JPS628097A - Resin group neutron absorber - Google Patents

Resin group neutron absorber

Info

Publication number
JPS628097A
JPS628097A JP60145828A JP14582885A JPS628097A JP S628097 A JPS628097 A JP S628097A JP 60145828 A JP60145828 A JP 60145828A JP 14582885 A JP14582885 A JP 14582885A JP S628097 A JPS628097 A JP S628097A
Authority
JP
Japan
Prior art keywords
resin
neutron absorbing
absorbing material
weight
rack
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60145828A
Other languages
Japanese (ja)
Inventor
飯田 重雄
繁 野口
憲治 名島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP60145828A priority Critical patent/JPS628097A/en
Publication of JPS628097A publication Critical patent/JPS628097A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は原子炉における使用済燃料ラック材及びその周
辺部材、配管、容器等に適用する中性子吸収材(ポイズ
ン材)に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a neutron absorbing material (poison material) that is applied to spent fuel rack materials in nuclear reactors, peripheral members thereof, piping, containers, etc.

[従来の技術] 原子炉の使用済燃料は、原子力発電所内で一定期間冷却
した後再処理することとなっているが、核燃料再処理能
力の不足から使用済燃料を長期間プラントで貯蔵する必
要が生じている。
[Conventional technology] Spent fuel from a nuclear reactor is supposed to be reprocessed after being cooled within a nuclear power plant for a certain period of time, but due to a lack of nuclear fuel reprocessing capacity, it is necessary to store the spent fuel at the plant for a long period of time. is occurring.

また、長サイクル運転を目的とした燃料の高濃縮度化、
高燃焼度化に伴なう使用済燃料ピットの未臨界性維持の
なめ、燃料ラック間隔が増加することが予想されており
、これに対応した設備改造等の対応策を早急に検討する
必要が生じてきた。
In addition, high enrichment of fuel for long cycle operation,
It is expected that the spacing between fuel racks will increase due to the need to maintain subcriticality in spent fuel pits due to higher burn-up, and it is necessary to consider measures such as equipment modification as soon as possible. It has arisen.

即ち、使用済燃料は核分裂性のプルトニウム(P u)
23ヴを多く含有するのでビット水中に貯蔵されるが、
臨界を防止するため所定以上の間隔をとらねばならない
、高濃縮度燃料はウラン(U)235が多いから、使用
済燃料ではその分だけPu239が多く、上記傾向が強
い。
That is, the spent fuel is fissile plutonium (P u).
Since it contains a lot of 23V, it is stored in bit water,
Highly enriched fuel, which requires a predetermined interval or more to prevent criticality, contains a lot of uranium (U)235, so spent fuel contains a correspondingly large amount of Pu239, and the above-mentioned tendency is strong.

このような臨界防止間隔を狭くするために、その間に中
性子吸収材を配置する方法が行なわれてきた。中性子吸
収材を含有するラック材は、従来炭化ホウ素(84C)
を使用したものが主体であり、B、C入りステンレス板
あるいはB4C入りシリコンゴムが実用化されている。
In order to narrow the criticality prevention interval, a method has been used in which a neutron absorbing material is placed between the two. The rack material containing neutron absorbing material is conventionally made of boron carbide (84C).
B and C-containing stainless steel plates or B4C-containing silicone rubber have been put into practical use.

[発明が解決しようとする問題点] しかし、ステンレスは構造材として強固であり耐久性に
富むが、加工上B、C含有量は1%程度であり、また高
価である。一方、シリコンゴムはB、C含有量が高くと
れ、例えば米国B I SC0社で商品化されているが
、軟材料であるためラック構造材として単独では使用で
きない問題点があった。
[Problems to be Solved by the Invention] However, although stainless steel is strong and durable as a structural material, it has a B and C content of about 1% when processed, and is expensive. On the other hand, silicone rubber has a high content of B and C, and is commercialized by BISC0 in the United States, for example, but since it is a soft material, there is a problem that it cannot be used alone as a rack structural material.

