JPS61174772A - Charge transfer device - Google Patents

Charge transfer device

Info

Publication number
JPS61174772A
JPS61174772A JP1587185A JP1587185A JPS61174772A JP S61174772 A JPS61174772 A JP S61174772A JP 1587185 A JP1587185 A JP 1587185A JP 1587185 A JP1587185 A JP 1587185A JP S61174772 A JPS61174772 A JP S61174772A
Authority
JP
Japan
Prior art keywords
thermal oxide
oxide film
gate electrode
gate
charge transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1587185A
Other languages
Japanese (ja)
Inventor
Tatsuo Fuji
藤 龍夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1587185A priority Critical patent/JPS61174772A/en
Publication of JPS61174772A publication Critical patent/JPS61174772A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/762Charge transfer devices
    • H01L29/765Charge-coupled devices
    • H01L29/768Charge-coupled devices with field effect produced by an insulated gate
    • H01L29/76866Surface Channel CCD
    • H01L29/76875Two-Phase CCD

Abstract

PURPOSE:To make the charge transfer direction variable by applying pulses from the outside, by arranging a gate electrode on a thermal oxide film in an accumulating gate part, and arranging a gate electrode on the two layers of a thin thermal oxide film and an Si3SN4 film furthermore in a transfer gate part. CONSTITUTION:An accumulating gate electrode 3 is provided on a thermal oxide film 2 of 600-1,000Angstrom in a conventional way. A transfer gate electrode 4 is formed on a thermal oxide film having a thickness of 15-30Angstrom and a CVD Si3N4 film of 400-1,000Angstrom . The electrodes 3 and 4 are partially overlapped through said double insulating films. A difference is yielded between the hole concentration in the surface of a P-type Si substrate 1 beneath the electrode 4 and that beneath the electrode 3 depending on the polarity of applied pulse voltage. A difference is also yielded in the depth of a depletion layer. Since the direction of the charge transfer is deter mined by the depth of the depletion layer, the transfer direction is reversed when the same pulse is applied on the electrodes 3 and 4, depending on whether the charge, which is injected and accumulated in the Si3N4 film 12 beneath the electrode 4, is electrons or holes. Namely, in this constitution, the charge transfer device, whose transfer direction can be determined from the outside can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電荷転送素子に関し、特に電荷転送ゲートの
ゲート構造およびゲート電極相互の分離構造を改善した
電荷転送素子に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a charge transfer device, and more particularly to a charge transfer device in which the gate structure of a charge transfer gate and the separation structure between gate electrodes are improved.

〔従来の技術〕[Conventional technology]

電荷転送素子は、半導体基板の一生表面に複数個のMO
S11ゲートを配置し、ある一つのゲート下の半導体基
板にできている空乏層内に、光学的ないし電気的に注入
された少数キャリア群を、隣接するMOS型ゲートのゲ
ート電極に印加される電圧を適当に変化させることによ
り、定められた方向に一意的に転送することが基本とな
りている。
A charge transfer element consists of multiple MOs on the surface of a semiconductor substrate.
S11 gates are arranged, and a group of minority carriers optically or electrically injected into the depletion layer formed in the semiconductor substrate under one gate is applied to the voltage applied to the gate electrode of the adjacent MOS type gate. The basic idea is to uniquely transfer data in a predetermined direction by appropriately changing the data.

転送方向の一意性を確保するには、当初ゲート電極に3
相のクロックパルスを印加していた。しかしながら、3
相クロツクパルスの印加は各ゲート電極とクロックパル
ス供給源との接続が難かしいことから、現在では2相ク
ロツクパルス駆動によっても電荷転送方向の一意性を確
保し得る構造が各種提案されている。
To ensure the uniqueness of the transfer direction, three
A phase clock pulse was applied. However, 3
Since application of phase clock pulses makes it difficult to connect each gate electrode to a clock pulse supply source, various structures have been proposed that can ensure uniqueness of charge transfer direction even by driving two-phase clock pulses.

