JP2007033059A - Neutron shielding material and spent fuel storage cask - Google Patents

Neutron shielding material and spent fuel storage cask Download PDF

Info

Publication number
JP2007033059A
JP2007033059A JP2005212646A JP2005212646A JP2007033059A JP 2007033059 A JP2007033059 A JP 2007033059A JP 2005212646 A JP2005212646 A JP 2005212646A JP 2005212646 A JP2005212646 A JP 2005212646A JP 2007033059 A JP2007033059 A JP 2007033059A
Authority
JP
Japan
Prior art keywords
shielding material
neutron shielding
neutron
spent fuel
material according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005212646A
Other languages
Japanese (ja)
Inventor
Mamoru Kamoshita
守 鴨志田
Kiyoshi Fujimoto
清志 藤本
Kenji Kanamori
健児 金森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2005212646A priority Critical patent/JP2007033059A/en
Publication of JP2007033059A publication Critical patent/JP2007033059A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

<P>PROBLEM TO BE SOLVED: To provide a resin-made neutron shielding material having both heat resistance and cold setting property. <P>SOLUTION: The neutron shielding material contains an epoxy resin as one of its primary components 55 wt.% or more of an acid anhydride for opening and polymerizing an epoxy group and 2 wt.% or more of a curing accelerator are added to 100 wt.% of a primary agent containing a compound having at least two epoxy groups in a molecule as at least one component to carry out the reaction at a temperature not higher than 40°C to obtain a cured product. The neutron shielding material comprises the above prepared cured product. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、中性子遮蔽材および使用済み燃料収納容器に係り、特に、原子炉容器,原子燃料再処理施設,使用済み燃料貯蔵施設および加速器施設などの放射性物質取扱い施設,放射性物質の輸送容器、および放射性物質の貯蔵容器などの放射線遮蔽部に適用するのに好適な中性子遮蔽材に関する。   The present invention relates to a neutron shielding material and a spent fuel storage container, and more particularly, a nuclear material handling facility such as a reactor vessel, a nuclear fuel reprocessing facility, a spent fuel storage facility and an accelerator facility, a radioactive material transport container, and The present invention relates to a neutron shielding material suitable for application to a radiation shielding part such as a radioactive substance storage container.

原子炉から取り出された使用済み燃料集合体は、原子力発電所内の冷却プールで一定期間冷却して、放射線量や発熱量を減衰させた後、燃料再処理工場などの処理施設に輸送される。また、近年、海外では、使用済み燃料燃料集合体を集中貯蔵施設(乾式貯蔵施設)に輸送し、貯蔵している。使用済み燃料集合体を原子力発電所からこれらの施設まで輸送し、貯蔵するために、使用済み燃料収納容器(金属キャスク)が用いられる。   The spent fuel assembly taken out from the nuclear reactor is cooled for a certain period in the cooling pool in the nuclear power plant to attenuate the radiation dose and the calorific value, and then transported to a treatment facility such as a fuel reprocessing plant. In recent years, overseas, fuel fuel assemblies have been transported to a centralized storage facility (dry storage facility) for storage. In order to transport spent fuel assemblies from nuclear power plants to these facilities and store them, spent fuel storage containers (metal casks) are used.

使用済み燃料収納容器は、容器を構成する外筒内に内筒を設け、内筒の外面に熱伝導性が高い銅やアルミニウムなどの金属板で構成される伝熱フィンが周方向に間隔を置いて取り付けられ、内筒の内側に金属製バスケットが設けられる。外筒と内筒との間には、中性子遮蔽体である硬化されたレジンが存在する。内筒は、上方が開口した炭素鋼製の筒であり、γ線遮蔽体である。   The spent fuel storage container is provided with an inner cylinder in an outer cylinder constituting the container, and heat transfer fins made of a metal plate such as copper or aluminum having high thermal conductivity are spaced apart in the circumferential direction on the outer surface of the inner cylinder. A metal basket is provided inside the inner cylinder. Between the outer cylinder and the inner cylinder is a cured resin that is a neutron shield. The inner cylinder is a carbon steel cylinder having an upper opening and is a γ-ray shield.

金属性バスケットは、複数のセルを備え、それぞれのセル内に使用済み燃料集合体が充填されている。金属性バスケットは、沸騰水型軽水炉燃料の場合で最大約70体の使用済み燃料集合体を収納する。内筒の開口部には放射性物質の漏洩を防止する一次蓋が取り付けられ、更にその外側に二次蓋が取り付けられる。   The metallic basket includes a plurality of cells, and each cell is filled with a spent fuel assembly. The metallic basket contains up to about 70 spent fuel assemblies in the case of boiling water light water reactor fuel. A primary lid for preventing leakage of radioactive material is attached to the opening of the inner cylinder, and a secondary lid is attached to the outside thereof.

中性子遮蔽体であるレジンは、水素原子を多数含む水素数密度が高い物質であり、一般に高分子化合物が使用される。種々の高分子化合物のうち、使用済み燃料収納容器では、耐熱性と水素数密度のバランスがよいという特徴を活かして、エポキシ樹脂が多用される。   A resin, which is a neutron shield, is a substance having a high hydrogen number density containing a large number of hydrogen atoms, and a polymer compound is generally used. Of the various polymer compounds, in the spent fuel storage container, an epoxy resin is frequently used taking advantage of a good balance between heat resistance and hydrogen number density.

