JPS61174770A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPS61174770A
JPS61174770A JP1778285A JP1778285A JPS61174770A JP S61174770 A JPS61174770 A JP S61174770A JP 1778285 A JP1778285 A JP 1778285A JP 1778285 A JP1778285 A JP 1778285A JP S61174770 A JPS61174770 A JP S61174770A
Authority
JP
Japan
Prior art keywords
layer
base
emitter
semiconductor layer
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1778285A
Other languages
Japanese (ja)
Inventor
Hiromi Sakurai
桜井 弘美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1778285A priority Critical patent/JPS61174770A/en
Publication of JPS61174770A publication Critical patent/JPS61174770A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/73Bipolar junction transistors
    • H01L29/732Vertical transistors

Abstract

PURPOSE:To obtain an N-P-N transistor characterized by a high speed operation, which is formed in longitudinal up and down direction, by forming N<+>N<->P<+>N<+>N<+> laminated bodies on a P<-> substrate. CONSTITUTION:On a P<-> Si substrate 1, a P<+> channel cutting part 12 and SiO2 13 are laminated, and a hole 14 is provided. An N<+> layer 15 is embedded from the hole 14, and an N<-> epitaxial layer 16 is continuously grown. ions are implanted into the N<-> layer 16, and P<+> layers 17a adn 17b are simultaneously formed. B high implanted energy, an N<+> layer 18a is formed through the P<+> layer 17b and annealed. As a result, an N<+> collector 15a, the N-epitaxial layer 16 and an N<+> emitter 18a held between the P<+> base 17c and the P<+> layer 17b are formed. Then, only the exposed part of the emiter-base junction is covered by the SiO2 13. N<+>, P<+> and N<+> type impurity ions are implanted in the emitter, base and collector regions. After annealing, electrodes 19-21 are attached. In this constitution, junction capacity is decreased, the current feeding path to the base layer is broadened, the base resistance is decreased, and the device characterized by a high speed operation can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は半導体装置およびその製造方法に関し、特に
高速動作半導体デバイスおよびその製造方法に係るもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor device and a method for manufacturing the same, and particularly to a high-speed operating semiconductor device and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

一般的に半導体装置においては、その高速化のために、
シリコンを基板とする半導体デバイスの場合などでは、
バイポーラトランジスタを利用することが多い、そして
このバイポーラトランジスタでの動作性能を向上させる
ためには、通常、エミッタ・ベース、コレクターベース
、およびコレクタ・基板の各接合容量を低減させると共
に、ベース抵抗を極力小さくさせることが必要で、理論
的には通常のサブミクロンデバイスの場合、23GHz
程度までのカットオフ周波数を達成できるとされている
Generally speaking, in order to increase the speed of semiconductor devices,
In the case of semiconductor devices using silicon as a substrate,
Bipolar transistors are often used, and in order to improve the operating performance of bipolar transistors, the emitter-base, collector-base, and collector-substrate junction capacitances are usually reduced, and the base resistance is minimized as much as possible. It is necessary to make it small, and theoretically in the case of a normal submicron device, 23 GHz
It is said that it is possible to achieve a cutoff frequency up to about 100%.

しかして従来、この種の高速化半導体デバイスを得るの
には、バイポーラトランジスタを可及的超小型に構成さ
せ、これによってその接合容量の低減を図るようにして
いるのであるが、この場合でもベース抵抗の低減は技術
的に極めて困難なものであった。
Conventionally, in order to obtain this type of high-speed semiconductor device, bipolar transistors have been configured to be as small as possible, thereby reducing their junction capacitance. Reducing the resistance was technically extremely difficult.

すなわち、従来例によるこの種の高速化半導体デバイス
、こ〜では酸化膜分離構造のトランジスタの概要構成を
第2図に示す。
That is, FIG. 2 shows a schematic structure of a conventional high-speed semiconductor device of this type, in this case a transistor having an oxide film isolation structure.

この第2図従来例構成において、符号1はp−形シリコ
ン半導体基板、2はN“形埋込み層、3はN−形エピタ
キシャル成長層、4はP+形ベース領域。
In the conventional structure shown in FIG. 2, reference numeral 1 denotes a p-type silicon semiconductor substrate, 2 an N" type buried layer, 3 an N-type epitaxial growth layer, and 4 a P+ type base region.