第2図は、2相クロツクパルス駆動であシかつ!荷転送
方向の一意性が確保される電荷転送素子の構造の内、現
在最も多く使われているものの断面図である。P型Si
基板1の表面に600〜1000人厚の熱酸化膜2がゲ
ート絶縁層として存在し、この熱酸化膜20表面には第
1のゲート電極3と第2のゲート電極4とがそれぞれ4
000〜8000人厚のポリSi層により形成されてい
る。第2のゲート電極4は、その両端で第1のゲート電
極3に重なっており、かつ相互は第1のゲート電極3の
ポリSi層表面の熱酸化膜5によって分離されている。
Figure 2 shows two-phase clock pulse drive! 1 is a cross-sectional view of the structure of a charge transfer element that is currently most commonly used, which ensures uniqueness in charge transfer direction. P-type Si
A thermal oxide film 2 with a thickness of 600 to 1000 layers is present on the surface of the substrate 1 as a gate insulating layer, and a first gate electrode 3 and a second gate electrode 4 are formed on the surface of this thermal oxide film 20.
It is formed of a poly-Si layer with a thickness of 0.000 to 8000. The second gate electrode 4 overlaps the first gate electrode 3 at both ends thereof, and is separated from each other by a thermal oxide film 5 on the surface of the poly-Si layer of the first gate electrode 3.

さらに第2のゲート電極4下のP型Si基板1表面はさ
らにP型不純物が導入された高濃度P型領域6が形成さ
れている。ここで、第1のゲート電極部分が蓄積ゲート
部、第2のゲート電極部分が転送ゲート部である。
Further, on the surface of the P-type Si substrate 1 under the second gate electrode 4, a heavily doped P-type region 6 into which a P-type impurity is further introduced is formed. Here, the first gate electrode portion is the storage gate portion, and the second gate electrode portion is the transfer gate portion.

2相クロックパルスφ、−φの印加は、蕗1のグー)[
極3と第2のゲート電極4とを一組としてできる複数組
を、−組おきにクロックパルス供給源7に接続して行な
っている。
The application of two-phase clock pulses φ and -φ is
A plurality of pairs of the pole 3 and the second gate electrode 4 are connected to the clock pulse supply source 7 every other pair.

第3図(a)〜(C)は、第2図に示した構造における
電荷転送の概略を示し次回である。第2のゲート電極4
下のP型Si基板1の表面には高濃度P型領域6が形成
されているから、ある−組の第1のゲート電極3と第2
のゲート電極4とは、同一クロックパルスが印加される
ように接続されているにもかかわらず、それぞれのゲー
ト電極下に形成される空乏層の深さは異なシ、第2のゲ
ート電極4下の方が浅い。したがって2相のクロックパ
ルス電圧が相等しい時、空乏層の深さのプロファイルは
同図(a)の如くなる。この状態で、光学的ないし電気
的に励起された電子8は同図(b)に示す如く、深い方
の空乏層すなわち、第1のゲート電極3下の空乏層内に
注入される。次いで、2相のクロックパルスφ、−φの
一方の電圧は高くなりもう一方の電圧が低く々る方に変
化してゆくと、同図(C)に示すように、電圧が高くな
る方のクロックパルスが印加されている組のゲート電極
下の空乏層は深くなり、電圧が低くなる方のクロックパ
ルスが印加されている組のゲート電極下の空乏層は浅く
なってゆく結果、第1のゲート電極3下の空乏層内に注
入されていた電子8は、第2のゲート電極4下の空乏層
との深さの差によってできるポテンシャル障壁の非対称
性によって一意的に定まった方向へ転送される。
FIGS. 3(a) to 3(C) schematically show charge transfer in the structure shown in FIG. 2. Second gate electrode 4
Since a high-concentration P-type region 6 is formed on the surface of the lower P-type Si substrate 1, a certain pair of first gate electrode 3 and second gate electrode
Although the two gate electrodes 4 are connected so that the same clock pulse is applied, the depth of the depletion layer formed under each gate electrode is different. is shallower. Therefore, when the two-phase clock pulse voltages are equal, the depth profile of the depletion layer becomes as shown in FIG. In this state, the optically or electrically excited electrons 8 are injected into the deeper depletion layer, that is, the depletion layer below the first gate electrode 3, as shown in FIG. Next, as the voltage of one of the two-phase clock pulses φ and -φ increases and the voltage of the other decreases, as shown in FIG. The depletion layer under the gate electrode of the set to which the clock pulse is applied becomes deeper, and the depletion layer under the gate electrode of the set to which the clock pulse with lower voltage is applied becomes shallower. The electrons 8 injected into the depletion layer under the gate electrode 3 are transferred in a uniquely determined direction due to the asymmetry of the potential barrier created by the difference in depth with the depletion layer under the second gate electrode 4. Ru.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