本発明はかかる問題点を解決するためになされたもので
、この両者を兼ね備えた高強度、高B、C含有量であり
、ラックピッチを現状あるいはそれ以下におさえること
のできるポイズンラック材料を提供することを目的とす
る。
The present invention was made to solve these problems, and provides a poison rack material that has both of these characteristics, has high strength, high B and C contents, and can suppress the rack pitch to the current level or lower. The purpose is to

[問題点を解決するための手段] 即ち本発明は、ガラス単繊維1〜5重量%を混合して補
強した、ポリアミドビスマレイミド樹脂、エポキシ樹脂
、フェノール樹脂、及びリポキシ樹脂からなる群から選
ばれた樹脂材料に中性子吸収材を添加、圧縮成形してな
る樹脂系中性子吸収材料である。
[Means for Solving the Problems] That is, the present invention provides a resin selected from the group consisting of polyamide bismaleimide resin, epoxy resin, phenol resin, and lipoxy resin, which is reinforced by mixing 1 to 5% by weight of single glass fibers. This is a resin-based neutron absorbing material made by adding a neutron absorbing material to a resin material and compression molding it.

[作 用] 本発明は使用済燃料の貯蔵能力の増強及び燃料の濃縮度
上昇の一対策として、中性子吸収材を利用した樹脂系ポ
イズンラック材料に関するもので、現在、国内外におい
ては本発明の樹脂系ポイズンラック材料を使用した例は
見当たらない。
[Function] The present invention relates to a resin-based poison rack material using a neutron absorbing material as a measure to enhance the storage capacity of spent fuel and increase the enrichment of the fuel. There are no examples of using resin-based poison rack materials.

使用済燃料ビット水は通常的40℃のホウ成木C)I、
BO3;Bとして2000 ppm)であり、冷却系統
故障時にはそれ以上になる可能性があるとされているた
め、中性子吸収材料としてはこれに対する耐久性が要求
される。従って、上記水質条件において耐熱性、耐放射
線性、耐久性を有する樹脂材料が必要であり、本発明に
おいてはポリアミドビスマレイミド樹脂、エポキシ樹脂
、フェノール樹脂、又はリポキシ樹脂等を使用する。ま
た、樹脂の強度を補強するために樹脂材料に対しガラス
単繊維約1〜5重量%を混合する。これに中性子吸収材
として炭化ホウ素(84C)、酸化ガドリニウム(Gc
l、03)、又はこれらの両者を、用途に応じて樹脂材
料に対し1〜50重量%の範囲で添加する。好適にはB
、Cを1〜50重量%、又はG d 20 sを1〜1
2重量%の範囲で添加する0次いでこの樹脂材料を板状
その他の形状に圧縮成形する。
Spent fuel bit water is usually grown at 40℃C)I,
BO3: 2000 ppm as B), and it is said that the amount may exceed this in the event of a cooling system failure, so neutron absorbing materials are required to have durability against this. Therefore, a resin material having heat resistance, radiation resistance, and durability under the above water quality conditions is required, and in the present invention, polyamide bismaleimide resin, epoxy resin, phenol resin, lipoxy resin, etc. are used. Further, in order to reinforce the strength of the resin, about 1 to 5% by weight of single glass fibers are mixed with the resin material. In addition, boron carbide (84C) and gadolinium oxide (Gc) are used as neutron absorbers.
1, 03), or both of these are added in an amount of 1 to 50% by weight based on the resin material depending on the purpose. Preferably B
, 1 to 50% by weight of C, or 1 to 1 G d 20 s
This resin material is then compression molded into a plate or other shape.

成形した樹脂系中性子吸収材料即ち樹脂系ポイズンラッ
ク材は、中性子吸収材84 C、G dz Osの添加
による材料強度、熱的性質等の低下はなく、十分実用可
能であることを確認した。
It was confirmed that the molded resin-based neutron absorbing material, that is, the resin-based poison rack material, did not deteriorate in material strength, thermal properties, etc. due to the addition of the neutron absorbing materials 84 C and G dz Os, and was sufficiently usable for practical use.

[実施例] 以下実施例に基づき、本発明をさらに詳細に説明する。[Example] The present invention will be described in more detail below based on Examples.

耐熱性、耐放射線性、機械的性質に優れ、且つ吸水量の
小さい例えばリポキシ樹脂にガラス単繊維5重量%を混
合し、B4C粉末50重量%を添加したものを板状に圧
縮成形し、66Coγ線照射による放射線劣化の有無を
引張強さ、弾性率について調べた。結果を表に示す。
For example, a lipoxy resin with excellent heat resistance, radiation resistance, and mechanical properties and low water absorption is mixed with 5% by weight of glass single fibers and 50% by weight of B4C powder is compression molded into a plate shape. The tensile strength and modulus of elasticity were investigated to see if there was any radiation deterioration due to radiation exposure. The results are shown in the table.

