JP2006145421A - Heat-resistant neutron shielding and the neutron shield method - Google Patents
Heat-resistant neutron shielding and the neutron shield method Download PDFInfo
- Publication number
- JP2006145421A JP2006145421A JP2004337219A JP2004337219A JP2006145421A JP 2006145421 A JP2006145421 A JP 2006145421A JP 2004337219 A JP2004337219 A JP 2004337219A JP 2004337219 A JP2004337219 A JP 2004337219A JP 2006145421 A JP2006145421 A JP 2006145421A
- Authority
- JP
- Japan
- Prior art keywords
- neutron
- heat
- mass
- shielding
- resistant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 12
- 239000000843 powder Substances 0.000 claims abstract description 36
- 230000004927 fusion Effects 0.000 claims abstract description 28
- 239000005011 phenolic resin Substances 0.000 claims abstract description 20
- 229910052580 B4C Inorganic materials 0.000 claims abstract description 18
- INAHAJYZKVIDIZ-UHFFFAOYSA-N boron carbide Chemical compound B12B3B4C32B41 INAHAJYZKVIDIZ-UHFFFAOYSA-N 0.000 claims abstract description 18
- 239000000203 mixture Substances 0.000 claims description 9
- 238000003825 pressing Methods 0.000 claims description 5
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 claims description 3
- 229920001568 phenolic resin Polymers 0.000 claims description 3
- 238000001816 cooling Methods 0.000 abstract description 11
- 238000000465 moulding Methods 0.000 abstract description 4
- 238000006243 chemical reaction Methods 0.000 description 10
- 239000000463 material Substances 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- 230000020169 heat generation Effects 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- 239000011358 absorbing material Substances 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- 238000005452 bending Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000003822 epoxy resin Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229920000647 polyepoxide Polymers 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 230000002411 adverse Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000004898 kneading Methods 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- VZSRBBMJRBPUNF-UHFFFAOYSA-N 2-(2,3-dihydro-1H-inden-2-ylamino)-N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]pyrimidine-5-carboxamide Chemical group C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C(=O)NCCC(N1CC2=C(CC1)NN=N2)=O VZSRBBMJRBPUNF-UHFFFAOYSA-N 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- YZCKVEUIGOORGS-OUBTZVSYSA-N Deuterium Chemical compound [2H] YZCKVEUIGOORGS-OUBTZVSYSA-N 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 229910052805 deuterium Inorganic materials 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000005243 fluidization Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 description 1
- 238000013007 heat curing Methods 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 229920003986 novolac Polymers 0.000 description 1
- 230000001151 other effect Effects 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 229920013716 polyethylene resin Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 229920003987 resole Polymers 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Containers, Films, And Cooling For Superconductive Devices (AREA)
Abstract
Description
本発明は、核融合装置等から発生する中性子を遮蔽すると共に、発生した中性子による核発熱を抑え、安定した核融合による発電等を行うことを可能にする、250℃以上の耐熱性を備えた耐熱中性子遮蔽体及び中性子遮蔽方法に関する。 The present invention has a heat resistance of 250 ° C. or higher, which shields neutrons generated from a fusion device and the like, suppresses nuclear heat generation by the generated neutrons, and enables power generation by stable fusion. The present invention relates to a heat-resistant neutron shield and a neutron shield method.
核融合発電装置は、ドーナツ形状等の真空容器内に重水素等の燃料水素を供給し、これに電圧を印加してプラズマを励起させ、水素を超高温に加熱し、水素の原子核同士が融合する核融合反応によって生じるエネルギーを利用する装置である。このような核融合反応が生じると、前記エネルギーと共に中性子も発生する。
前記核融合発電装置においては、核融合反応を継続させるために、常時極低温環境が要求される超伝導コイルが前記真空容器の外側に設置されている。ところで、前記核融合反応により生じる中性子が前記超伝導コイルに照射されると発熱反応が生じ、これにより高温になると超伝導コイルにおける超伝導機能が失われ、核融合反応を継続させることが困難となり、結果として発電ができなくなる。
そこで、このような核融合発電装置においては、超伝導コイルへの前記中性子照射を抑制するために、中性子遮蔽体等を設ける必要がある。また、核融合装置等の運転前に行なう真空容器のベーキング、即ち、真空容器内の不純物を除去するために、真空容器内を加熱し、不純物を蒸発させてから行うガス抜き作業も250〜300℃程度で行われるので、前記中性子遮蔽体にはこのような高温に対する耐熱性も要求される。
しかし、従来提案されている中性子遮蔽体は、中性子遮蔽樹脂材料としてポリエチレン樹脂やエポキシ系樹脂を用いるものが殆どであるため、その耐熱性は高くても百数十℃程度に過ぎず、上記真空容器の内側に配設する中性子遮蔽体としての利用はできない。
A fusion power generator supplies fuel hydrogen such as deuterium into a doughnut-shaped vacuum vessel, applies a voltage to this to excite plasma, heats the hydrogen to an ultra-high temperature, and fuses the hydrogen nuclei together It is a device that uses the energy generated by the nuclear fusion reaction. When such a fusion reaction occurs, neutrons are also generated along with the energy.
