応原料混合物供
給ライン、13・・・・・・空気供給ライン、20・・
・・・・棚段式蒸留塔、25・・・・・・排出ガスライ
ン、27・・・・・・加熱酢酸抜き取りライン、30・
・・・・・第一受器、40・・・・・・液体サイクロン
、41・・・・・・分離母液戻しライン、50・・・・
・・第一次浸漬槽、60・・・・・・第二浸漬槽、70
・・・・・・第二受器、80・・・・・・遠心分離器。
The accompanying drawings show a system diagram of an example of equipment used in carrying out the present invention. Explanations of the main symbols in the figure are as follows. 10...
... Oxidation reactor, 12 ... Reaction raw material mixture supply line, 13 ... Air supply line, 20 ...
・・・・・・Plate distillation column, 25・・・Exhaust gas line, 27・・・Heating acetic acid extraction line, 30・
...First receiver, 40 ... Liquid cyclone, 41 ... Separated mother liquor return line, 50 ...
...Primary dipping tank, 60...Second dipping tank, 70
...Second receiver, 80...Centrifugal separator.

Claims (1)

【特許請求の範囲】 1 (A)酢酸溶媒中でコバルト化合物、マンガン化合
物及び臭素化合物を含む酸化触媒の存在下に170ない
し230℃の温度及び加圧の条件下でパラキシレンを分
子状酸素含有ガスで酸化し、酸化反応によつて得られる
酸化反応生成混合物に含まれる粗テレフタル酸中の4−
カルボキシベンズアルデヒドの含有率が500ないし3
000ppmの範囲にありかつ粗テレフタル酸の340
mμでの光学密度が0.3以下である酸化反応生成混合
物を得、(B)該混合物を酸化反応温度より30℃低い
温度以下に冷却することなくその中に含まれる母液の6
0重量%以上を分離して酸化反応器に循環させるととも
に、(C)残りの該混合物に粗テレフタル酸に対する酢
酸溶媒の重量比が2ないし10の範囲になる割合の量の
加熱酢酸を加えて得た粗テレフタル酸の酢酸懸濁液を酸
化反応温度ないし240℃の範囲の温度で攪拌下に一次
浸漬処理を施し、(D)次に150ないし220℃の範
囲にあつてかつ一次浸漬の温度よりも少なくとも10℃
低い温度で攪拌下に二次浸漬処理を施し、(E)得られ
たテレフタル酸の酢酸懸濁液からテレフタル酸を分離す
ることを特徴とする高純度テレフタル酸の製造方法。 2 酸化反応によつて得られる酸化反応生成混合物とし
て、粗テレフタル酸中の4−カルボキシベンズアルデヒ
ドの含有率が600ないし2500ppmの範囲にあり
かつ粗テレフタル酸の340mμでの光学密度が0.2
以下にある酸化反応生成混合物を取得する特許請求の範
囲第1項記載の製造方法。 3 一次浸漬処理を、粗テレフタル酸に対する酢酸溶媒
の重量比が3ないし8の範囲にある粗テレフタル酸の酢
酸懸濁液を酸化反応温度より10℃高い温度ないし23
0℃の範囲の温度で施す特許請求の範囲第1項記載の製
造方法。 4 二次浸漬処理を、160ないし200℃の範囲にあ
りかつ一次浸漬の温度よりも少なくとも20℃低い温度
で施こす特許請求の範囲第1項記載の製造方法。 5 酸化反応器として、上部に蒸留塔を連結した酸化反
応器を使用して、該蒸留塔の塔項から酸化反応によつて
副生した水を蒸留除去しながらかつ該蒸留塔の塔底から
酢酸を酸化反応器に還流させながらパラキシレンの酸化
反応を行う特許請求の範囲第1項記載の製造方法。 6 酸化反応器として、上部に蒸留塔を連結した酸化反
応器を使用して、該蒸留塔の塔項から酸化反応によつて
副生した水を蒸留除去しながらかつ該蒸留塔の塔底から
酢酸を酸化反応器に還流させながらパラキシレンの酸化
反応を行うとともに、該蒸留塔の塔底あるいは塔側部か
ら抜き出した酢酸を加熱酢酸として使用する特許請求の
範囲第1項又は第5項記載の製造方法。
[Claims] 1 (A) Paraxylene containing molecular oxygen in an acetic acid solvent in the presence of an oxidation catalyst containing a cobalt compound, a manganese compound, and a bromine compound at a temperature of 170 to 230°C and under pressure. 4- in the crude terephthalic acid contained in the oxidation reaction product mixture obtained by the oxidation reaction with gas.
Carboxybenzaldehyde content is 500 to 3
000 ppm and 340 ppm of crude terephthalic acid.
Obtaining an oxidation reaction product mixture having an optical density in mμ of 0.3 or less;
0% by weight or more is separated and recycled to the oxidation reactor, and (C) heated acetic acid is added to the remaining mixture in an amount such that the weight ratio of acetic acid solvent to crude terephthalic acid is in the range of 2 to 10. The resulting suspension of crude terephthalic acid in acetic acid is subjected to a primary immersion treatment while being stirred at a temperature ranging from the oxidation reaction temperature to 240°C, and (D) is then subjected to a primary immersion treatment at a temperature ranging from 150 to 220°C and at a temperature of the primary immersion. at least 10℃ below
A method for producing high-purity terephthalic acid, which comprises performing a secondary immersion treatment under stirring at a low temperature, and (E) separating terephthalic acid from the obtained suspension of terephthalic acid in acetic acid. 2 As the oxidation reaction product mixture obtained by the oxidation reaction, the content of 4-carboxybenzaldehyde in the crude terephthalic acid is in the range of 600 to 2500 ppm, and the optical density of the crude terephthalic acid at 340 mμ is 0.2
A manufacturing method according to claim 1, wherein the following oxidation reaction product mixtures are obtained: 3. The primary immersion treatment is carried out by dipping an acetic acid suspension of crude terephthalic acid in which the weight ratio of the acetic acid solvent to crude terephthalic acid is in the range of 3 to 8 at a temperature 10°C higher than the oxidation reaction temperature to 23°C.
A method according to claim 1, which is carried out at a temperature in the range of 0°C. 4. The manufacturing method according to claim 1, wherein the secondary dipping treatment is carried out at a temperature in the range of 160 to 200°C and at least 20°C lower than the temperature of the primary dipping. 5. As an oxidation reactor, an oxidation reactor with a distillation column connected to the upper part is used to distill and remove water by-produced by the oxidation reaction from the column section of the distillation column and from the bottom of the distillation column. The manufacturing method according to claim 1, wherein the oxidation reaction of para-xylene is carried out while refluxing acetic acid into an oxidation reactor. 6. As an oxidation reactor, an oxidation reactor with a distillation column connected to the upper part is used, and water produced by the oxidation reaction is removed by distillation from the column section of the distillation column, and water is removed from the bottom of the distillation column. The oxidation reaction of para-xylene is carried out while acetic acid is refluxed to an oxidation reactor, and the acetic acid extracted from the bottom or side of the distillation column is used as heated acetic acid, according to claim 1 or 5. manufacturing method.
JP15722577A 1977-12-28 1977-12-28 Production method of high purity terephthalic acid Expired JPS5910650B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP15722577A JPS5910650B2 (en) 1977-12-28 1977-12-28 Production method of high purity terephthalic acid
FR7836670A FR2413352A1 (en) 1977-12-28 1978-12-28 PROCESS FOR PREPARING TEREPHTHALIC ACID
DE2856529A DE2856529C2 (en) 1977-12-28 1978-12-28 Process for the production of terephthalic acid
US05/973,944 US4241220A (en) 1977-12-28 1978-12-28 Process for producing terephthalic acid
GB7850079A GB2014564B (en) 1977-12-28 1978-12-28 Process for producing terephthalic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15722577A JPS5910650B2 (en) 1977-12-28 1977-12-28 Production method of high purity terephthalic acid