裏 10@Rad(ラド)においても放射線による損傷は殆
ど認められず、樹脂系ポイズンラック材料として適用可
能であることを確認した。
Almost no damage due to radiation was observed in Back 10@Rad, confirming that it can be used as a resin-based poison rack material.

[発明の効果] 使用済燃料を長期間プラントで貯蔵−する必要があるた
め、燃料ビット中の使用済燃料ラック間隔をできるだけ
小さくして燃料貯蔵容量を増す必要がある0本発吋によ
る樹脂系ポイズンラック材料を使用することにより中性
子を吸収し、使用済燃料ラック間隔を短縮することがで
き、従って、ピット中の貯蔵量の増大が可能となる。ま
た、弾性体と異なり樹脂系を使用するため硬質でラック
への装着が容易で、且つ変形しない。
[Effects of the invention] Since it is necessary to store spent fuel in a plant for a long period of time, it is necessary to increase the fuel storage capacity by minimizing the interval between spent fuel racks in the fuel bit. The use of poison rack materials allows for the absorption of neutrons and reduces the spent fuel rack spacing, thus allowing for increased storage in the pit. Also, unlike elastic materials, resin-based materials are used, so they are hard, easy to mount on racks, and do not deform.

Claims (4)

【特許請求の範囲】[Claims] (1)ガラス単繊維1〜5重量%を混合して補強した、
ポリアミドビスマレイミド樹脂、エポキシ樹脂、フェノ
ール樹脂、及びリポキシ樹脂からなる群から選ばれた樹
脂材料に中性子吸収材を添加、圧縮成形してなることを
特徴とする樹脂系中性子吸収材料。
(1) Reinforced by mixing 1 to 5% by weight of glass single fibers.
A resin-based neutron absorbing material characterized by being made by adding a neutron absorbing material to a resin material selected from the group consisting of polyamide bismaleimide resin, epoxy resin, phenol resin, and lipoxy resin and compression molding the mixture.
(2)中性子吸収材が樹脂材料に対し炭化ホウ素及び酸
化ガドリニウムの少なくとも1種の1〜50重量%であ
る特許請求の範囲第1項記載の樹脂系中性子吸収材料。
(2) The resin-based neutron absorbing material according to claim 1, wherein the neutron absorbing material is 1 to 50% by weight of at least one of boron carbide and gadolinium oxide based on the resin material.
(3)中性子吸収材が樹脂材料に対し炭化ホウ素1〜5
0重量%である特許請求の範囲第2項記載の樹脂系中性
子吸収材料。
(3) The neutron absorber contains 1 to 5 boron carbide for resin material.
The resin-based neutron absorbing material according to claim 2, which has a content of 0% by weight.
(4)中性子吸収材が樹脂材料に対し酸化ガドリニウム
1〜12重量%である特許請求の範囲第2項記載の樹脂
系中性子吸収材料。
(4) The resin-based neutron absorbing material according to claim 2, wherein the neutron absorbing material contains 1 to 12% by weight of gadolinium oxide based on the resin material.
JP60145828A 1985-07-04 1985-07-04 Resin group neutron absorber Pending JPS628097A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60145828A JPS628097A (en) 1985-07-04 1985-07-04 Resin group neutron absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60145828A JPS628097A (en) 1985-07-04 1985-07-04 Resin group neutron absorber

Publications (1)

Publication Number Publication Date
JPS628097A true JPS628097A (en) 1987-01-16

Family

ID=15394057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60145828A Pending JPS628097A (en) 1985-07-04 1985-07-04 Resin group neutron absorber

Country Status (1)