In the nuclear fusion power generator, a superconducting coil that always requires a cryogenic environment is installed outside the vacuum vessel in order to continue the fusion reaction. By the way, when the superconducting coil is irradiated with neutrons generated by the fusion reaction, an exothermic reaction occurs. When the temperature becomes high, the superconducting function in the superconducting coil is lost and it becomes difficult to continue the fusion reaction. As a result, power generation becomes impossible.
Therefore, in such a fusion power generator, it is necessary to provide a neutron shield or the like in order to suppress the neutron irradiation to the superconducting coil. Further, baking of the vacuum vessel performed before the operation of the nuclear fusion apparatus or the like, that is, degassing operation performed after heating the inside of the vacuum vessel and evaporating the impurities in order to remove impurities in the vacuum vessel is 250 to 300. Since it is performed at about 0 ° C., the neutron shield is also required to have heat resistance against such a high temperature.
However, since most of the conventionally proposed neutron shields use polyethylene resin or epoxy resin as a neutron shielding resin material, the heat resistance thereof is only about a few hundred degrees Celsius even if it is high. It cannot be used as a neutron shield disposed inside the container.
特許文献1には、中性子遮蔽材料の耐熱性を改善するために、中性子遮蔽樹脂材料としてのエポキシ系樹脂等に代えてフェノール樹脂を用いることが提案されている。しかし、この文献に記載された耐熱性中性子遮蔽材は、中性子遮蔽性を確保するために、中性子吸収材料100質量部に、フェノール樹脂を10〜100質量部の範囲で配合して成形加工した材料である。このような中性子吸収材料の含有量が多いものでは、中性子遮蔽性には優れるが、フェノール樹脂の有する優れた耐熱性を充分に発揮させることが困難であり、200℃以上の耐熱性が得られる場合もあるが、250℃以上の耐熱性が得られるまでには至っていない。
そこで、特許文献2には、前記真空容器の外壁に沿って配設する核融合装置用中性子遮蔽体として、従来のエポキシ樹脂等と中性子吸収材料とを混合成形した遮蔽体に、水を内包した冷却チャンネルを設けた、冷却装置付き中性子遮蔽体が提案されている。
このような中性子遮蔽体は、前記冷却チャンネルにより発熱が抑制され、中性子遮蔽体自体の耐熱性が150℃以下であっても充分に核融合反応やベーキング作業を実施することができ、中性子遮蔽性にも優れる。
しかし、このような中性子遮蔽体を採用するには、前記冷却チャンネル設備が必要であり、しかも、該冷却チャンネルが水冷式であるため、錆等による容器の劣化、更には、水漏れによる冷却能力の低下により中性子遮蔽体自体の軟化又は流動化が生じることが無いように充分な管理が必要となる。
Therefore, in Patent Document 2, as a neutron shield for a fusion apparatus disposed along the outer wall of the vacuum vessel, water is included in a shield formed by mixing a conventional epoxy resin or the like and a neutron absorbing material. A neutron shield with a cooling device provided with a cooling channel has been proposed.
Such a neutron shield can suppress heat generation by the cooling channel, and can sufficiently perform a fusion reaction or baking work even if the heat resistance of the neutron shield itself is 150 ° C. or less. Also excellent.