したがって、転送方向は同一のクロックパルスが印加さ
れる一組のゲート電極で考えれば、常に第2のゲート電
極4から第1のゲート電極3の側であり、これは、電荷
転送素子製作過程で定まってしまうものである。すなわ
ち、第2図に示した、従来の2相クロツク駆動型電荷転
送素子は、基本的な3相クロツク駆動型電荷転送素子に
比べて、ゲート電極とクロックパルス供給源との接続は
容易になった半面、電荷転送方向を任意に選択するとい
う自由度は失なわれている。(3相クロツク駆動におい
ては、クロックパルスの相関関係を反転することで、電
荷転送方向を反転できた。)従って、本発明の目的は、
2相クロツク駆動型電荷転送素子のゲート電極とクロッ
クパルス供給源との接続の容易性は維持し、かつ電荷転
送方向を外部から可変しうる電荷転送素子を提供するこ
とにある。
Therefore, when considering a set of gate electrodes to which the same clock pulse is applied, the transfer direction is always from the second gate electrode 4 to the first gate electrode 3, and this is due to the fact that during the charge transfer element manufacturing process, It is fixed. In other words, in the conventional two-phase clock-driven charge transfer device shown in FIG. 2, the connection between the gate electrode and the clock pulse supply source is easier than in the basic three-phase clock-driven charge transfer device. On the other hand, the degree of freedom to arbitrarily select the direction of charge transfer is lost. (In three-phase clock driving, the charge transfer direction could be reversed by reversing the correlation of clock pulses.) Therefore, the object of the present invention is to
It is an object of the present invention to provide a charge transfer device which maintains the ease of connection between the gate electrode of a two-phase clock driven charge transfer device and a clock pulse supply source, and whose charge transfer direction can be varied from the outside.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の電荷転送素子は、Si基板の一主表面上に、複
数個のMOS型ゲートを配置し、隣接する2個のMOS
型ゲートを一組として構成される複数組のMOS型ゲー
ト群を一組おきに同一のクロックパルス供給源に接続し
てなる電荷転送素子において、前記2個一組のMOS型
ゲートの内、蓄積ゲート部は第1の熱酸化膜をゲート絶
縁層とするMOS型ゲート構造を有し、転送ゲート部は
ゲート絶縁層が前記第1の熱酸化膜より厚さの薄い第2
の熱酸化膜と該第2の熱酸化膜を覆う熱酸化膜とは異な
る組成の絶縁物層とからなる二重ゲート絶縁層型閾値可
変MOSゲート構造であシ、かつ蓄積ゲート部のゲート
電極3表面も前記第1の熱酸化膜より厚さの薄い第3の
熱酸化膜と該第3の熱酸化膜を覆り熱酸化膜とは異なる
組成の絶縁物層とからなる二重絶縁物層で覆われている
ことからなっている。
In the charge transfer device of the present invention, a plurality of MOS type gates are arranged on one main surface of a Si substrate, and two adjacent MOS type gates are arranged on one main surface of a Si substrate.
In a charge transfer element in which a plurality of sets of MOS gates are connected to the same clock pulse supply source every other set, one of the two sets of MOS gates is The gate part has a MOS type gate structure in which the first thermal oxide film is a gate insulating layer, and the transfer gate part has a second thermal oxide film whose gate insulating layer is thinner than the first thermal oxide film.
A double gate insulating layer type variable threshold MOS gate structure consisting of a thermal oxide film and an insulating layer having a composition different from that of the thermal oxide film covering the second thermal oxide film, and a gate electrode of the storage gate section. 3. The surface is also a double insulator consisting of a third thermal oxide film thinner than the first thermal oxide film and an insulating layer covering the third thermal oxide film and having a composition different from that of the thermal oxide film. It consists of being covered with layers.