この場合には、液状のエポキシ主剤と、硬化剤と、難燃性を付与する水酸化アルミニウムと、中性子吸収体である炭化ホウ素とを均一になるように混合し、上記の内筒,外筒,伝熱フィンに囲まれる空間に注入し、常温において硬化させて使用する。   In this case, a liquid epoxy base material, a curing agent, aluminum hydroxide that imparts flame retardancy, and boron carbide that is a neutron absorber are mixed uniformly, and the above inner and outer cylinders are mixed. , Inject into the space surrounded by heat transfer fins and cure at room temperature.

常温硬化型のエポキシ樹脂を中性子遮蔽材として用いる場合には、エポキシ主剤に対して、硬化剤としてアミン系化合物、特に脂肪族や脂環式のアミンを用いることが通常である(例えば、特許文献1参照)。   When using a room temperature curing type epoxy resin as a neutron shielding material, it is usual to use an amine compound, particularly an aliphatic or alicyclic amine, as a curing agent with respect to the epoxy main agent (for example, patent documents) 1).

一方、加熱硬化型のエポキシ樹脂を中性子遮蔽材に用いる場合もある(例えば、特許文献2参照)。この場合は、エポキシ主剤に、アミン系硬化剤、または、酸無水物と硬化促進剤とを加えて、常温よりも高い温度において硬化させた硬化物を中性子遮蔽材に適用する。加熱硬化すると樹脂の架橋密度が高くなり、優れた耐熱性が得られる。   On the other hand, a thermosetting epoxy resin may be used for the neutron shielding material (see, for example, Patent Document 2). In this case, an amine-based curing agent or an acid anhydride and a curing accelerator are added to the epoxy main agent, and a cured product cured at a temperature higher than normal temperature is applied to the neutron shielding material. When heat-cured, the crosslink density of the resin increases, and excellent heat resistance is obtained.

特開2001−108787号公報(第4〜5頁 図1〜図3)Japanese Patent Laid-Open No. 2001-108787 (pages 4-5, FIGS. 1-3) 特開2003−167091号公報(第6頁 図1)Japanese Patent Laying-Open No. 2003-167091 (FIG. 1 on page 6)

冷却プール内での使用済み燃料集合体の保管に余裕を持たせるために、原子力発電所内または原子力発電所外における乾式貯蔵が検討されている。将来的には、冷却プールでの冷却期間が短い使用済み燃料集合体の乾式貯蔵の可能性や、更に高燃焼度(>45GWd/トン)の燃料集合体の使用済み燃料集合体が乾式貯蔵される可能性もある。   In order to provide sufficient storage for spent fuel assemblies in the cooling pool, dry storage inside or outside the nuclear power plant is being studied. In the future, the possibility of dry storage of spent fuel assemblies with a short cooling period in the cooling pool, and the higher fuel burnup (> 45 GWd / ton) spent fuel assemblies will be dry-stored. There is also a possibility.

冷却プールでの冷却期間が短い使用済み燃料集合体およびその高燃焼度燃料集合体の使用済み燃料集合体は、核分裂生成核種および超ウラン元素の崩壊にともなう発熱量が大きい。このような使用済み燃料集合体を使用済み燃料収納容器で貯蔵する場合、使用済み燃料収納容器1基当りに収納する体数を増やすと、金属に比べて熱伝導度が低い中性子遮蔽材にかかる熱負荷が大きくなる。   The spent fuel assembly having a short cooling period in the cooling pool and the spent fuel assembly of the high burnup fuel assembly generate a large amount of heat when the fission product nuclide and the transuranium element decay. When such a spent fuel assembly is stored in a spent fuel storage container, if the number of bodies stored per spent fuel storage container is increased, the neutron shielding material having a lower thermal conductivity than metal is applied. Heat load increases.

本発明の課題は、より高温度条件での使用に耐えられる耐熱性と、レジン施工に従来から汎用されてきた直接充填法を適用可能な常温硬化性とを併せ持った中性子遮蔽材と、その中性子遮蔽材を用いて高発熱燃料の収納効率を高めた使用済み燃料収納容器とを提供することである。   An object of the present invention is to provide a neutron shielding material that has both heat resistance that can withstand use under higher temperature conditions and room temperature curability that can apply the direct filling method that has been widely used for resin construction, and its neutrons. It is an object of the present invention to provide a spent fuel storage container that uses a shielding material to increase the storage efficiency of highly exothermic fuel.

本発明は、上記課題を解決するために、エポキシ樹脂を主成分の一つとする中性子遮蔽材において、分子内にエポキシ基を二つ以上含む化合物を少なくとも一つの成分として含む主剤に、前記エポキシ基を開環重合させる酸無水物と硬化促進剤とを添加し、40℃以下の温度において反応させて得られる硬化物で構成される中性子遮蔽材を提案する。   In order to solve the above problems, the present invention provides a neutron shielding material having an epoxy resin as one of the main components, the main component containing at least one compound containing two or more epoxy groups in the molecule as the epoxy group. A neutron shielding material composed of a cured product obtained by adding an acid anhydride for ring-opening polymerization and a curing accelerator and reacting at a temperature of 40 ° C. or lower is proposed.