However, in order to employ such a neutron shield, the cooling channel equipment is required, and since the cooling channel is water-cooled, the vessel is deteriorated due to rust, etc., and further, the cooling capacity due to water leakage Sufficient management is required so that softening or fluidization of the neutron shield itself does not occur due to a decrease in the neutron.
本発明の課題は、250℃以上の耐熱性を示すと共に、充分な中性子遮蔽性能を有し、例えば、特別な冷却装置を設けなくても、核融合装置における真空容器等の外壁に沿っての設置が可能である耐熱中性子遮蔽体を提供することにある。
本発明の別の課題は、中性子遮蔽体への特別な冷却装置の設置や特別の管理等を行う必要がなく、核融合装置における超伝導コイルへの中性子照射を充分に抑制すると共に、装置自体の中性子による発熱を抑制し、安定的な運転を可能にする中性子遮蔽方法を提供することにある。
The problem of the present invention is that it has a heat resistance of 250 ° C. or more and has a sufficient neutron shielding performance. For example, it can be provided along the outer wall of a vacuum vessel or the like in a fusion apparatus without providing a special cooling device. The object is to provide a heat-resistant neutron shield that can be installed.
Another problem of the present invention is that it is not necessary to install a special cooling device or special management on the neutron shield, and sufficiently suppress the neutron irradiation to the superconducting coil in the fusion device, and the device itself. An object is to provide a neutron shielding method that suppresses heat generation by neutrons and enables stable operation.
本発明者らは、上記課題を解決するために鋭意検討した結果、耐熱性に優れたフェノール樹脂に配合する中性子吸収材料として、特定の中性子吸収粉末を用いることにより、その含有量を非常に少なくした場合であっても充分な中性子遮蔽能が発揮されることを見出した。そして、このような中性子吸収粉末を用い、フェノール樹脂の配合割合を高くすることによって、該フェノール樹脂の有する耐熱性を充分に発揮させ、従来にはない250℃以上の耐熱性を示すと共に優れた中性子遮蔽能をも示す耐熱中性子遮蔽体が得られることを見出し本発明を完成した。 As a result of intensive studies to solve the above-mentioned problems, the present inventors have used a specific neutron absorbing powder as a neutron absorbing material to be blended with a phenol resin excellent in heat resistance, so that its content is extremely low. Even in this case, it was found that sufficient neutron shielding ability is exhibited. And by using such a neutron absorbing powder and increasing the blending ratio of the phenol resin, the heat resistance of the phenol resin is sufficiently exerted, exhibiting an excellent heat resistance of 250 ° C. or higher, which is not conventional. The present invention has been completed by finding that a heat-resistant neutron shield that also exhibits neutron shielding ability can be obtained.
本発明によれば、硬化物の耐熱温度が250℃以上のフェノール樹脂100質量部と、炭化ホウ素粉末1質量部以上を有する中性子吸収粉末1〜10質量部とを含む中性子遮蔽組成物を、加熱加圧成形して得た耐熱中性子遮蔽体が提供される。
また本発明によれば、超伝導コイルの内側にドーナツ型真空容器を備えた核融合装置における中性子遮蔽方法であって、少なくとも前記真空容器の外壁に沿って前記耐熱中性子遮蔽体を配設したことを特徴とする中性子遮蔽方法が提供される。
According to the present invention, a neutron shielding composition comprising 100 parts by mass of a phenol resin having a heat-resistant temperature of 250 ° C. or higher and 1 to 10 parts by mass of neutron-absorbing powder having 1 part by mass or more of boron carbide powder is heated. A heat-resistant neutron shield obtained by pressure molding is provided.
According to the present invention, there is also provided a neutron shielding method in a nuclear fusion apparatus having a donut-shaped vacuum vessel inside a superconducting coil, wherein the heat-resistant neutron shield is disposed along at least the outer wall of the vacuum vessel. A neutron shielding method is provided.