〔作 用〕[For production]

本発明の基健は、Si基板表面に極めて薄い熱酸化膜を
形成し、さらに、この熱酸化膜を覆うよりに熱酸化膜と
は異なる組成の絶縁物層を形成した二重絶縁層をゲート
絶縁層とすると、ゲート電極に印加するパルスの極性、
電圧、パルス幅にしたがって、Si基板と上層の絶縁物
層との間で電荷の移動が起り、かつ電荷の種類、量が変
化する。さらにSi基板から上層の絶縁物層に注入され
た電荷は、熱的、電気的刺激ないし電離放射線照射を受
けない限910年以上保持されることにある。したがっ
て、ゲート電極にあらかじめ所定のパルスを印加するこ
とにより電荷転送方向を変えることができる。
The fundamental feature of the present invention is to form an extremely thin thermal oxide film on the surface of the Si substrate, and then to cover this thermal oxide film, a double insulating layer with a composition different from that of the thermal oxide film is formed as a gate gate. If it is an insulating layer, the polarity of the pulse applied to the gate electrode,
Charges move between the Si substrate and the upper insulating layer, and the type and amount of charges change depending on the voltage and pulse width. Furthermore, the charge injected from the Si substrate into the upper insulating layer is retained for more than 910 years unless subjected to thermal or electrical stimulation or irradiation with ionizing radiation. Therefore, the charge transfer direction can be changed by applying a predetermined pulse to the gate electrode in advance.

〔実施例〕〔Example〕

以下、本発明の実施例について図面を参照して説明する
Embodiments of the present invention will be described below with reference to the drawings.

第1図(a)は本発明の一実施例を示す断面図、第1図
(b)はその−組のゲートを示す部分拡大図である。
FIG. 1(a) is a cross-sectional view showing one embodiment of the present invention, and FIG. 1(b) is a partially enlarged view showing the second set of gates.

本実施例は、PiSi基板1の一主表面上に、複数個の
MOS型ゲートを配置し、隣接する2個のMOS型ゲー
トを一組として構成される複数組のMOS型ゲート群を
一組おきに同一のクロックパルス供給源7に接続してな
る電荷転送素子において、前記2個一組のMOS型ゲー
トの内、蓄積ゲート部は第1の熱酸化膜2をゲート絶縁
層とし、第1のゲート電極3を有するMOS型ゲート構
造を有し、転送ゲート部は、ゲート絶縁層が第1の熱酸
化膜より厚さの薄い第20熱酸化膜11とこの第2の熱
酸化膜11を覆う熱酸化膜とは異なる組成の絶縁物層と
してのSi3N4層12からカり第2のゲート電極4を
有する二重ゲート絶縁層型閾値可変MOSゲート構造で
あシ、か°つ第1のゲート電極3表面も第1の熱酸化膜
2より厚さの薄い第3の熱酸化膜13とSi3N4層1
2とからなる二重絶縁物層で覆われていることからなっ
ている。
In this embodiment, a plurality of MOS type gates are arranged on one main surface of a PiSi substrate 1, and a plurality of MOS type gate groups each consisting of two adjacent MOS type gates are combined into one set. In the charge transfer device which is connected to the same clock pulse supply source 7 every other time, the storage gate part of the set of two MOS gates has the first thermal oxide film 2 as the gate insulating layer, and the first thermal oxide film 2 as the gate insulating layer. The transfer gate part has a gate insulating layer including a 20th thermal oxide film 11 thinner than the first thermal oxide film and this second thermal oxide film 11. It is a double gate insulating layer type variable threshold MOS gate structure having a second gate electrode 4 formed from a Si3N4 layer 12 as an insulating layer having a composition different from that of the covering thermal oxide film, and the first gate The surface of the electrode 3 also has a third thermal oxide film 13 thinner than the first thermal oxide film 2 and a Si3N4 layer 1.
It consists of being covered with a double insulating layer consisting of 2.