本発明の中性子遮蔽材は、汎用的な素材からなり、より高温度での使用に耐えられる耐熱性と、レジン施工に従来から汎用されてきた直接充填法を適用するための常温硬化性とを併せ持っている。この中性子遮蔽材を使用済み燃料収納容器に適用すると、高発熱燃料の収納体数を増やすことができる。   The neutron shielding material of the present invention is made of a general-purpose material, has heat resistance that can withstand use at higher temperatures, and room temperature curability for applying a direct filling method that has been widely used for resin construction. Have both. When this neutron shielding material is applied to a spent fuel storage container, the number of highly exothermic fuel storage bodies can be increased.

次に、図1〜図3を参照して、本発明による中性子遮蔽材および使用済み燃料収納容器の実施例を説明する。   Next, with reference to FIGS. 1-3, the Example of the neutron shielding material and spent fuel storage container by this invention is described.

なお、本実施例の説明において、常温とは、40℃以下の温度をいうものものとする。   In the description of the present embodiment, normal temperature refers to a temperature of 40 ° C. or lower.

分子内にエポキシ基を二つ以上含む化合物を少なくとも一つの成分として含むエポキシ主剤に、エポキシ基を開環重合させる酸無水物およびエポキシ基と酸無水物の反応を加速する硬化促進剤を添加した後で、室温に放置して得られる硬化物で中性子遮蔽材を構成した。   An acid anhydride for ring-opening polymerization of an epoxy group and a curing accelerator for accelerating the reaction between the epoxy group and the acid anhydride were added to an epoxy main agent containing at least one compound containing two or more epoxy groups in the molecule. Later, a neutron shielding material was composed of a cured product obtained by allowing to stand at room temperature.

本発明の中性子遮蔽材は、150℃〜170℃で加熱された場合でも、水素数密度の減少度合いが著しく小さいので、供用中に中性子遮蔽性能が低下しない。本発明の中性子遮蔽材を適用した使用済み燃料収納容器は、冷却プールでの冷却期間が短い使用済み燃料集合体または高燃焼度燃料集合体の使用済み燃料集合体の装荷体数を増やすことができる。   Even when the neutron shielding material of the present invention is heated at 150 ° C. to 170 ° C., the degree of decrease in the hydrogen number density is extremely small, so that the neutron shielding performance does not deteriorate during service. The spent fuel storage container to which the neutron shielding material of the present invention is applied can increase the number of spent fuel assemblies loaded with a spent fuel assembly or a high burnup fuel assembly with a short cooling period in the cooling pool. it can.

発明者らは、冷却プールでの冷却期間が短い使用済み燃料集合体、およびその高燃焼度燃料集合体の使用済み燃料集合体を使用済み燃料収納容器に装荷した場合の問題点を明確にするとともに、その問題を解消する対策案を種々検討した。その検討経過を説明する。   The inventors clarify the problem when the spent fuel assembly having a short cooling period in the cooling pool and the spent fuel assembly of the high burnup fuel assembly are loaded into the spent fuel storage container. At the same time, various measures to solve the problem were examined. The examination process will be described.

冷却プールでの冷却期間が短い使用済み燃料集合体、およびその高燃焼度燃料集合体の使用済み燃料集合体は、核分裂生成核種および超ウラン元素の崩壊にともなう発熱量が大きく、それらの使用済み燃料集合体の使用済み燃料収納容器1基当りに収納する体数を増やした場合には、中性子遮蔽材の温度は最高約170℃になる場合があることが分かった。   Spent fuel assemblies with a short cooling period in the cooling pool, and spent fuel assemblies of the high burn-up fuel assembly, have a large calorific value due to the decay of fission-generated nuclides and transuranium elements. It has been found that the temperature of the neutron shielding material may reach a maximum of about 170 ° C. when the number of bodies stored per spent fuel storage container of the fuel assembly is increased.

高分子化合物を主成分とした中性子遮蔽材は、温度が高くなると、熱と酸素による熱酸化劣化またはγ線や中性子による放射線劣化によって徐々に分解し、水素原子を消耗していく。この水素原子の消耗にともなって、中性子の遮蔽性能は少しずつ低下する。劣化によって水素原子を損失する速度は、温度が高いほうが大きくなる。   When the temperature rises, the neutron shielding material mainly composed of a polymer compound gradually decomposes due to thermal oxidation degradation due to heat and oxygen or radiation degradation due to γ rays or neutrons, and consumes hydrogen atoms. As the hydrogen atoms are consumed, the neutron shielding performance gradually decreases. The higher the temperature, the greater the rate at which hydrogen atoms are lost due to deterioration.

冷却プールでの冷却期間が短い使用済み燃料集合体およびその高燃焼度燃料集合体の使用済み燃料集合体(高発熱の使用済み燃料集合体という)を使用済み燃料収納容器内に高密度で貯蔵するには、所定期間にわたって上記高温度で使用しても、水素原子の損失が遅く遮蔽性能が低下しない中性子遮蔽材の開発が望まれる。 中性子遮蔽材の上記温度における水素原子の損失速度が、使用済み燃料集合体内の中性子放出核種の減衰速度を下回れば、使用済み燃料収納容器表面の放射線量を低く抑制できる。   A spent fuel assembly with a short cooling period in the cooling pool and a spent fuel assembly of the high burnup fuel assembly (referred to as a highly exothermic spent fuel assembly) are stored at high density in the spent fuel storage container. Therefore, it is desired to develop a neutron shielding material in which the loss of hydrogen atoms is slow and the shielding performance does not deteriorate even when used at the high temperature for a predetermined period. If the loss rate of hydrogen atoms at the above temperature of the neutron shielding material is lower than the decay rate of the neutron emission nuclide in the spent fuel assembly, the radiation dose on the spent fuel storage container surface can be suppressed low.