本発明の耐熱中性子遮蔽体は、耐熱性に優れるフェノール樹脂と、炭化ホウ素粉末を特定量含む中性子吸収粉末とを特定割合で含む耐熱性中性子遮蔽組成物を、加熱加圧成形して得られるので、250℃以上の耐熱性を示すと共に、充分な中性子遮蔽能を有する。従って、中性子遮蔽体自体に特別な冷却装置を設けることなく、核融合装置における真空容器等の外壁に沿っての設置が可能であり、核融合装置における超伝導コイルの発熱を抑制し、安定した運転を可能にする。
本発明の中性子遮蔽方法は、本発明の耐熱中性子遮蔽体を、少なくとも真空容器等の外壁に沿って配設するので、超伝導コイルの内側にドーナツ型真空容器を備えた核融合装置における、該超伝導コイルへの中性子照射を有効に抑制することができる。しかも、配設する耐熱中性子遮蔽体には、特別な冷却装置の設置が必要なく、また特別の管理等を行う必要もないので、核融合装置における安定的な運転を容易に確保することができる。
The heat-resistant neutron shield of the present invention is obtained by heat-pressing a heat-resistant neutron shielding composition containing a phenol resin having excellent heat resistance and a neutron absorbing powder containing a specific amount of boron carbide powder in a specific ratio. In addition, it has a heat resistance of 250 ° C. or higher and a sufficient neutron shielding ability. Therefore, it is possible to install along the outer wall of a vacuum vessel or the like in the fusion device without providing a special cooling device for the neutron shield itself, and the heat generation of the superconducting coil in the fusion device is suppressed and stabilized. Enable driving.
In the neutron shielding method of the present invention, since the heat-resistant neutron shield of the present invention is disposed along at least the outer wall of a vacuum vessel or the like, the fusion apparatus having a donut-type vacuum vessel inside a superconducting coil, Neutron irradiation to the superconducting coil can be effectively suppressed. In addition, the heat-resistant neutron shield to be installed does not require any special cooling device and does not require any special management, so that stable operation in the fusion device can be easily ensured. .
以下に本発明を更に詳細に説明する。
本発明の耐熱中性子遮蔽体は、耐熱性に優れるフェノール樹脂と、炭化ホウ素粉末を有する中性子吸収粉末とを特定割合で含む中性子遮蔽組成物を加熱加圧成形して得られる。
前記フェノール樹脂は、その硬化物の耐熱性が250℃以上、好ましくは300℃以上であるフェノール樹脂であれば特に限定されず、電気・電子製品等に利用される耐熱性に優れるフェノール樹脂等が好ましく挙げられる。ここで、硬化物の耐熱温度は、JIS,ISO規格の熱負荷試験に準拠する耐熱温度を意味する。
フェノール樹脂は、前記耐熱性を有するものであれば、レゾール型、ノボラック型のいずれでも良く、更には、各種変性フェノール樹脂等が使用できる。
The present invention is described in further detail below.
The heat-resistant neutron shield of the present invention is obtained by heat-pressing a neutron shielding composition containing a phenol resin having excellent heat resistance and a neutron absorbing powder having boron carbide powder in a specific ratio.
The phenolic resin is not particularly limited as long as the cured resin has a heat resistance of 250 ° C. or higher, preferably 300 ° C. or higher, such as a phenol resin having excellent heat resistance used for electrical and electronic products. Preferably mentioned. Here, the heat resistant temperature of the cured product means a heat resistant temperature conforming to a heat load test of JIS and ISO standards.
The phenol resin may be either a resol type or a novolac type as long as it has the above heat resistance, and various modified phenol resins can be used.
前記中性子吸収粉末は、炭化ホウ素粉末を必須に含み、本発明の所望の効果を損なわない範囲で他の中性子吸収粉末を含んでいても良い。
他の中性子吸収粉末としては、例えば、中性子吸収作用を有する公知の、炭化ホウ素以外のホウ素系粉末、カドミウム系粉末、ガドリニウム系粉末等が挙げられる。
前記炭化ホウ素粉末の粒径は、本発明の所望の効果を得るために適宜選択できるが、通常5〜100μm、特に10〜30μm、更には10〜20μm程度のものがフェノール樹脂との混練性及び得られる遮蔽体の中性子遮蔽性の点から好ましい。他の中性子吸収粉末を用いる場合、該粉末の粒径は、本発明の所望の効果を得るために適宜選択でき、通常、炭化ホウ素粉末と同様な粒径のものを採用することができる。
The neutron-absorbing powder essentially contains boron carbide powder and may contain other neutron-absorbing powder as long as the desired effects of the present invention are not impaired.
Examples of other neutron-absorbing powders include known boron-based powders other than boron carbide, cadmium-based powders, gadolinium-based powders and the like having a neutron absorbing action.