Country Link
JP (1) JPS628097A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0312596A (en) * 1989-06-10 1991-01-21 Power Reactor & Nuclear Fuel Dev Corp Multilayer slab tank with shielding material
JPH05267504A (en) * 1992-03-18 1993-10-15 Shin Etsu Chem Co Ltd Resin composition and semiconductor device sealed or covered with resin composition
JP2006145421A (en) * 2004-11-22 2006-06-08 Hazama Corp Heat-resistant neutron shielding and the neutron shield method
JP2008172054A (en) * 2007-01-12 2008-07-24 Sumitomo Bakelite Co Ltd Semiconductor sealing resin composition and semiconductor device
JP2011058934A (en) * 2009-09-09 2011-03-24 Japan Atomic Energy Agency Neutron absorption sheet
JP2013205359A (en) * 2012-03-29 2013-10-07 Toshiba Corp Gelatinous neutron absorber and molten core recovery method
EP2997595A4 (en) * 2013-05-16 2017-01-25 National Institute Of Aerospace Associates Radiation hardened microelectronic chip packaging technology
JP2017026563A (en) * 2015-07-28 2017-02-02 株式会社▲高▼田機械製作所 Neutron shielding material, method for manufacturing the same, and neutron shielding container
US10262951B2 (en) 2013-05-16 2019-04-16 National Institute Of Aerospace Associates Radiation hardened microelectronic chip packaging technology
WO2022145401A1 (en) * 2020-12-28 2022-07-07 新日本繊維株式会社 Inorganic composition and fibers and flakes thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0312596A (en) * 1989-06-10 1991-01-21 Power Reactor & Nuclear Fuel Dev Corp Multilayer slab tank with shielding material
JPH05267504A (en) * 1992-03-18 1993-10-15 Shin Etsu Chem Co Ltd Resin composition and semiconductor device sealed or covered with resin composition
JP2006145421A (en) * 2004-11-22 2006-06-08 Hazama Corp Heat-resistant neutron shielding and the neutron shield method
JP2008172054A (en) * 2007-01-12 2008-07-24 Sumitomo Bakelite Co Ltd Semiconductor sealing resin composition and semiconductor device
JP2011058934A (en) * 2009-09-09 2011-03-24 Japan Atomic Energy Agency Neutron absorption sheet
JP2013205359A (en) * 2012-03-29 2013-10-07 Toshiba Corp Gelatinous neutron absorber and molten core recovery method
EP2997595A4 (en) * 2013-05-16 2017-01-25 National Institute Of Aerospace Associates Radiation hardened microelectronic chip packaging technology
US10262951B2 (en) 2013-05-16 2019-04-16 National Institute Of Aerospace Associates Radiation hardened microelectronic chip packaging technology
JP2017026563A (en) * 2015-07-28 2017-02-02 株式会社▲高▼田機械製作所 Neutron shielding material, method for manufacturing the same, and neutron shielding container
WO2022145401A1 (en) * 2020-12-28 2022-07-07 新日本繊維株式会社 Inorganic composition and fibers and flakes thereof

Similar Documents

Publication Publication Date Title
JPS628097A (en) Resin group neutron absorber
KR102237781B1 (en) Nuclear fuel containing recycled and depleted uranium, and nuclear fuel bundle and nuclear reactor comprising same
Pigford et al. The plutonium fuel cycles
US20100166133A1 (en) Use of isotopically enriched nitrogen in actinide fuel in nuclear reactors
US20050286676A1 (en) Use of isotopically enriched nitride in actinide fuel in nuclear reactors
Kim et al. A study on artificial rare earth (RE2O3) based neutron absorber
Pavlovichev et al. Neutron-physical characteristics of a VVER-1000 core with 100% fuel load consisting of a mixture of recovered uranium and plutonium and enriched uranium
JPS6138491A (en) Fuel aggregate for nuclear reactor
Hatala Beyond 5% Enrichment Limit for PWR 17 X 17 and VVER 440 Fuel-Criticality, Inventory and High Burnup Problems
Metzger et al. Thermal neutron shield and method of manufacture
Eschbach et al. Possible optimum use of thorium and uranium employing crossed-progeny fuel cycles
Jun et al. Nuclear analysis for the boraflex used in a typical spent-fuel storage assembly
Yapici Burning and/or transmutation of transuraniums discharged from PWR-UO2 spent fuel and power flattening along the operation period in the force free helical reactor
Graves Jr et al. Silver—Indium—Cadmium, a Control Rod Material for Pressurized Water Reactors
Wilson The 1996 IAEA regulations for the safe transport of radioactive materials—The transport of fissile material
Crosthwaite Spent fuel data collection and recording in Canada
Nolan et al. Evaluation of an asphalt system for an operating Powdex BWR
Alsaed Waste Package Related Impacts of Plutonium Disposition Waste Form Geologic Repository
Wells Criticality effects of longitudinal gaps in poison for storage/transport casks
Greene et al. FMDP reactor alternative summary report. Volume 1-existing LWR alternative
Brey et al. The Fort St. Vrain high temperature gas-cooled reactor: XIII. Radiological and shielding performance of Fort St. Vrain
Brooks et al. Safety aspects of BNL's high-flux beam reactor
Barreau et al. Recent advances in French validation program and derivation of the acceptance criteria for UOx Fuel
Trilling ORGANIC MODERATED REACTOR EXPERIMENT QUARTERLY PROGRESS REPORT FOR AUGUST-OCTOBER 1956
Machiels et al. EPRI R&D perspective on burnup credit