即ち、P型Si基板1、第1のゲート電極3、第2のゲ
ート電極4の相互関係は従来構造と変ることはない。ま
た第1のゲート電極3下のゲート絶縁層も従来構造と同
様600〜1000人厚の熱酸化膜2で構成される。一
方、第2のゲート電極4下のゲート絶縁層は、15〜3
0人厚の熱酸化膜11とCVD法により成長した400
〜1000人厚のSi3N4層12とからなっている。
That is, the mutual relationship among the P-type Si substrate 1, the first gate electrode 3, and the second gate electrode 4 is unchanged from the conventional structure. Further, the gate insulating layer under the first gate electrode 3 is also composed of a thermal oxide film 2 having a thickness of 600 to 1000 layers, similar to the conventional structure. On the other hand, the gate insulating layer under the second gate electrode 4 is 15 to 3
A thermal oxide film 11 with a thickness of 0 and a film 400 grown by the CVD method.
It consists of 12 Si3N4 layers with a thickness of ~1000.

また第1のゲート電極30表面もポ17Siの薄い熱酸
化膜13と、Si3N4層12とからなる二重絶縁物層
で覆われておυ、この二重絶縁物層によって第1のゲー
ト電極3と第2のゲート電極4とのオーバーラツプ部に
おいて相互を絶縁している。
Further, the surface of the first gate electrode 30 is also covered with a double insulating layer consisting of a thin thermal oxide film 13 of po-17Si and a Si3N4 layer 12. and the second gate electrode 4 are insulated from each other at the overlap portion.

なお、熱酸化膜11.13の厚さを15〜30人、Si
3N4層12の厚さを400〜1000人に制限するの
は、転送ゲート部が二重ゲート絶縁層型閾値可変MOS
ゲートとして動作させることと、熱酸化膜11゜13は
同一熱酸化工程で形成できるようにするためである。
Note that the thickness of the thermal oxide film 11.13 is 15 to 30,
The reason why the thickness of the 3N4 layer 12 is limited to 400 to 1000 is that the transfer gate part is a double gate insulating layer type variable threshold MOS.
This is to operate as a gate and to form the thermal oxide films 11 and 13 in the same thermal oxidation process.

上記本発明の構造によれば、クロックパルス供給源7と
接続する前に、ゲート電極に、例えば、+aov、 5
0m5幅程度0パルスを印加すると、第1のゲート電極
3下の熱酸化膜2およびP型Si基板1表面には何ら変
化を生じないが、第2のゲート電極4下のSi3N41
2には、周知のキャリヤ注入現象により、P型Si基板
1から電子が注入され蓄積される結果、P型Si基板1
表面の正孔濃度は第1のゲート電極3下のP型Si基板
1表面の正孔濃度より高くなる。即ち、従来構造におい
て第2のゲート電極下にP型不純物を導入し高濃度P型
領域6を形成したものと同一の効果となる。また、例え
ば、−3ov、 50m5幅程度0パルスを印加すると
、上記と同様第1のゲート電極3下には何ら変化は生じ
ないが、第2のゲート電極4下では、P型Si基板1よ
1)Si3N4層12に正孔が注入され蓄積される結果
、P型Si基板1表面の正孔濃度は第1のゲート電極3
下のP型Si基板1表面の正孔濃度より低くなる。
According to the structure of the present invention, for example, +aov, 5 is applied to the gate electrode before connecting to the clock pulse supply source 7.
When a pulse of about 0 m5 width is applied, no change occurs in the thermal oxide film 2 under the first gate electrode 3 and the surface of the P-type Si substrate 1, but the Si3N41 under the second gate electrode 4 changes.
2, as a result of electrons being injected and accumulated from the P-type Si substrate 1 due to the well-known carrier injection phenomenon, the P-type Si substrate 1
The hole concentration at the surface is higher than the hole concentration at the surface of the P-type Si substrate 1 under the first gate electrode 3. That is, the effect is the same as that of the conventional structure in which a P-type impurity is introduced under the second gate electrode to form a heavily doped P-type region 6. Further, for example, if a zero pulse of about -3 ov and width of 50 m5 is applied, no change occurs under the first gate electrode 3 as described above, but under the second gate electrode 4, there is a change compared to the P-type Si substrate 1. 1) As a result of holes being injected and accumulated in the Si3N4 layer 12, the hole concentration on the surface of the P-type Si substrate 1 is lower than that of the first gate electrode 3.
The hole concentration is lower than the hole concentration on the surface of the P-type Si substrate 1 below.