これらの観点から、高発熱の使用済み燃料集合体を高密度貯蔵するための課題の一つは、水素数密度が高い高分子化合物で、なおかつ高温条件で使用する場合に水素原子の損失が起こりにくい高分子化合物を用いて中性子遮蔽材を製造することである。   From these viewpoints, one of the issues for high-density storage of high-heat-generated spent fuel assemblies is a polymer compound with a high hydrogen number density, and loss of hydrogen atoms occurs when used under high temperature conditions. It is to produce a neutron shielding material using a difficult polymer compound.

発明者らは、常温においても十分な速度で硬化反応が進み、かつ、硬化物が約170℃に加熱された場合も水素原子の損失が起こりにくいエポキシ系中性子遮蔽材実現に向けて種々検討した。   The inventors have made various studies toward the realization of an epoxy-based neutron shielding material in which the curing reaction proceeds at a sufficient rate even at room temperature and the loss of hydrogen atoms hardly occurs even when the cured product is heated to about 170 ° C. .

一般には、エポキシを常温で硬化させる場合には、アミン系硬化剤を用いる。一方、遮蔽材以外の用途に対しては、酸無水物を硬化剤に用いることが一般的である。   Generally, when curing epoxy at room temperature, an amine curing agent is used. On the other hand, for applications other than shielding materials, it is common to use acid anhydrides as curing agents.

そこで、発明者らは、より汎用的な酸無水物でエポキシを常温硬化させる方針の下、実験と研究を重ねた結果、常温硬化性と耐熱性を併せ持つエポキシ樹脂の配合比を見出した。その経緯について説明する。   Thus, the inventors have conducted experiments and research under the policy of curing the epoxy at room temperature with a more general-purpose acid anhydride, and as a result, have found a compounding ratio of an epoxy resin having both room temperature curing and heat resistance. The process will be described.

図1は、脂環式エポキシ主剤に対する硬化剤の添加割合を変えて調製した樹脂硬化物の動的粘弾性測定結果を示す図である。図2は、同じ脂環式エポキシに対して、硬化剤の添加割合を一定にしつつ、硬化促進剤の添加割合を種々変えて調製した樹脂硬化物の動的粘弾性測定結果を示す図である。   FIG. 1 is a diagram showing the dynamic viscoelasticity measurement results of a cured resin product prepared by changing the addition ratio of the curing agent to the alicyclic epoxy main agent. FIG. 2 is a diagram showing dynamic viscoelasticity measurement results of a cured resin product prepared by changing the addition ratio of the curing accelerator while keeping the addition ratio of the curing agent constant with respect to the same alicyclic epoxy. .

これらの図1,図2の縦軸は、理論的にはエポキシ樹脂の架橋点間における平均分子量の関数であり、値が大きいほど樹脂の架橋が密である。   1 and 2 are theoretically functions of the average molecular weight between the crosslinking points of the epoxy resin, and the larger the value, the denser the crosslinking of the resin.

試験の結果、エポキシ主剤100重量%に対して、硬化剤55ないし85重量%と硬化促進剤2ないし5重量%を添加すると、40℃以下の温度においてエポキシが硬化し、その硬化物は耐熱性の観点から十分な架橋状態になっていることが判明した。このようにして得られた硬化物試料を1000時間以上加熱した。加熱後の試料を分析・評価した結果、遮蔽性能低下は小さく抑えられる見通しが得られた。   As a result of the test, when 55 to 85% by weight of the curing agent and 2 to 5% by weight of the curing accelerator are added to 100% by weight of the epoxy main agent, the epoxy is cured at a temperature of 40 ° C. or less. From this point of view, it was found that the crosslinked state was sufficient. The cured product sample thus obtained was heated for 1000 hours or more. As a result of analyzing and evaluating the sample after heating, it was predicted that the decrease in shielding performance could be kept small.

なお、常温を40℃以下と規定したのは、40℃を越えると、反応が進みすぎて、製造しにくくなる場合があるからである。   The reason why the room temperature is defined as 40 ° C. or less is that when the temperature exceeds 40 ° C., the reaction proceeds so much that it may be difficult to manufacture.

エポキシ樹脂を中性子遮蔽材として使用する際には、難燃性を付与するために、金属酸化物の水和物などを難燃剤として添加することがある。また、高分子材を主成分とした中性子遮蔽材は、中性子遮蔽性能を補うために、中性子吸収断面積の大きなホウ素の化合物などを中性子吸収材として添加することがある。   When an epoxy resin is used as a neutron shielding material, a metal oxide hydrate or the like may be added as a flame retardant in order to impart flame retardancy. In addition, a neutron shielding material mainly composed of a polymer material may add a boron compound having a large neutron absorption cross-section as a neutron absorbing material in order to supplement neutron shielding performance.