5はN+形エミッタ領域、6はP”形注入領域、7は保
護酸化膜、8,9.10はエミッタ、ベース、コレクタ
の各電極である。すなわち、このように従来例構成の場
合、一般的にそのトランジスタ構造は、半導体基板上で
横方向に拡げて、エミッタ、ベース、コレクタをそれぞ
れに形成させるようにしている。
5 is an N+ type emitter region, 6 is a P'' type implantation region, 7 is a protective oxide film, and 8, 9.10 are emitter, base, and collector electrodes.In other words, in the case of the conventional configuration, In general, the transistor structure is expanded laterally on a semiconductor substrate to form an emitter, base, and collector, respectively.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ご覧で現在のこの種の高速化デバイスに対する技術的動
向としては、前述した要請に適合させるためにも、横方
向ディメンジョンを極端に小さくさせ、かつ構成自体の
微細化を進めて、各部の接合容量を極力低下させる構造
が、好んで用いられる傾向にある。しかしながら、たと
えこのような手法を採用して、例えばIJL■巾程度ま
でのデザインルールを達成させたとしても、ベースを横
方向に形成する限りにおいては、そのベース抵抗の低減
に自ずから限界があった。
As you can see, the current technological trends for this type of high-speed device are to extremely reduce the lateral dimension and miniaturize the structure itself, in order to meet the above-mentioned requirements, and to increase the junction capacitance of each part. Structures that reduce as much as possible tend to be preferred. However, even if such a method were adopted and a design rule of, for example, IJL width could be achieved, there was a limit to the reduction of base resistance as long as the base was formed laterally. .

この発明は従来のこのような問題点に鑑み、トランジス
タ構成の微細化を達成し、この微細化によって集積密度
の向上と、各部の接合容量の低減とを図ると共に、併せ
てベース抵抗を低減させた半導体装置およびその製造方
法を得ることを目的とする。
In view of these conventional problems, this invention achieves miniaturization of the transistor structure, and through this miniaturization, improves the integration density and reduces the junction capacitance of each part, as well as reduces the base resistance. The object of the present invention is to obtain a semiconductor device and a method for manufacturing the same.

〔問題点を解決するための手段〕[Means for solving problems]

前記目的を達成するためにこの発明に係る半導体装置は
、半導体基板上に形成された酸化膜を所定の大きさに開
口させ、この開口部内にあって、トランジスタの各部を
上下縦方向に配設させると共に、ベース領域によってエ
ミッタ領域を上下から挟むように構成させたものである
In order to achieve the above object, a semiconductor device according to the present invention has an oxide film formed on a semiconductor substrate with an opening of a predetermined size, and each part of a transistor is vertically arranged in the opening. In addition, the emitter region is sandwiched between the base region and the emitter region from above and below.

〔作   用〕[For production]

従ってこの発明においては、トランジスタの各部を上下
縦方向に配設させることにより、半導体基板に対する横
方向への拡がりを小さくさせて、集積密度の向上、ひい
てはトランジスタ各部の接合容量の低減ができ、またエ
ミッタ領域を上下から挟むようにしたベース領域の構成
により、ベース電流の供給パスが広くなってベース抵抗
を低減できる。
Therefore, in this invention, by arranging each part of the transistor in the vertical and vertical directions, it is possible to reduce the lateral spread with respect to the semiconductor substrate, improve the integration density, and reduce the junction capacitance of each part of the transistor. By configuring the base region to sandwich the emitter region from above and below, the base current supply path becomes wider and the base resistance can be reduced.

〔実 施 例〕〔Example〕

以下この発明に係る半導体装置の一実施例につき、第1
図(a)ないしくe)を参照して詳細に説明する。
Below, a first embodiment of a semiconductor device according to the present invention will be described.
This will be explained in detail with reference to Figures (a) to (e).

これらの第1図(a)ないしくe)は、この実施例によ
る半導体装置の製造方法を工μ順に示している。
These FIGS. 1(a) to 1(e) show the method of manufacturing a semiconductor device according to this embodiment in step-by-step order.