The particle size of the boron carbide powder can be appropriately selected in order to obtain the desired effect of the present invention. Usually, the particle size of the boron carbide powder is about 5 to 100 μm, particularly about 10 to 30 μm, more preferably about 10 to 20 μm. It is preferable from the viewpoint of the neutron shielding property of the obtained shield. In the case of using other neutron absorbing powder, the particle size of the powder can be appropriately selected in order to obtain the desired effect of the present invention, and a particle having the same particle size as that of boron carbide powder can be usually employed.
前記耐熱中性子遮蔽組成物は、前記フェノール樹脂及び中性子吸収粉末の他に、本発明の目的を損なわない範囲で、また、他の効果を向上させるために、通常、樹脂製中性子遮蔽体に配合し得る各種添加剤を配合することもできるが、過度の配合は得られる耐熱中性子遮蔽体の耐熱性を250℃未満にする恐れがある。
耐熱中性子遮蔽組成物において、前記中性子吸収粉末の含有量は、前記フェノール樹脂100質量部に対して1〜10質量部、好ましくは2〜5質量部である。該中性子吸収粉末の含有量が1質量部未満では中性子遮蔽能が低下する。一方、10質量部を超える場合には、得られる中性子遮蔽体の耐熱性が低下すると共に、中性子遮蔽能も低下する。
前記中性子吸収粉末中の炭化ホウ素粉末の含有割合は、1質量部以上、好ましくは2〜5質量部である。このような炭化ホウ素粉末の配合により、充分な中性子遮蔽能と耐熱性とを両立して得ることができる。
尚、フェノール樹脂の含有量は固形分換算である。
In addition to the phenolic resin and neutron absorbing powder, the heat-resistant neutron shielding composition is usually blended in a resin-made neutron shield in order not to impair the purpose of the present invention and to improve other effects. Various additives to be obtained can be blended, but excessive blending may cause the heat resistance of the resulting heat-resistant neutron shield to be less than 250 ° C.
In the heat resistant neutron shielding composition, the content of the neutron absorbing powder is 1 to 10 parts by mass, preferably 2 to 5 parts by mass with respect to 100 parts by mass of the phenol resin. When the content of the neutron absorbing powder is less than 1 part by mass, the neutron shielding ability is lowered. On the other hand, when it exceeds 10 parts by mass, the heat resistance of the obtained neutron shielding body is lowered and the neutron shielding ability is also lowered.
The content ratio of the boron carbide powder in the neutron absorbing powder is 1 part by mass or more, preferably 2 to 5 parts by mass. By blending such boron carbide powder, it is possible to obtain both sufficient neutron shielding ability and heat resistance.
In addition, content of a phenol resin is solid content conversion.
前記中性子遮蔽組成物を加熱加圧成形して本発明の耐熱中性子遮蔽体を得るには、該組成物を充分混練した後、所望の金型等に注入し、加圧しながら加熱硬化反応させることにより得ることができる。好ましくは更にアフターベーキングすることで強度等を向上させることができる。
本発明の耐熱中性子遮蔽体は、250℃以上の耐熱性、即ち、250℃の環境下に曝露した場合であっても遮蔽体自体の表面が軟化又は流動化等することがなく、更には中性子遮蔽性が維持される。また、耐熱中性子遮蔽体の強度は、高温下においても、例えばボルト締め等により遮蔽体自体を固定するのに必要な強度を有していれば良い。
In order to obtain the heat-resistant neutron shield of the present invention by heat-pressing the neutron shielding composition, the composition is sufficiently kneaded and then poured into a desired mold or the like, and subjected to a heat-curing reaction while being pressurized. Can be obtained. Preferably, the strength and the like can be improved by further after-baking.
The heat-resistant neutron shield of the present invention has a heat resistance of 250 ° C. or higher, that is, the surface of the shield itself is not softened or fluidized even when exposed to an environment of 250 ° C. Shielding properties are maintained. In addition, the heat-resistant neutron shield may have a strength necessary for fixing the shield itself, for example, by bolting even at a high temperature.