例えば、使用済み燃料収納容器で使用する遮蔽材は典型例であり、通常、難燃剤として水酸化アルミニウムや水酸化マグネシウムが添加されており、中性子吸収材として炭化ホウ素が添加されている。   For example, a shielding material used in a spent fuel storage container is a typical example. Usually, aluminum hydroxide or magnesium hydroxide is added as a flame retardant, and boron carbide is added as a neutron absorber.

発明者らは、難燃剤と中性子吸収材の配合比を種々検討した。その結果、難燃剤を50ないし65重量%とし、中性子吸収材を1ないし10重量%にすると、本来の目的である難燃性付与と中性子遮蔽性能強化の目的を十分達することに加え、40℃以下の温度において優れた充填作業性を実現できることを見出した。   Inventors examined various mixing ratios of a flame retardant and a neutron absorber. As a result, when the flame retardant is 50 to 65% by weight and the neutron absorber is 1 to 10% by weight, the objectives of imparting flame retardancy and enhancing neutron shielding performance, which are the original objectives, are sufficiently achieved, and 40 ° C. It has been found that excellent filling workability can be realized at the following temperatures.

すなわち、液状レジン混合物の粘度は、配合直後はもとより、配合後2時間以上にわたり、150dPa・sを超えない状態が継続することを確認した。   That is, it was confirmed that the viscosity of the liquid resin mixture continued not to exceed 150 dPa · s for 2 hours or more after blending as well as immediately after blending.

本発明は、発明者自らの実験および研究により、エポキシ主剤,酸無水物,硬化促進剤,難燃剤,中性子吸収材を混合し、40℃以下の温度で硬化させた樹脂を中性子遮蔽材に適用できることを明らかにした結果として得られた。   According to the present invention, a resin obtained by mixing an epoxy main agent, an acid anhydride, a curing accelerator, a flame retardant, and a neutron absorber and curing at a temperature of 40 ° C. or less is applied to the neutron shielding material by the inventors' own experiments and research. It was obtained as a result of clarifying what can be done.

中性子遮蔽体であるレジンは、水素原子を多数含む水素数密度が高い物質である。中性子遮蔽能の観点からは、各成分の配合比は、主剤と添加物との硬化物における水素数密度が5×1022 水素原子/cm3 以上になるような配合比であることが望ましい。 Resin, which is a neutron shield, is a substance with a high hydrogen number density that contains a large number of hydrogen atoms. From the viewpoint of neutron shielding ability, the blending ratio of each component is preferably such that the hydrogen number density in the cured product of the main agent and the additive is 5 × 10 22 hydrogen atoms / cm 3 or more.

そのために必要な場合は、主剤に金属水素化物または水素吸蔵合金を添加してもよい。   If necessary, a metal hydride or a hydrogen storage alloy may be added to the main agent.

本実施例では、脂環式エポキシ主剤を酸無水物と硬化促進剤とを用いて40℃以下の温度で硬化させた硬化物を用いた中性子遮蔽材について説明する。本実施例の中性子遮蔽材は、以下のようにして製造されたものである。   In this example, a neutron shielding material using a cured product obtained by curing an alicyclic epoxy main agent at a temperature of 40 ° C. or lower using an acid anhydride and a curing accelerator will be described. The neutron shielding material of the present example is manufactured as follows.

主剤として、エポキシ当量が約240g/eqの脂環式エポキシ主剤を使用する。主剤100重量%に対して、硬化剤としてメチルシクロペンタジエンの無水マレイン酸付加物を約65重量%と、硬化促進剤である2−エチル4−メチルイミダゾールを2重量%とを加える。   As the main agent, an alicyclic epoxy main agent having an epoxy equivalent of about 240 g / eq is used. About 100% by weight of a maleic anhydride adduct of methylcyclopentadiene as a curing agent and 2% by weight of 2-ethyl 4-methylimidazole as a curing accelerator are added to 100% by weight of the main agent.

また、難燃剤として、平均粒径がおおよそ10μmの水酸化アルミニウムを、主剤100重量%に対して170重量%を加える。さらに、平均粒径が45μm以下の炭化ホウ素粉末を、主剤100重量%に対して、約4重量%を加える。   Further, as a flame retardant, 170% by weight of aluminum hydroxide having an average particle diameter of about 10 μm is added to 100% by weight of the main agent. Further, about 4% by weight of boron carbide powder having an average particle size of 45 μm or less is added to 100% by weight of the main agent.

以上の各成分を約30分にわたって十分混練して均一化した後、おおよそ10 torr程度に減圧にして脱泡する。   The above components are sufficiently kneaded and homogenized for about 30 minutes, and then defoamed by reducing the pressure to about 10 torr.

脱泡後のレジンを充填する使用済み燃料収納容器の構造について説明する。   The structure of the spent fuel storage container filled with the resin after degassing will be described.

図3は、本発明の中性子遮蔽材を適用すべき使用済み燃料収納容器の構造の一例を示す斜視図である。   FIG. 3 is a perspective view showing an example of the structure of a spent fuel storage container to which the neutron shielding material of the present invention should be applied.

使用済み燃料収納容器1は、外筒3と内筒2とを含み、伝熱フィン4により外筒3と内筒2とを結合してある。   The spent fuel storage container 1 includes an outer cylinder 3 and an inner cylinder 2, and the outer cylinder 3 and the inner cylinder 2 are coupled by heat transfer fins 4.