即ち、ゲート電極に印加するパルス電圧の極性に応じて
第2のゲート電極4下のP型Si基板1表面の正孔濃度
は、第1のゲート電極3下のP型Si基板1表面の正孔
濃度より高くなるか、あるいは低くなる。従って、第1
のゲート電極3と第2のゲート電極4とに同一のクロッ
クパルスを印加した場合、それぞれのゲート電極下に形
成される空乏層の深さの差は異な’) 、S”3N4層
12に電子が注入されている時は、WIJ2のゲート電
極4下の空乏層の方が浅く、逆に、Si3N4層12に
正孔が注入されている時は、第1のゲート電極3下の空
乏層の方が浅くなる。
That is, depending on the polarity of the pulse voltage applied to the gate electrode, the hole concentration on the surface of the P-type Si substrate 1 under the second gate electrode 4 increases with the positive hole concentration on the surface of the P-type Si substrate 1 under the first gate electrode 3. It can be higher or lower than the pore concentration. Therefore, the first
When the same clock pulse is applied to the gate electrode 3 and the second gate electrode 4, the difference in the depth of the depletion layer formed under each gate electrode is different. When holes are injected into the Si3N4 layer 12, the depletion layer under the gate electrode 4 of the WIJ2 is shallower. Conversely, when holes are injected into the Si3N4 layer 12, the depletion layer under the first gate electrode 3 It becomes shallower.

第3図において説明したように、電荷の転送方向は、第
1のゲート電極3と第2のゲート電極4のそれぞれの下
にできる空乏層の深さの差で定まるから、第2のゲート
電極4下のSi3N4層12内に注入・蓄積されている
電荷が電子であるか正孔であるかによ2て、電荷転送方
向は反転する。即ち、本発明の構造によれば、電荷転送
方向を外部から定めることが可能な電荷転送素子を得る
ことができる。
As explained in FIG. 3, the direction of charge transfer is determined by the difference in depth of the depletion layer formed under each of the first gate electrode 3 and the second gate electrode 4. The direction of charge transfer is reversed depending on whether the charges injected and stored in the Si3N4 layer 12 below 4 are electrons or holes. That is, according to the structure of the present invention, it is possible to obtain a charge transfer element whose charge transfer direction can be determined from the outside.

また、従来構造では、第2のゲート電極下のゲート絶縁
層を熱酸化により形成する際、同時に第1のゲート電極
表面に形成されるボ17Siの熱酸化膜によって第1の
ゲート電極と第2のケート電極とを絶縁分離していたが
、本発明においては、第2のゲート電極下の熱酸化膜は
15〜30人の厚さしかないため、第1のゲート電極表
面に形成されるボIJSiの熱酸化膜の厚さも100人
程成長しかならず、これでは第1のゲート電極と第2の
ゲート電極とを十分絶縁分離することは不可能である。
In addition, in the conventional structure, when forming the gate insulating layer under the second gate electrode by thermal oxidation, a thermal oxide film of 17Si formed on the surface of the first gate electrode simultaneously connects the first gate electrode and the second gate electrode. However, in the present invention, since the thermal oxide film under the second gate electrode is only 15 to 30 times thick, the void formed on the surface of the first gate electrode The thickness of the IJSi thermal oxide film is only about 100 nm thick, which makes it impossible to sufficiently insulate and separate the first gate electrode and the second gate electrode.