本発明による中性子遮蔽方法は、超伝導コイルの内側に、核融合反応を生じさせるドーナツ型の真空容器を備えた核融合装置において、該超伝導コイルへの中性子の照射を抑制するため等に、少なくとも前記真空容器の外壁に沿って、前述の本発明の耐熱中性子遮蔽体を配設することにより行うことができる。
前記配設は、超伝導コイルへの中性子の照射が抑制しうる所望箇所に、本発明の耐熱中性子遮蔽体を固定することにより行うことができる。該固定の方法は特に限定されず、例えば、ボルト締め等により行うことができる。
The neutron shielding method according to the present invention includes a doughnut-shaped vacuum vessel that generates a nuclear fusion reaction inside a superconducting coil, in order to suppress irradiation of neutrons to the superconducting coil, etc. The heat-resistant neutron shield of the present invention described above can be disposed at least along the outer wall of the vacuum vessel.
The arrangement can be performed by fixing the heat-resistant neutron shield of the present invention at a desired location where irradiation of neutrons to the superconducting coil can be suppressed. The fixing method is not particularly limited, and can be performed, for example, by bolting.
以下、本発明を実施例により更に詳細に説明するが、本発明はこれらに限定されない。
実施例1
フェノール樹脂100質量部に、平均粒径13.7μmの炭化ホウ素粉末をホウ素量換算で1質量部、2質量部、3質量部、4質量部、5質量部又は10質量部を添加し、混練機で充分に混練して中性子遮蔽組成物の混練物をそれぞれ調製した。得られた各混練物を、400mm×400mm×50mmの金型に充填し、加圧しながら加熱加圧成形を行った。得られた成形体を、更に焼成し、耐熱中性子遮蔽体を6種類製造した。また、対照として、炭化ホウ素粉末を添加しないフェノール樹脂のみの成形体も同様に製造した。
得られた各耐熱中性子遮蔽体及び対照物を250℃のオーブンで600時間加熱し、その表面性状等を観察した。その結果、いずれも表面の軟化及び流動化は全くなく、変形も見られなかった。
次に、炭化ホウ素粉末5質量部を混練して調製した耐熱中性子遮蔽体を用いて以下の強度試験を行った。荷重たわみ試験の結果はいずれも300℃以上であった。他の試験結果を表1に示す。また、以下の中性子透過量及び発熱量の評価を行った。結果を表2に示す。
EXAMPLES Hereinafter, although an Example demonstrates this invention still in detail, this invention is not limited to these.
Example 1
1 part by mass, 2 parts by mass, 3 parts by mass, 4 parts by mass, 5 parts by mass or 10 parts by mass of boron carbide powder having an average particle diameter of 13.7 μm are added to 100 parts by mass of the phenol resin and kneaded. The neutron shielding composition kneaded materials were prepared by sufficiently kneading with a machine. Each obtained kneaded material was filled in a 400 mm × 400 mm × 50 mm mold and subjected to heat and pressure molding while applying pressure. The obtained molded body was further fired to produce six types of heat-resistant neutron shields. In addition, as a control, a molded body containing only a phenol resin without adding boron carbide powder was also produced.
Each obtained heat-resistant neutron shield and control were heated in an oven at 250 ° C. for 600 hours, and the surface properties and the like were observed. As a result, none of the surfaces were softened or fluidized, and no deformation was observed.
Next, the following strength tests were performed using a heat-resistant neutron shield prepared by kneading 5 parts by mass of boron carbide powder. The results of the load deflection test were all 300 ° C. or higher. Other test results are shown in Table 1. In addition, the following neutron transmission amount and calorific value were evaluated. The results are shown in Table 2.
<荷重たわみ試験>
JIS K 7191-2に準拠して曲げ応力2.00mPaで2回試験を行った。
<引張試験>
JIS K 7113に準拠して、23℃及び250℃における引張強度を測定した。測定は3検体づつ行った。
<曲げ試験>
JIS K 7171に準拠して、23℃及び250℃における曲げ強度を測定した。測定は3検体づつ行った。
<中性子透過量及び発熱量の評価>
核融合核設計計算コードプログラム(THIDA−2)を用いて、所定の核融合装置データをインプットし、当該核融合装置における超伝導コイルに悪影響を及ぼす核発熱量を計算したところ2.4mW/cc以上であった。この核融合装置に上記作製した各中性子遮蔽体を設置したことを想定したデータを更にインプットして、各中性子遮蔽体の中性子透過量及び該中性子透過量評価時の超伝導コイル自体の発熱量を計算した。
<Load deflection test>
The test was conducted twice at a bending stress of 2.00 mPas according to JIS K 7191-2.