伝熱フイン4は、周方向に間隔を置いて取り付けられており、内筒2から外筒3に使用済み燃料収納容器1内部の熱を伝達し、外筒3の表面から大気中に放熱させる。   The heat transfer fins 4 are attached at intervals in the circumferential direction, and transmit heat inside the spent fuel storage container 1 from the inner cylinder 2 to the outer cylinder 3 and dissipate heat from the surface of the outer cylinder 3 to the atmosphere. .

内筒2は、上方が開口した炭素鋼製の構造体であり、ガンマ線遮蔽機能を兼ね備える。内筒2の内側には、格子状に形成された金属製バスケット7が設置される。金属製バスケット7は、複数のセルを備え、それぞれのセル内に使用済み燃料集合体を収納する。   The inner cylinder 2 is a carbon steel structure having an upper opening, and also has a gamma ray shielding function. Inside the inner cylinder 2, a metal basket 7 formed in a lattice shape is installed. The metal basket 7 includes a plurality of cells, and a spent fuel assembly is accommodated in each cell.

内筒2の開口部には放射性物質の漏洩を防止する一次蓋8が取り付けられ、更にその外側に二次蓋9が取り付けられる。   A primary lid 8 for preventing leakage of radioactive material is attached to the opening of the inner cylinder 2, and a secondary lid 9 is attached to the outside thereof.

使用済み燃料収納容器1は、外筒3の側面に設けられた上部トラニオン10および下部トラニオン11を用いて取り扱われる。   The spent fuel storage container 1 is handled using an upper trunnion 10 and a lower trunnion 11 provided on the side surface of the outer cylinder 3.

外筒3と内筒2との間で伝熱フイン4によって形成された各空間には、中性子遮蔽体5が配置されている。内筒2の開口部に取り付けられた一次蓋8内にも、それぞれ中性子遮蔽体6が充填されている。   A neutron shield 5 is disposed in each space formed by the heat transfer fin 4 between the outer cylinder 3 and the inner cylinder 2. The primary lid 8 attached to the opening of the inner cylinder 2 is also filled with neutron shields 6 respectively.

脱泡後の液状レジンは混錬容器から圧送されて、外筒3と内筒2との間で伝熱フィン4によって形成された各空間内に充填される。そのレジンは、40℃以下の温度において2日程度で硬化する。   The defoamed liquid resin is pumped from the kneading vessel and filled into the spaces formed by the heat transfer fins 4 between the outer cylinder 3 and the inner cylinder 2. The resin is cured in about 2 days at a temperature of 40 ° C. or lower.

本発明の中性子遮蔽材は、上記のように内外筒間に直接充填する施工方法に加えて、いったんブロック状の成型体を作製し、それを内外筒間に挿入する施工方法も採用できる。直接充填施工法では、注入部位の断面積の検査と注入高さの検査により遮蔽物量を確認するのに対して、ブロック取り付け施工法では、ブロックの寸法と重量の検査により遮蔽物量を確認する。   In addition to the construction method in which the neutron shielding material of the present invention is directly filled between the inner and outer cylinders as described above, a construction method in which a block-shaped molded body is once produced and inserted between the inner and outer cylinders can be employed. In the direct filling method, the amount of shielding is confirmed by inspecting the cross-sectional area of the injection site and injecting height, whereas in the block mounting method, the amount of shielding is confirmed by inspecting the size and weight of the block.

本実施例によれば、より高温度での使用に耐えられる耐熱性と、レジン施工に従来から汎用されてきた直接充填法を適用できる常温硬化性とを併せ持った中性子遮蔽材用レジンが得られる。この中性子遮蔽材を使用済み燃料収納容器に適用すると、高発熱燃料の収納体数を増やすことができる。   According to this example, a resin for neutron shielding material having both heat resistance that can withstand use at a higher temperature and room temperature curing that can apply the direct filling method that has been widely used in resin construction has been obtained. . When this neutron shielding material is applied to a spent fuel storage container, the number of highly exothermic fuel storage bodies can be increased.

脂環式エポキシ主剤に対する硬化剤の添加割合を変えて調製した樹脂硬化物の動的粘弾性測定結果を示す図である。It is a figure which shows the dynamic viscoelasticity measurement result of the resin cured material prepared by changing the addition ratio of the hardening | curing agent with respect to an alicyclic epoxy main ingredient. 同じ脂環式エポキシに対して、硬化剤の添加割合を一定にしつつ、硬化促進剤の添加割合を種々変えて調製した樹脂硬化物の動的粘弾性測定結果を示す図である。It is a figure which shows the dynamic viscoelasticity measurement result of the resin cured material prepared by changing the addition ratio of a hardening accelerator variously, making the addition ratio of a hardening | curing agent constant with respect to the same alicyclic epoxy. 本発明の中性子遮蔽材を適用すべき使用済み燃料収納容器の構造の一例を示す斜視図である。It is a perspective view which shows an example of the structure of the spent fuel storage container which should apply the neutron shielding material of this invention.