しかしながら、本発明の構造では、第2のゲート電極下
の電荷蓄積層であるCVD法による5iaNa層を第1
のゲート電極表面にまで延在させることにより、第1の
ゲート電極と第2のゲート電極との十分な絶縁分離を確
保している。
However, in the structure of the present invention, the 5iaNa layer formed by the CVD method, which is the charge storage layer under the second gate electrode, is
By extending to the surface of the gate electrode, sufficient insulation separation between the first gate electrode and the second gate electrode is ensured.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれは、外部から電荷転
送方向を定めることが可能な電荷転送素子を、ゲート電
極相互間の絶縁分離を妨げることなく得ることができる
As described above, according to the present invention, a charge transfer element whose charge transfer direction can be determined from the outside can be obtained without interfering with insulation separation between gate electrodes.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)は本発明の一実施例を示す断面図、第れに
よる電荷転送の説明図である。 1・・・・・・P型Si基板、2・・・・・・熱酸化膜
、3・・・・・・第1のゲート電極、4・・・・・・第
2のゲート電極、5・・・・・・熱酸化膜、6・・・・
・・高濃度P型領域、7・山・・クロックパルス供給源
、11・・・・・・熱酸化膜、12・・・・・・Si3
N4層、13・・・・・・熱酸化膜、φ、−φ・・・・
・・クロック。 苗f 図 lレ ス               Cα2源 ? (b)
FIG. 1(a) is a cross-sectional view showing one embodiment of the present invention, and a second explanatory diagram of charge transfer. DESCRIPTION OF SYMBOLS 1... P-type Si substrate, 2... Thermal oxide film, 3... First gate electrode, 4... Second gate electrode, 5 ...Thermal oxide film, 6...
...High concentration P-type region, 7. Mountain... Clock pulse supply source, 11... Thermal oxide film, 12... Si3
N4 layer, 13... thermal oxide film, φ, -φ...
··clock. Seedling f Figure l reply Cα2 source? (b)

Claims (2)

【特許請求の範囲】[Claims] (1)Si基板の一主表面上に、複数個のMOS型ゲー
トを配置し、隣接する2個のMOS型ゲートを一組とし
て構成される複数組のMOS型ゲート群を一組おきに同
一のクロックパルス供給源に接続してなる電荷転送素子
において、前記2個一組のMOS型ゲートの内、蓄積ゲ
ート部は第1の熱酸化膜をゲート絶縁層とするMOS型
ゲート構造を有し、転送ゲート部はゲート絶縁層が前記
第1の熱酸化膜より厚さの薄い第2の熱酸化膜と該第2
の熱酸化膜を覆う熱酸化膜とは異なる組成の絶縁物層と
からなる二重ゲート絶縁層型閾値可変MOSゲート構造
であり、かつ蓄積ゲート部のゲート電極表面も前記第1
の熱酸化膜より厚さの薄い第3の熱酸化膜と該第3の熱
酸化膜を覆う熱酸化膜とは異なる組成の絶縁物層とから
なる二重絶縁物層で覆われていることを特徴とする電荷
転送素子。
(1) A plurality of MOS type gates are arranged on one main surface of a Si substrate, and every other set of MOS type gate groups, each consisting of two adjacent MOS type gates, is the same. In the charge transfer device connected to a clock pulse supply source, the storage gate portion of the set of two MOS gates has a MOS gate structure with a first thermal oxide film as a gate insulating layer. , in the transfer gate section, the gate insulating layer includes a second thermal oxide film thinner than the first thermal oxide film and the second thermal oxide film.
This is a double gate insulating layer type variable threshold MOS gate structure consisting of an insulating layer having a composition different from that of the thermal oxide film covering the thermal oxide film, and the gate electrode surface of the storage gate portion also covers the first thermal oxide film.
be covered with a double insulating layer consisting of a third thermal oxide film thinner than the thermal oxide film of and an insulating layer having a composition different from that of the thermal oxide film covering the third thermal oxide film; A charge transfer device characterized by:
(2)第2、第3の熱酸化膜の厚さが15〜30Åであ
り、熱酸化膜を覆う該熱酸化膜とは異なる組成の絶縁物
層が、CVD法により成長させたSi_3N_4層であ
って、かつ該Si_3N_4の厚さは400〜1000
Åである特許請求の範囲第(1)項記載の電荷転送素子
(2) The thickness of the second and third thermal oxide films is 15 to 30 Å, and the insulating layer covering the thermal oxide film and having a composition different from that of the thermal oxide film is a Si_3N_4 layer grown by the CVD method. , and the thickness of the Si_3N_4 is 400 to 1000
The charge transfer device according to claim (1), which is Å.
JP1587185A 1985-01-30 1985-01-30 Charge transfer device Pending JPS61174772A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1587185A JPS61174772A (en) 1985-01-30 1985-01-30 Charge transfer device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1587185A JPS61174772A (en) 1985-01-30 1985-01-30 Charge transfer device