<Tensile test>
Based on JIS K 7113, the tensile strength at 23 ° C. and 250 ° C. was measured. Three samples were measured.
<Bending test>
The bending strength at 23 ° C. and 250 ° C. was measured according to JIS K 7171. Three samples were measured.
<Evaluation of neutron transmission and heat generation>
Using the fusion nuclear design calculation code program (THIDA-2), the specified nuclear fusion device data was input and the nuclear heating value that adversely affects the superconducting coil in the fusion device was calculated to be 2.4 mW / cc. That was all. By further inputting data assuming that each of the neutron shields prepared above was installed in this fusion device, the neutron transmission amount of each neutron shield and the calorific value of the superconducting coil itself at the time of evaluation of the neutron transmission amount were calculated. Calculated.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004337219A JP4742225B2 (en) | 2004-11-22 | 2004-11-22 | Heat-resistant neutron shield and neutron shield method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004337219A JP4742225B2 (en) | 2004-11-22 | 2004-11-22 | Heat-resistant neutron shield and neutron shield method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006145421A true JP2006145421A (en) | 2006-06-08 |
JP4742225B2 JP4742225B2 (en) | 2011-08-10 |
Family
ID=36625283
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004337219A Active JP4742225B2 (en) | 2004-11-22 | 2004-11-22 | Heat-resistant neutron shield and neutron shield method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4742225B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2528272A (en) * | 2014-07-15 | 2016-01-20 | Tokamak Energy Ltd | Shielding materials for fusion reactors |
JP2021144014A (en) * | 2020-03-13 | 2021-09-24 | 株式会社竹中工務店 | Neutron shielding body |
WO2022145401A1 (en) | 2020-12-28 | 2022-07-07 | 新日本繊維株式会社 | Inorganic composition and fibers and flakes thereof |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB201706648D0 (en) * | 2017-04-26 | 2017-06-07 | Tokamak Energy Ltd | Combined neutron shield and solenoid |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5490499A (en) * | 1977-12-01 | 1979-07-18 | Carborundum Co | Oneestage hardening method for making neutron absorbing plate |
JPS628097A (en) * | 1985-07-04 | 1987-01-16 | 三菱重工業株式会社 | Resin group neutron absorber |
JPH06180388A (en) * | 1992-12-11 | 1994-06-28 | Sanoya Sangyo Kk | Heat resistant neutron shielding material |
JP2001272497A (en) * | 2000-03-23 | 2001-10-05 | Nuclear Fuel Ind Ltd | Microsphere of resin cured body that has capability to shield neutron and method for manufacturing neutron shield using such microsphere |
JP2002296390A (en) * | 2001-03-30 | 2002-10-09 | Mitsubishi Heavy Ind Ltd | Neutron shield for fusion device and attaching method therefor |
JP2003066189A (en) * | 2001-08-24 | 2003-03-05 | Mitsubishi Heavy Ind Ltd | Composition for neutron shield material, neutron shield material and vessel |
JP2003167091A (en) * | 2001-11-30 | 2003-06-13 | Hitachi Ltd | Neutron shielding material and used fuel storage container |
-
2004
- 2004-11-22 JP JP2004337219A patent/JP4742225B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5490499A (en) * | 1977-12-01 | 1979-07-18 | Carborundum Co | Oneestage hardening method for making neutron absorbing plate |
JPS628097A (en) * | 1985-07-04 | 1987-01-16 | 三菱重工業株式会社 | Resin group neutron absorber |
JPH06180388A (en) * | 1992-12-11 | 1994-06-28 | Sanoya Sangyo Kk | Heat resistant neutron shielding material |
JP2001272497A (en) * | 2000-03-23 | 2001-10-05 | Nuclear Fuel Ind Ltd | Microsphere of resin cured body that has capability to shield neutron and method for manufacturing neutron shield using such microsphere |
JP2002296390A (en) * | 2001-03-30 | 2002-10-09 | Mitsubishi Heavy Ind Ltd | Neutron shield for fusion device and attaching method therefor |
JP2003066189A (en) * | 2001-08-24 | 2003-03-05 | Mitsubishi Heavy Ind Ltd | Composition for neutron shield material, neutron shield material and vessel |
JP2003167091A (en) * | 2001-11-30 | 2003-06-13 | Hitachi Ltd | Neutron shielding material and used fuel storage container |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2528272A (en) * | 2014-07-15 | 2016-01-20 | Tokamak Energy Ltd | Shielding materials for fusion reactors |
GB2528272B (en) * | 2014-07-15 | 2017-06-21 | Tokamak Energy Ltd | Shielding materials for fusion reactors |