符号の説明Explanation of symbols

1 使用済み燃料収納容器
2 内筒
3 外筒
4 伝熱フィン
5 中性子遮蔽体
6 中性子遮蔽体
7 金属製バスケット
8 一次蓋
9 二次蓋
10 上部トラニオン
11 下部トラニオン
DESCRIPTION OF SYMBOLS 1 Used fuel storage container 2 Inner cylinder 3 Outer cylinder 4 Heat transfer fin 5 Neutron shield 6 Neutron shield 7 Metal basket 8 Primary lid 9 Secondary lid 10 Upper trunnion 11 Lower trunnion

Claims (12)

エポキシ樹脂を主成分の一つとする中性子遮蔽材において、
分子内にエポキシ基を二つ以上含む化合物を少なくとも一つの成分として含む主剤100重量%に対して、前記エポキシ基を開環重合させる酸無水物系硬化剤55重量%以上と硬化促進剤2重量%以上とを添加し、40℃以下の温度において反応させて得られる硬化物からなることを特徴とする中性子遮蔽材。
In neutron shielding material with epoxy resin as one of the main components,
With respect to 100% by weight of a main agent containing a compound containing two or more epoxy groups in the molecule as at least one component, 55% by weight or more of an acid anhydride curing agent for ring-opening polymerization of the epoxy group and 2% of a curing accelerator A neutron shielding material comprising a cured product obtained by adding at least 40% and reacting at a temperature of 40 ° C. or less.
請求項1に記載の中性子遮蔽材において、
前記主剤が、ビスフェノールA型エポキシ樹脂と、ノボラック型エポキシ樹脂と、脂環式グリシジルエーテル型エポキシ樹脂と、各種のグリシジルエステル型のエポキシ樹脂と、グリシジルアミン型のエポキシ樹脂とを単独または混合した材料であり、
前記酸無水物系硬化剤が、無水マレイン酸,無水フタル酸,無水メチルナジック酸,無水コハク酸,無水トリメリット酸,無水クロレンディック酸,またはこれらの化合物を単独または混合した材料であり、
前記硬化促進剤が、イミダゾール化合物であることを特徴とする中性子遮蔽材。
In the neutron shielding material according to claim 1,
The main material is a material obtained by mixing or mixing a bisphenol A type epoxy resin, a novolac type epoxy resin, an alicyclic glycidyl ether type epoxy resin, various glycidyl ester type epoxy resins, and a glycidyl amine type epoxy resin. And
The acid anhydride curing agent is maleic anhydride, phthalic anhydride, methyl nadic anhydride, succinic anhydride, trimellitic anhydride, chlorendic anhydride, or a material obtained by mixing these compounds alone or in combination.
The neutron shielding material, wherein the curing accelerator is an imidazole compound.
請求項1または2に記載の中性子遮蔽材において、
前記主剤に難燃剤を添加したことを特徴とする中性子遮蔽材。
In the neutron shielding material according to claim 1 or 2,
A neutron shielding material comprising a flame retardant added to the main agent.
請求項3に記載の中性子遮蔽材において、
前記難燃剤が、水酸化マグネシウム,水酸化アルミニウム,水酸化カルシウムなどの金属水酸化物、前記金属酸化物の水和物、ポリリン酸アンモニウムなどの無機リン酸化合物、テトラブロモビスフェノールAなどのハロゲン化合物のいずれかを含んでいることを特徴とする中性子遮蔽材。
In the neutron shielding material according to claim 3,
The flame retardant is a metal hydroxide such as magnesium hydroxide, aluminum hydroxide or calcium hydroxide, a hydrate of the metal oxide, an inorganic phosphate compound such as ammonium polyphosphate, or a halogen compound such as tetrabromobisphenol A. The neutron shielding material characterized by including either of these.
請求項4に記載の中性子遮蔽材において、
前記難燃剤として金属水酸化物またはその金属酸化物の水和物を使用する場合、前記難燃剤が、前記主剤に対して50ないし65重量%となることを特徴とする中性子遮蔽材。
In the neutron shielding material according to claim 4,
When a metal hydroxide or a hydrate of the metal oxide is used as the flame retardant, the flame retardant is 50 to 65% by weight based on the main agent.
請求項4または5に記載の中性子遮蔽材において、
前記難燃剤が、前記硬化物の酸素指数が21を超えるような配合比であることを特徴とする中性子遮蔽材。
In the neutron shielding material according to claim 4 or 5,
A neutron shielding material, wherein the flame retardant has a blending ratio such that an oxygen index of the cured product exceeds 21.
請求項1ないし6のいずれか一項に記載の中性子遮蔽材において、
前記主剤に中性子吸収材を添加したことを特徴とする中性子遮蔽材。
In the neutron shielding material according to any one of claims 1 to 6,
A neutron shielding material, wherein a neutron absorber is added to the main agent.
請求項7に記載の中性子遮蔽材において、
前記中性子吸収材が、ホウ素化合物,カドミウム化合物,ガドリニウム化合物,サマリウム化合物のいずれかを含んでいることを特徴とする中性子遮蔽材。
In the neutron shielding material according to claim 7,
The neutron shielding material, wherein the neutron absorbing material contains any one of a boron compound, a cadmium compound, a gadolinium compound, and a samarium compound.
請求項8に記載の中性子遮蔽材において、
前記中性子吸収材として炭化ホウ素または窒化ホウ素を用いる場合、前記中性子吸収材が、前記主剤に対して0.1ないし10重量%となることを特徴とする中性子遮蔽材。
The neutron shielding material according to claim 8,
When boron carbide or boron nitride is used as the neutron absorber, the neutron absorber is 0.1 to 10% by weight based on the main agent.
請求項1ないし請求項9のいずれか一項に記載の中性子遮蔽材において、
前記主剤に金属水素化物または水素吸蔵合金を添加したことを特徴とする中性子遮蔽材。
In the neutron shielding material according to any one of claims 1 to 9,
A neutron shielding material, wherein a metal hydride or a hydrogen storage alloy is added to the main agent.
請求項1ないし請求項10のいずれか一項に記載の中性子遮蔽材において、
各成分の配合比は、前記主剤と前記添加物との硬化物における水素数密度が5×1022 水素原子/cm3 以上になるような配合比であることを特徴とする中性子遮蔽材。
In the neutron shielding material according to any one of claims 1 to 10,
The mixing ratio of each component is a mixing ratio such that the hydrogen number density in the cured product of the main agent and the additive is 5 × 10 22 hydrogen atoms / cm 3 or more.
周方向に間隔を置いて取り付けられた伝熱フィンにより外筒と内筒と結合し、それぞれのセル内に使用済み燃料集合体を収納する金属製バスケットを前記内筒の内側に設置し、内筒の開口部に放射性物質の漏洩を防止する蓋を取り付けた使用済み燃料収納容器において、
前記外筒と前記内筒と前記伝熱フインにより形成された各空間に、請求項1ないし11のいずれか一項に記載の中性子遮蔽体を充填したことを特徴とする使用済み燃料収納容器。
The outer cylinder and the inner cylinder are connected to each other by heat transfer fins attached at intervals in the circumferential direction, and a metal basket for storing the spent fuel assembly in each cell is installed inside the inner cylinder. In the spent fuel storage container with a lid that prevents leakage of radioactive material at the opening of the cylinder,
The spent fuel storage container characterized by filling each space formed with the said outer cylinder, the said inner cylinder, and the said heat-transfer fin with the neutron shield as described in any one of Claim 1 thru | or 11.
JP2005212646A 2005-07-22 2005-07-22 Neutron shielding material and spent fuel storage cask Pending JP2007033059A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005212646A JP2007033059A (en) 2005-07-22 2005-07-22 Neutron shielding material and spent fuel storage cask