Publications (1)

Publication Number Publication Date
JPS61174772A true JPS61174772A (en) 1986-08-06

Family

ID=11900860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1587185A Pending JPS61174772A (en) 1985-01-30 1985-01-30 Charge transfer device

Country Status (1)

Country Link
JP (1) JPS61174772A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5585653A (en) * 1993-07-30 1996-12-17 Nec Corporation Solid-state photoelectric imaging device with reduced smearing
US6018170A (en) * 1996-06-28 2000-01-25 Nec Corporation Single-layer-electrode type two-phase charge coupled device having smooth charge transfer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5585653A (en) * 1993-07-30 1996-12-17 Nec Corporation Solid-state photoelectric imaging device with reduced smearing
US6018170A (en) * 1996-06-28 2000-01-25 Nec Corporation Single-layer-electrode type two-phase charge coupled device having smooth charge transfer

Similar Documents

Publication Publication Date Title
US6190948B1 (en) Method of forming power semiconductor devices having overlapping floating field plates for improving breakdown voltage capability
CN103503155B (en) Super-junction structure and manufacturing method for power device
JPH01115165A (en) Nonvolatile memory cell having charge trapping layer of si-rich silicon nitride
JPS6042634B2 (en) charge coupled device
US4206371A (en) CCD with differently doped substrate regions beneath a common electrode
KR970053612A (en) Manufacturing method of capacitor for semiconductor device
JPH03501909A (en) Method of manufacturing a charge coupled device
US6111279A (en) CCD type solid state image pick-up device
JPS61174772A (en) Charge transfer device
JP3119586B2 (en) Charge transfer device and method of manufacturing the same
JPH10125904A (en) Silicon carbide semiconductor device
KR970072464A (en) 2-phase clock type charge coupled device and manufacturing method thereof
JPH02246264A (en) Semiconductor device and manufacture thereof
CA1075811A (en) Charge coupled device
TW200308090A (en) Charge-coupled device having a reduced width for barrier sections in a transfer channel
KR100265265B1 (en) Semiconductor charge transfer device and method of fabricating the same
JPS61179574A (en) Charge coupled device
CA1101548A (en) Two phase charge coupled devices employing fixed charge for creating asymmetrical potential wells
JPS6318344B2 (en)
JPH07202141A (en) Semiconductor device
JP3075348B2 (en) Semiconductor device and manufacturing method thereof
JP3206009B2 (en) Charge coupled device, method of manufacturing the same, and method of driving the same
JPH03285359A (en) Semiconductor storage device and manufacture thereof
JPS5815271A (en) Charge coupled element
JPS62113467A (en) Semiconductor memory device