この実施例方法においては、まずP−半導体基板11の
主面上の全面に、P+チャンネルカット層12゜ついで
酸化膜13を順次に形成し、これらを開口部14にみも
れるように所定の大きさに選択的に開口させると共に、
この開口部14からのイオン注入または拡散によってN
1埋込み層15を形成(同図(a))し、かつこの開口
部14内にN−エピタキシャル成長層tiltを成長さ
せる(同図(b))。
In this embodiment method, first, a P+ channel cut layer 12 and then an oxide film 13 are sequentially formed on the entire main surface of a P- semiconductor substrate 11, and these are formed in a predetermined area so that they can be seen through the opening 14. Along with selectively opening the size,
By ion implantation or diffusion from this opening 14, N
1 buried layer 15 is formed (FIG. 1(a)), and an N-epitaxial growth layer tilt is grown within this opening 14 (FIG. 2(b)).

ついで前記N−エピタキシャル成長層1Bに対し、イオ
ン注入または拡散によってP+ベース層17a、N”エ
ミッタWj18 、 P”ベース層17bの各接合を順
次に形成させる(同図(C))、こ−でこれらの各接合
については、最初にN−エピタキシャル成長層16に対
し、P+ベース層17aを拡散させ、次にN+エミッタ
層18をイオン注入、かつドライブさせた上で、あらた
めてエピタキシャル層を積み、これにP+ベース517
bをイオン注入、かつドライブさせで形成するか、ある
いは、最初にN−エピタキシャル成長層1Bに対し、P
+ベース層17a、17bを同時に形成させ、次に比較
的高い注入エネルギーにより、Pベース層+7bを越え
るように、N+エミッタ層1Bをイオン注入、かつドラ
イブさせて形成すれば良く、このようにして、トランジ
スタを構成するところの、N+コレクタ埋込み層15a
、N−エピタキシャル成長LLB、P“ベース領域17
c、およびこのP“ベース領域17cによって上下から
挟まれたN+エミッタ領域18aがそれぞれに形成され
る。
Next, the junctions of the P+ base layer 17a, the N'' emitter Wj18, and the P'' base layer 17b are sequentially formed in the N- epitaxial growth layer 1B by ion implantation or diffusion (FIG. 3(C)). For each junction, first, the P+ base layer 17a is diffused into the N- epitaxial growth layer 16, then the N+ emitter layer 18 is ion-implanted and driven, and then an epitaxial layer is stacked again, and the P+ base 517
b by ion implantation and driving, or first, P is formed on the N- epitaxial growth layer 1B.
+ base layers 17a and 17b are formed at the same time, and then the N+ emitter layer 1B is formed by ion implantation and driving so as to exceed the P base layer +7b using relatively high implantation energy. , an N+ collector buried layer 15a that constitutes a transistor.
, N-epitaxial growth LLB, P" base region 17
c, and an N+ emitter region 18a sandwiched from above and below by this P'' base region 17c.

続いて前記第1図(C)の断面状態で、平面的には90
°異なる方向から、エミッタ・ベース接合が表面に露出
している部分のみを、前記と同様にして酸化膜13で覆
い、かつ前記エミッタ、ベース。
Next, in the cross-sectional state shown in FIG. 1(C), the plane is 90
From a different direction, only the portion where the emitter-base junction is exposed on the surface is covered with the oxide film 13 in the same manner as above, and the emitter-base junction is covered with the oxide film 13.

コレクタとなる各領域に対しては、選択的にそれぞれN
”、P”、N+不純物をイオン注入して、かつ同時にド
ライブさせ(同図(d))、さらにその後、前記エミッ
タ、ベース、コレクタに対して、それぞれ各外部電極1
!9,20.21を設け(同図(e))、このようにし
て所期の目的とするトランジスタ構成を得るのである。
For each area that becomes a collector, N
", P", and N+ impurities are ion-implanted and driven at the same time (Fig.
! 9, 20, and 21 are provided (see (e) in the same figure), and in this way, the desired transistor configuration is obtained.

従って前記実施例の場合には、トランジスタ構成のエミ
ッタ、ベース、コレクタの各部が、半導体基板に対して
上下縦方向に配設されるために、横方向への広がりを規
制し得て高密度集積が可能となり、かつ同各部を可及的
に小さく形成させることで、その接合容量の低減が達成
され、またベース領域によりエミッタ領域を上下から挟
む構成としたので、ベース電流の供給パスが広くなり、
結果的にベース抵抗を低減できるのである。
Therefore, in the case of the above embodiment, since the emitter, base, and collector of the transistor structure are arranged vertically and vertically with respect to the semiconductor substrate, it is possible to control the spread in the lateral direction and achieve high-density integration. By making each part as small as possible, the junction capacitance can be reduced, and since the emitter region is sandwiched between the base region and the emitter region from above and below, the base current supply path is widened. ,
As a result, base resistance can be reduced.

なお、前記実施例構成においては、p形半導体基板を用
いる場合について述べたが、n形半導体基板に適用して
も同様な作用効果を得られることは勿論である。
Incidentally, in the configuration of the above embodiment, the case where a p-type semiconductor substrate is used has been described, but it goes without saying that similar effects can be obtained even when applied to an n-type semiconductor substrate.

〔発明の効果〕〔Effect of the invention〕

以上詳述したようにこの発明によれば、半導体基板上に
あって、トランジスタの各部構成を上下縦方向に可及的
に小さく形成し、かつエミッタ領域をベース領域により
上下から挟むように構成して配設させたので、構成各部
の接合容量を低減できると共に、ベース領域に関しては
その供給電流パスが広くなって、ベース抵抗を格段に低
減し得る。例えばベース抵抗が繕に低減され−ば、低消
費電流で高速動作させる場合、ゲートの遅延速度を%以
下に抑制でき、Si基板でも10〜50psecオーダ
ーの高速動作半導体デバイスが得られる。そしてこのよ
うにエミッタを上下から挟んでベース電流パスを筒状に
形成させることにより、従来9発生し勝ちであったとこ
ろの、酸化膜とSiとの格子定数不整での表面再結合に
よるベース電流の消失に伴なうhFE低下などの問題も
解消され、併せてベース抵抗の低減に伴ないノイズマー
ジンも改善されて、従来困難であったバイポーラリニヤ
プロセスへの応用も簡単に実行できる。さらにまたこの
トランジスタ構成についても、従来の手法の適用によっ
て簡単に製造でき、しかも主な接合の形成に際しては、
特にマスク合せなどを全く必要としないために、その製
造が容易になるなど9種々の優れた特長を有するもので
ある。
As detailed above, according to the present invention, each component of a transistor is formed as small as possible in the vertical and vertical directions on a semiconductor substrate, and the emitter region is sandwiched between the base regions from above and below. Since the structure is arranged in such a manner that the junction capacitance of each part of the structure can be reduced, the supply current path is widened in the base region, and the base resistance can be significantly reduced. For example, if the base resistance is carefully reduced, the gate delay speed can be suppressed to less than % when operating at high speed with low current consumption, and a high speed operating semiconductor device on the order of 10 to 50 psec can be obtained even with a Si substrate. By sandwiching the emitter from above and below to form a base current path in a cylindrical shape, the base current caused by surface recombination due to the misaligned lattice constant between the oxide film and Si, which would normally occur in the past, can be reduced. Problems such as a decrease in hFE due to the disappearance of 2 are resolved, and the noise margin is also improved due to the reduction in base resistance, making it easier to apply to bipolar linear processes, which has been difficult in the past. Moreover, this transistor configuration can be easily manufactured by applying conventional techniques, and the main junction formation is
In particular, it has nine excellent features, such as ease of manufacture since it does not require mask alignment at all.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)ないしくe)はこの発明に係る半導体装置
の一実施例による製造方法を工程順に示すそれぞれ断面
図であり、また第2図は従来例による半導体装置の概要
構成を示す断面図である。 11・・・・半導体基板、12・・・・チャンネルカッ
ト層13・・・・酸化膜、14・・・・開口部、15.
(15a)・・・・埋込み層、(コレクタ埋込み層)、
16・・・・エピタキシャル成長層、17a、17b、
(17c) ・・・・ベース層、(ベース領域) 、 
18.(18a)・・・・エミッタ層、(エミッタ領域
) 、 19.20.21・・・・エミッタ、ベース、
コレクタの各外部電極。 代理人  大  岩  増  雄 第1図 第 1 図
FIGS. 1(a) to 1(e) are cross-sectional views showing the manufacturing method of a semiconductor device according to an embodiment of the present invention in the order of steps, and FIG. 2 is a cross-sectional view showing the general structure of a conventional semiconductor device. It is a diagram. 11... Semiconductor substrate, 12... Channel cut layer 13... Oxide film, 14... Opening, 15.
(15a)...buried layer, (collector buried layer),
16...Epitaxial growth layer, 17a, 17b,
(17c) ...Base layer, (base region),
18. (18a)...Emitter layer, (emitter region), 19.20.21...Emitter, base,
Each external electrode of the collector. Agent Masuo OiwaFigure 1Figure 1

Claims (2)