Publications (2)

Publication Number Publication Date
JPS5490135A JPS5490135A (en) 1979-07-17
JPS5910650B2 true JPS5910650B2 (en) 1984-03-10

Family

ID=15644950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15722577A Expired JPS5910650B2 (en) 1977-12-28 1977-12-28 Production method of high purity terephthalic acid

Country Status (1)

Country Link
JP (1) JPS5910650B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS601407U (en) * 1983-06-16 1985-01-08 株式会社 西原環境衛生研究所 Defoaming device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59190947A (en) * 1983-04-11 1984-10-29 Toyobo Co Ltd Production of terephthalic acid of high purity
US7557243B2 (en) * 2005-05-19 2009-07-07 Eastman Chemical Company Enriched terephthalic acid composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS601407U (en) * 1983-06-16 1985-01-08 株式会社 西原環境衛生研究所 Defoaming device

Also Published As

Publication number Publication date
JPS5490135A (en) 1979-07-17

Similar Documents

Publication Publication Date Title
US6114575A (en) Process for preparing 2,6-naphthalenedicarboxylic acid
US4314073A (en) Process for the production of an aromatic dicarboxylic acid
KR100282074B1 (en) Manufacturing method of 2,6-naphthalenedicarboxylic acid
US5132450A (en) Process for producing high purity isophthalic acid
EP0135341B1 (en) Process for preparing terephthalic acid from para-xylene
US3887612A (en) Process for preparing high purity terephthalic acid
US5763648A (en) Process for producing an aromatic carboxylic acid
US4286101A (en) Process for preparing terephthalic acid
US3970696A (en) Process for producing aromatic carboxylic acid
US3859344A (en) Process for continuous production of highly pure terephthalic acid
US4241220A (en) Process for producing terephthalic acid
US3484458A (en) Trimellitic acid production and recovery of intramolecular anhydride
CA2329258C (en) Improved process for producing pure carboxylic acids
JPS5910650B2 (en) Production method of high purity terephthalic acid
US3607920A (en) Process for the preparation of high purity isomers of toluic acid
US5731466A (en) Method for preparing alkylbenzoic acid
JPH0127055B2 (en)
JPH0454149A (en) Production of high-purity isophthalic acid
KR820000653B1 (en) Process for preparation of terephthalic acid
JPS5842858B2 (en) Production method of high purity terephthalic acid
JPS62106035A (en) Production of terephthalic acid and phenol
JPS5839812B2 (en) Terephthalene
MXPA99008688A (en) Process for preparing 2,6-naphthalenedicarboxylic acid
MXPA00010330A (en) Improved process for producing pure carboxylic acids
JPS59190947A (en) Production of terephthalic acid of high purity