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005212646A JP2007033059A (en) 2005-07-22 2005-07-22 Neutron shielding material and spent fuel storage cask

Publications (1)

Publication Number Publication Date
JP2007033059A true JP2007033059A (en) 2007-02-08

Family

ID=37792526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005212646A Pending JP2007033059A (en) 2005-07-22 2005-07-22 Neutron shielding material and spent fuel storage cask

Country Status (1)

Country Link
JP (1) JP2007033059A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013137210A (en) * 2011-12-28 2013-07-11 Hiroshi Kokuta Method of treating radiation contaminant using aqueous polymer inorganic compound
CN104599725A (en) * 2014-12-26 2015-05-06 中国核电工程有限公司 Soluble gadolinium-based neutron poison potion and preparation method thereof
JP2017125792A (en) * 2016-01-15 2017-07-20 日立Geニュークリア・エナジー株式会社 Radiation measurement system and neutron capture device to be used in the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013137210A (en) * 2011-12-28 2013-07-11 Hiroshi Kokuta Method of treating radiation contaminant using aqueous polymer inorganic compound
CN104599725A (en) * 2014-12-26 2015-05-06 中国核电工程有限公司 Soluble gadolinium-based neutron poison potion and preparation method thereof
JP2017125792A (en) * 2016-01-15 2017-07-20 日立Geニュークリア・エナジー株式会社 Radiation measurement system and neutron capture device to be used in the same

Similar Documents

Publication Publication Date Title
JP3951685B2 (en) Neutron shielding material and spent fuel container
EP1600984B1 (en) Cask, composition for neutron shielding body, and method of manufacturing the neutron shielding body
JP3150672B1 (en) Neutron shield and cask using the same
CN110619969B (en) Radiation shielding container and preparation method thereof
JP2007033059A (en) Neutron shielding material and spent fuel storage cask
CN108148351B (en) Radiation protection material
EP1713088B1 (en) Composition for neutron shield material, shield material and container
JPH06148388A (en) Composition for neutron shield material
JP4115299B2 (en) Cask, composition for neutron shield, and method for producing neutron shield
JP3643798B2 (en) Neutron shielding material composition, shielding material and container
JP4592232B2 (en) Neutron shielding material composition, shielding material and container
KR100843807B1 (en) Composition for neutron shield material, shield material and container
JP6921025B2 (en) Neutron shielding material and spent fuel assembly storage container
JP6998257B2 (en) Neutron shielding material and spent fuel assembly storage container
JP6998258B2 (en) Neutron shielding material and spent fuel assembly storage container
KR20110113442A (en) Neutron shielding material having excellent shield property, high strength and non-frammable and method for manufacturing the same
JP2004198281A (en) Neutron shielding material, and spent fuel storage vessel
KR100298037B1 (en) Epoxy resin system neutron shield composition
JP2021050972A (en) Manufacturing method of neutron shielding material, storage container, and neutron shielding agent
JP2007132893A (en) Resin for cask and filling method therefor
JPS61798A (en) Method of housing nuclear fuel reprocessing waste

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070511

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20071206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090428

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090929