【特許請求の範囲】[Claims] (1)第1導電形の半導体基板上に順次に形成された第
2導電形の第1の半導体層、および第2導電形の低濃度
半導体層と、この低濃度半導体層上に形成された第1導
電形の第2の半導体層と、この第2の半導体層に上下か
ら挟まれるように形成された第2導電形の第3の半導体
層とを有し、これらの上下縦方向に形成される第1、第
2、第3の各半導体層を、それぞれにコレクタ、ベース
、エミッタとするトランジスタ構造を少なくとも備えた
ことを特徴とする半導体装置。
(1) A first semiconductor layer of a second conductivity type formed sequentially on a semiconductor substrate of a first conductivity type, a low concentration semiconductor layer of a second conductivity type, and a semiconductor layer formed on the low concentration semiconductor layer. a second semiconductor layer of a first conductivity type; and a third semiconductor layer of a second conductivity type formed to be sandwiched between the second semiconductor layer from above and below; What is claimed is: 1. A semiconductor device comprising at least a transistor structure in which first, second, and third semiconductor layers are used as a collector, a base, and an emitter, respectively.
(2)第1導電形の半導体基板上に酸化膜を形成すると
共に、この酸化膜を所定の大きさに選択的に開口させる
工程と、この開口部を通して前記半導体基板上に、コレ
クタとなる第2導電形の第1の半導体層を形成させる工
程と、前記開口部を第2導電形の低濃度半導体層で埋め
込む工程と、この低濃度半導体層に対して、ベースとな
る第1導電形の第2の半導体層、およびこの第2の半導
体層によつて挟まれたエミッタとなる第2導電形の第3
の半導体層をそれぞれに形成させる工程とを、少なくと
も含むことを特徴とする半導体装置の製造方法。
(2) Forming an oxide film on the semiconductor substrate of the first conductivity type and selectively opening the oxide film to a predetermined size; a step of forming a first semiconductor layer of a second conductivity type; a step of burying the opening with a low concentration semiconductor layer of a second conductivity type; a second semiconductor layer, and a third semiconductor layer of the second conductivity type that serves as an emitter sandwiched by the second semiconductor layer.
A method of manufacturing a semiconductor device, the method comprising at least the step of forming semiconductor layers in each of the semiconductor layers.
JP1778285A 1985-01-30 1985-01-30 Semiconductor device and manufacture thereof Pending JPS61174770A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1778285A JPS61174770A (en) 1985-01-30 1985-01-30 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1778285A JPS61174770A (en) 1985-01-30 1985-01-30 Semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS61174770A true JPS61174770A (en) 1986-08-06

Family

ID=11953287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1778285A Pending JPS61174770A (en) 1985-01-30 1985-01-30 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS61174770A (en)

Similar Documents

Publication Publication Date Title
JPH06151723A (en) Bipolar transistor structure of monolithic semiconductor element and manufacture of said monolithic semiconductor element
US3445734A (en) Single diffused surface transistor and method of making same
US4404738A (en) Method of fabricating an I2 L element and a linear transistor on one chip
US4724221A (en) High-speed, low-power-dissipation integrated circuits
US3817794A (en) Method for making high-gain transistors
JP2553510B2 (en) Semiconductor device and manufacturing method thereof
JPS60163452A (en) Integrated circuit with bipolar device and field effect device and method of producing same
US6297119B1 (en) Semiconductor device and its manufacture
JPS59161867A (en) Semiconductor device
EP0138563A2 (en) Lateral transistors
JPS61174770A (en) Semiconductor device and manufacture thereof
US5506156A (en) Method of fabricating bipolar transistor having high speed and MOS transistor having small size
JPS63175463A (en) Manufacture of bipolar mos integrated circuit
JPH10335346A (en) Lateral pnp bipolar electronic device and manufacturing method thereof
JPS6241427B2 (en)
JPS61174769A (en) Semiconductor device and manufacture thereof
JPS61187271A (en) Hetero-junction type bipolar transistor
JPH0416443Y2 (en)
JPS6167959A (en) Manufacture of semiconductor device
JP3241000B2 (en) Semiconductor device
KR900008818B1 (en) Manufacture method of a particle in bipolar integrated circuit
JP3146024B2 (en) Semiconductor device
JPH0574790A (en) Semiconductor device and manufacture thereof
JPH01186673A (en) Semiconductor device
JPH03259533A (en) Semiconductor integrated circuit device