US10636528B2 (en) | 2014-07-15 | 2020-04-28 | Tokamak Energy Ltd | Shielding materials for fusion reactors |
JP2021144014A (en) * | 2020-03-13 | 2021-09-24 | 株式会社竹中工務店 | Neutron shielding body |
JP7373438B2 (en) | 2020-03-13 | 2023-11-02 | 株式会社竹中工務店 | neutron shield |
WO2022145401A1 (en) | 2020-12-28 | 2022-07-07 | 新日本繊維株式会社 | Inorganic composition and fibers and flakes thereof |
KR20230128019A (en) | 2020-12-28 | 2023-09-01 | 닛폰 파이버 코포레이션 | Inorganic compositions and fibers and flakes thereof |
Also Published As
Publication number | Publication date |
---|---|
JP4742225B2 (en) | 2011-08-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3951685B2 (en) | Neutron shielding material and spent fuel container | |
US20050258404A1 (en) | Bismuth compounds composite | |
CN1321423C (en) | Cask, composition for neutron shielding body, and method of manufacturing the neutron shielding body | |
Kajohnchaiyagual et al. | Thermal and mechanical properties enhancement obtained in highly filled alumina‐polybenzoxazine composites | |
JP4742225B2 (en) | Heat-resistant neutron shield and neutron shield method | |
JP2005521859A (en) | Unsaturated polyester materials for neutron shielding and subcritical maintenance | |
TW200426855A (en) | Amorphous composition for high level radiation and environmental protection | |
Wang et al. | Flexible low‐melting point radiation shielding materials: soft elastomers with GaInSnPbBi high‐entropy alloy inclusions | |
Saiyad et al. | Lifetime estimation of epoxy based composite materials on irradiating with gamma radiation for shielding applications | |
JP2011007510A (en) | Radiation shield, radiation shield storage employing the same, and molded product of radiation shield | |
JP2018017647A (en) | Neutron absorber and method for manufacturing the same | |
KR100947528B1 (en) | Material for neutron shielding and for maintaining sub-criticality based on vinylester resin | |
Katritzky et al. | Effect of filler loading on the mechanical properties of crosslinked 1, 2, 3‐triazole polymers | |
EP1661145A2 (en) | Lightweight rigid structural compositions with integral radiation shielding including lead-free structural compositions | |
KR101132322B1 (en) | Neutron shielding material having excellent shield property, high strength and non-frammable and method for manufacturing the same | |
JP2010230411A (en) | Flexible neutron shielding material | |
JP2010038615A (en) | Radiation shielding material and method and preservation liquid set for manufacturing it | |
Rui et al. | Novel multifunctional microcapsule and its cyanate ester resin composites with self‐healing ability and gamma radiation shielding ability | |
Xu et al. | Fabricating UHMWPE‐based shielding materials with excellent high‐temperature mechanical properties and irradiation endurance properties via controlling crosslinked and crystalline structures | |
JP2007033059A (en) | Neutron shielding material and spent fuel storage cask | |
KR20230097486A (en) | neutron absorbing materials with improved neutron absorption capability and thermal conductivity | |
Akman et al. | Eco/Friendly Polymer-Based Composites for Nuclear Shielding Applications | |
JP6921025B2 (en) | Neutron shielding material and spent fuel assembly storage container | |
Sun et al. | Enhancement of nuclear radiation shielding properties of silicone rubber with γ‐ray irradiation induced graphene oxide modified carbonyl iron powder hybrid fillers | |
KR102068901B1 (en) | Neutron absorber for nuclear fuel storage and manufacturing method of the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20060228 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20060303 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20060228 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071025 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20071025 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090826 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090901 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091030 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100223 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100421 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110315 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110407 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140520 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4742225 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140520 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |