JPS61173198A - Neutron shielding material - Google Patents

Neutron shielding material

Info

Publication number
JPS61173198A
JPS61173198A JP1623285A JP1623285A JPS61173198A JP S61173198 A JPS61173198 A JP S61173198A JP 1623285 A JP1623285 A JP 1623285A JP 1623285 A JP1623285 A JP 1623285A JP S61173198 A JPS61173198 A JP S61173198A
Authority
JP
Japan
Prior art keywords
added
shielding material
silicone elastomer
neutron
neutron shielding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1623285A
Other languages
Japanese (ja)
Other versions
JPH0431080B2 (en
Inventor
哲也 飯田
忠雄 玉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP1623285A priority Critical patent/JPS61173198A/en
Publication of JPS61173198A publication Critical patent/JPS61173198A/en
Publication of JPH0431080B2 publication Critical patent/JPH0431080B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Absorbent Articles And Supports Therefor (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Particle Accelerators (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明はシリコーンエラストマーを基材とする中性子
遮蔽性能の優れた中性子遮蔽材に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a neutron shielding material having excellent neutron shielding performance and having a silicone elastomer as a base material.

(従来技術) 従来、原子炉等で使用される中性子遮蔽材として、耐熱
性、難燃性の優れた高分子であるシリコーンエラストマ
ーを基材とする遮蔽材が知られている。例えば、特開昭
54−1798号公報では、シリコーンエラストマーに
対して熱中性子吸収のためにホウ素化合物を添加したも
のが開示されており、これはシリコーンエラストマー中
にホウ素化合物をいかに均一に分散させるかについての
改良であり、したがってホウ素をいかに多量に添加させ
るかに視点が置かれ、5〜75容量%(8〜85重四%
)のホウ素化合物を含有させるようにしている。
(Prior Art) Shielding materials based on silicone elastomer, which is a polymer with excellent heat resistance and flame retardance, have been known as neutron shielding materials used in nuclear reactors and the like. For example, JP-A-54-1798 discloses a silicone elastomer in which a boron compound is added for thermal neutron absorption. Therefore, the focus is on how much boron can be added, and the improvement is focused on how much boron can be added.
) is made to contain boron compounds.

ところでシリコーンエラストマーは元来水素含有鑓が少
ないため、ホウ素化合物の含有量が多いと水素原子密度
が小さくなって中性子エネルギースペクトルの硬い(エ
ネルギーの高い)場合、中性子遮蔽性能が小さくなると
いう問題がある。
By the way, silicone elastomers inherently have a low hydrogen content, so if the content of boron compounds is high, the hydrogen atom density will be low, and if the neutron energy spectrum is hard (high energy), there is a problem that the neutron shielding performance will be low. .

(発明の目的) この発明はこのような従来の欠点を解消するためになさ
れたものであり、シリコーンエラストマーの特性を生か
しつつ水素原子密度が低下しないようにした中性子遮蔽
性能の優れた遮蔽材を提供するものである。
(Purpose of the Invention) This invention was made in order to eliminate such conventional drawbacks, and it provides a shielding material with excellent neutron shielding performance that takes advantage of the characteristics of silicone elastomer and prevents the hydrogen atom density from decreasing. This is what we provide.

(発明の構成) この発明の第1の要旨は、シリコーンエラストマーにホ
ウ素化合物が0.5〜5重量%添加されてなるものであ
る。また第2の要旨は、シリコーンエラストマーにホウ
素化合物が0.5〜5重量%添加され、さらにポリプロ
ピレンまたは水素化チタンが添加されてなるものである
(Structure of the Invention) The first aspect of the present invention is that 0.5 to 5% by weight of a boron compound is added to a silicone elastomer. The second feature is that 0.5 to 5% by weight of a boron compound is added to a silicone elastomer, and polypropylene or titanium hydride is further added.

(実施例) シリコーンエラストマーは、含水素系高分子物質の中で
は最も耐熱性および難燃性に優れた材料の1つである。
(Example) Silicone elastomer is one of the materials with the best heat resistance and flame retardancy among hydrogen-containing polymer substances.

またシリコーンエラストマーは温度硬化性があり、硬化
前は液体状であるために、その流動性を利用して複雑な
形状の注型ができるという利点がある。このような性質
のシリコーンエラストマーに対して、ホウ素化合物を加
えると熱中性子を吸収する能力を向上させることができ
る。このホウ素化合物としては、84 C5BN。
Furthermore, since silicone elastomers are temperature-curable and are liquid before hardening, they have the advantage of being able to be cast into complex shapes by utilizing their fluidity. Adding a boron compound to a silicone elastomer having such properties can improve its ability to absorb thermal neutrons. This boron compound is 84 C5BN.

8203等があり、これらを粉末の状態で加えればよい
8203, etc., and these can be added in the form of powder.

上記ホウ素化合物の添加量は、遮蔽材が使用される場所
の中性子エネルギースペクトルによって設定ずればよい
。ホウ素化合物の添加ωとその効果との関係を調べるた
めに、ウラン235の核分裂スペクトルを持つ中性子の
線源を3Qcmの厚さの炭素鋼の壁で遮蔽し、その状態
での中性子線呈率を1とし、さらにこの炭素鋼の壁の外
側を10CIll厚さの遮蔽材で遮蔽した状態における
中性子線M率を計算した。なお、上記遮蔽材としてはシ
リコーンエラストマーに対して添加する84Cの割合を
種々変化させたところ、第1図曲線1に示すような結果
がえられた。すなわちB4Cの添加量が0.5〜5重量
%の範囲内では線量率は2.9以下と小さいのに対し、
5重2%を超えると急激に増加する。したがって、84
Gの添加♀は0゜5〜5重但%の範囲内に設定する必要
がある。その他のホウ素化合物の添加量についても同様
と考えられる。
The amount of the boron compound added may be set depending on the neutron energy spectrum of the location where the shielding material is used. In order to investigate the relationship between the addition ω of a boron compound and its effect, a neutron source with the fission spectrum of uranium-235 was shielded with a 3Qcm thick carbon steel wall, and the neutron radiation rate in that state was calculated. 1, and the neutron beam M rate was calculated in a state where the outside of this carbon steel wall was further shielded with a shielding material with a thickness of 10 CIll. When the ratio of 84C added to the silicone elastomer as the above-mentioned shielding material was varied, results as shown in curve 1 in FIG. 1 were obtained. In other words, when the amount of B4C added is within the range of 0.5 to 5% by weight, the dose rate is as small as 2.9 or less;
When it exceeds 5 weight and 2%, it increases rapidly. Therefore, 84
The addition of G must be set within the range of 0.5 to 5% by weight. The same may be said of the amounts of other boron compounds added.

また上記遮蔽材にポリプロピレンまたは水素化チタンを
添加することによって水素原子密度を増加させることが
できる。例えば、上記遮蔽材の水素原子密度が5 X 
1022 atoms/cm3の場合に゛、これをポリ
プロピレン30重囲%、または水素化チタン50重R%
を添加すれば水素原子密度が6×10  aton+s
/cm3となッテ、水素原子密1120型開%増加する
ことになる。
Further, by adding polypropylene or titanium hydride to the above-mentioned shielding material, the hydrogen atom density can be increased. For example, the hydrogen atom density of the shielding material is 5
In the case of 1022 atoms/cm3, add 30% by weight of polypropylene or 50% by weight of titanium hydride.
By adding , the hydrogen atom density becomes 6×10 aton+s
/cm3, the hydrogen atom density increases by 1120%.

上記添加量は、水素原子密度を向上させるためには多い
ほどよいが、添加量が増加するとポリプロピレンの場合
は難燃性が低下し、水素化チタンの場合は硬化前の流動
性が低下する。したがって、要求される遮蔽材の特性に
応じて、添加量を決定すればよく、またポリプロピレン
と水素化チタンとの両者を適当な割合で添加してもよい
The higher the amount added, the better in order to improve the hydrogen atom density, but as the amount added increases, the flame retardance decreases in the case of polypropylene, and the fluidity before curing decreases in the case of titanium hydride. Therefore, the amount to be added may be determined depending on the required characteristics of the shielding material, and both polypropylene and titanium hydride may be added in an appropriate ratio.

第1表において、シリコーンエラストマーに対して84
Gを種々の割合で加えた遮蔽材、さらにそれにポリプロ
ピレンまたは水素化チタンを加えた遮蔽材の12量率の
減衰率を示す。同表において、Aは84Cを8.2重量
%加えた従来品、B−Hはそれぞれ本願の実施例であっ
て、その他の添加物としてEはポリプロピレンを、F、
G、Hはそれぞれ水素化チタンを加えている。
In Table 1, 84 for silicone elastomers.
The attenuation rates of the 12 mass ratio of shielding materials to which G is added in various proportions and to shielding materials to which polypropylene or titanium hydride is added are shown. In the same table, A is a conventional product containing 8.2% by weight of 84C, B-H are examples of the present application, and other additives include E, polypropylene, F,
G and H each contain titanium hydride.

第1表 同表から明らかなように、Aの従来品では線m率の減衰
率は0.352であるのに対し、B4Cを0.5〜5%
の範囲で添加したB、C,Dでは0.355以上となっ
ており、さらにこれにポリプロピレンまたは水素化チタ
ンを添加したものでは0.386以上となって、減衰率
が向上していることがわかる。
As is clear from Table 1, the attenuation rate of the linear m ratio is 0.352 for the conventional product A, while the attenuation rate for B4C is 0.5 to 5%.
For B, C, and D added in the above range, the value is 0.355 or more, and when polypropylene or titanium hydride is added, the value is 0.386 or more, indicating that the attenuation rate is improved. Recognize.

(発明の効果) 以上説明したように、この発明はシリコーンエラストマ
ーにホウ素化合物が0.5〜5重硲%添加されてなるも
のであり、あるいはシリコーンエラストマーにホウ素化
合物が0.5〜5重階%添加され、さらにポリプロピレ
ンまたは水素化チタンが添加されてなるものであり、こ
れによってシリコーンエラストマーの特性を生かしつつ
、中性子遮蔽性能の向上を達成したものである。
(Effects of the Invention) As explained above, the present invention is a silicone elastomer containing 0.5 to 5% boron compound, or a silicone elastomer containing 0.5 to 5% boron compound. %, and polypropylene or titanium hydride is further added, thereby achieving improvement in neutron shielding performance while taking advantage of the characteristics of silicone elastomer.

【図面の簡単な説明】[Brief explanation of drawings]

図面は84Cの添加量と線ω率との関係を示す特性図で
ある。 1・・・特性曲線。
The drawing is a characteristic diagram showing the relationship between the amount of 84C added and the linear ω ratio. 1...Characteristic curve.

Claims (1)

【特許請求の範囲】 1、シリコーンエラストマーにホウ素化合物が0.5〜
5重量%添加されてなる中性子遮蔽材。 2、シリコーンエラストマーにホウ素化合物が0.5〜
5重量%添加され、さらにポリプロピレンまたは水素化
チタンが添加されてなる中性子遮蔽材。
[Claims] 1. The silicone elastomer contains 0.5 to 0.5 boron compounds.
A neutron shielding material containing 5% by weight. 2. Boron compound in silicone elastomer is 0.5~
A neutron shielding material containing 5% by weight of polypropylene or titanium hydride.
JP1623285A 1985-01-29 1985-01-29 Neutron shielding material Granted JPS61173198A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1623285A JPS61173198A (en) 1985-01-29 1985-01-29 Neutron shielding material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1623285A JPS61173198A (en) 1985-01-29 1985-01-29 Neutron shielding material

Publications (2)

Publication Number Publication Date
JPS61173198A true JPS61173198A (en) 1986-08-04
JPH0431080B2 JPH0431080B2 (en) 1992-05-25

Family

ID=11910805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1623285A Granted JPS61173198A (en) 1985-01-29 1985-01-29 Neutron shielding material

Country Status (1)

Country Link
JP (1) JPS61173198A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005512101A (en) * 2001-12-12 2005-04-28 コジュマ・ロジスティクス Materials based on vinyl ester resins for neutron shielding and subcritical maintenance
JP2007173708A (en) * 2005-12-26 2007-07-05 Ricoh Co Ltd Optical sensor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005512101A (en) * 2001-12-12 2005-04-28 コジュマ・ロジスティクス Materials based on vinyl ester resins for neutron shielding and subcritical maintenance
JP2007173708A (en) * 2005-12-26 2007-07-05 Ricoh Co Ltd Optical sensor device

Also Published As

Publication number Publication date
JPH0431080B2 (en) 1992-05-25

Similar Documents

Publication Publication Date Title
US2796411A (en) Radiation shield
US6797972B2 (en) Neutron shielding materials and a cask for spent fuel
US2727996A (en) Thermal neutron shield and method for making same
WO1994014167A1 (en) RADIATION-BARRIER MATERIAL CAPABLE OF SIMULTANEOUS SHIELDING AGAINST η-RAY, X-RAY AND NEUTRON BEAM
JPS61173198A (en) Neutron shielding material
JPS61290400A (en) Neutron shielding material
JPS5933874B2 (en) Neutron shielding material
Zhang et al. Fabrication of lead borate single crystal nanosheets for attenuating both neutron and gamma radiations
Coltman Jr et al. Radiation effects on organic insulators for superconducting magnets
JPS628097A (en) Resin group neutron absorber
JPS61213694A (en) Neutron shielding material
JPS62194497A (en) Control rod for nuclear reactor
JPS61213695A (en) Neutron shielding material
Celenza et al. Quark effects in the charge distribution of Pb 208
Vaisenberg et al. Weak absorption of antiprotons during their production by protons with 10 GeV/c in Be, Al, Cu, and Au nuclei
US3053776A (en) Radiation shielding materials
Iida et al. Highly effective neutron shielding for transport/storage packaging
JPS61290399A (en) Neutron shielding material
KR19980078181A (en) Silicone rubber-based neutron shielding composition
JP3064059B2 (en) Transparent radiation shielding material and method of manufacturing the same
JPH10226848A (en) Neutron absorbing alloy
Zhao et al. Ultralight Zintl solids assembled by [Al. sub. 6][Na. sub. 2] clusters.
JPS63248858A (en) Vibration damper
Morgan Long-term neutron activation products of Nickel-58
Greenwood et al. Radiative capture of neutrons in the keV region

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term