JPS61173136A - Method for measuring immune reaction by intensity fluctuation of light - Google Patents

Method for measuring immune reaction by intensity fluctuation of light

Info

Publication number
JPS61173136A
JPS61173136A JP1392085A JP1392085A JPS61173136A JP S61173136 A JPS61173136 A JP S61173136A JP 1392085 A JP1392085 A JP 1392085A JP 1392085 A JP1392085 A JP 1392085A JP S61173136 A JPS61173136 A JP S61173136A
Authority
JP
Japan
Prior art keywords
antigen
light
antibody
fine particles
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1392085A
Other languages
Japanese (ja)
Inventor
Akihiro Nanba
昭宏 南波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP1392085A priority Critical patent/JPS61173136A/en
Publication of JPS61173136A publication Critical patent/JPS61173136A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection

Abstract

PURPOSE:To improve measurement accuracy by removing the frequency component higher than the relaxation frequency of powder spectral density in the stage of measuring immune reaction by making use of the intensity fluctuation of scattered light by fine particles. CONSTITUTION:The immune reaction based on an antigen-antibody reaction is measured by making use of the intensity fluctuation of the scattered light by fine particles. A laser beam 2 from a light source 1 is made into a beam 4 by a semi-transparent mirror 3 in this stage. Said beam is condensed by condenser lens 6 and is projected to a cell 7 in which the antigen-antibody reactive liquid contg. the fine particles 9 is contained. The scattered light thereof is made incident through a collimator 10 on a photodetector 11 and the output thereof is supplied via a low-pass filter 16 which removes the frequency component substantially higher than the relaxation frequency of the detected power spectral density to a data processing unit 14. The measurement with high accuracy is thus made possible without being affected by noise, etc. even if the particle concn. and the quantity of the measuring light are low.

Description

【発明の詳細な説明】 (技術分野) 本発明は、抗原−抗体反応に基く免疫反応を、微粒子に
よる散乱光の強度ゆらぎを利用して測定する方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a method for measuring an immune reaction based on an antigen-antibody reaction using intensity fluctuations of light scattered by fine particles.

(従来技術) 免疫物質、ホルモン、医薬品、免疫調節等生体内微量成
分の測定法として免疫反応の特異的選択反応を利用した
免疫分析法があり、大別すると酵素や放射性アイソトー
プを標識物質として用いる標識免疫分析法と、抗原・抗
体複合体を直接測定する非標識免疫分析法との2つの方
法がよく知られている。
(Prior art) There are immunoassay methods that utilize specific selective reactions of immune reactions as a method for measuring trace components in living bodies such as immune substances, hormones, pharmaceuticals, and immunomodulators.They can be roughly divided into methods that use enzymes or radioactive isotopes as labeling substances. Two methods are well known: labeled immunoassay and unlabeled immunoassay, which directly measures antigen-antibody complexes.

前者の標識免疫分析法としてはラジオイムノアッセイ(
RIム)、工、ンザイム、イムノアッセイ(EIム)。
The former labeled immunoassay is radioimmunoassay (
RIm), Engineering, Enzyme, Immunoassay (EIm).

フルオロイムノアッセイ(FIム)等がよく知られてい
る。しかし、これらの分析方法は高感度であるが測定に
長時間を要するうえに標識試薬が高価であるため、検査
コストが高い等の欠点があり、また特にRIムにおいて
はアイソトープの取り扱い、廃棄物処理等の種々の制限
がある。
Fluoroimmunoassay (FIM) and the like are well known. However, although these analytical methods are highly sensitive, they require a long time for measurement and the labeling reagents are expensive, so they have drawbacks such as high testing costs. There are various restrictions such as processing.

また、後者の非標識免疫分析法には免疫電気泳動法、免
疫拡散法、沈降法等があり、簡便な分析法であるが感度
、定量性、再現性の点で精密測定としては不充分である
とともに測定時間が長くなる欠点がある。このような免
疫分析法に関しては「臨床検査法提要」(金井泉原著、
金井正光編著、金属m版>’p、「臨床検査J Vol
、 z 2 t’5(1978)、第471〜487頁
に詳しく説明されている。
In addition, the latter non-labeled immunoassay methods include immunoelectrophoresis, immunodiffusion, and precipitation, and although they are simple analytical methods, they are insufficient for precise measurements in terms of sensitivity, quantitative performance, and reproducibility. However, there is a drawback that the measurement time becomes longer. Regarding this type of immunoassay method, please refer to the "Clinical Test Methods Recommendation" (written by Izumihara Kanai,
Edited by Masamitsu Kanai, Metal M Edition>'p, "Clinical Examination J Vol.
, z 2 t'5 (1978), pages 471-487.

更に、「Immunochemistry J  、 
Vol、 12 、 &4(19)5)、第349〜8
51頁には、抗体または抗原を表面に担持させた粒子を
被測定液中の抗原または抗体と反応させ、凝集粒子の大
きさに比例して減少するブラウン運動の指標となる平均
拡散定数を、レーザ光の散乱光のスペクトル幅の変化か
ら求めることにより抗原または抗体を定量分析する方法
が開示されている。この分析方法では標識試薬を用いな
い利点はあるが、粒子のブラウン運動によるドツプラ効
果によって入射光のスペクトルが広がるのを分光計を用
いて検出しているため、装置が大形で高価となる欠点が
あると共に分光計を機械的に駆動する際に誤差が生じ、
精度および再現性が悪くなる欠点がある。また、この方
法では光のスペクトル幅から平均拡散定数を求めている
だけであり、情報量が少ないという欠点もある。
Furthermore, “Immunochemistry J.
Vol, 12, &4(19)5), No. 349-8
On page 51, particles carrying antibodies or antigens on their surfaces are reacted with antigens or antibodies in a liquid to be measured, and the average diffusion constant, which is an index of Brownian motion, decreases in proportion to the size of aggregated particles. A method for quantitatively analyzing antigens or antibodies by determining from changes in the spectral width of scattered laser light is disclosed. This analysis method has the advantage of not using labeled reagents, but it uses a spectrometer to detect the broadening of the spectrum of incident light due to the Doppler effect caused by the Brownian motion of particles, so the disadvantage is that the equipment is large and expensive. In addition to this, errors occur when mechanically driving the spectrometer,
It has the disadvantage of poor accuracy and reproducibility. Furthermore, this method only calculates the average diffusion constant from the spectral width of light, and has the disadvantage that the amount of information is small.

上述したように従来の免疫分析方法では、高価な標識試
薬を用いるため分析のランニングコストが高価となると
共に液体の取扱いおよび処理が面倒となったり、処理時
間が長くなる欠点があったり、高価で大形な分光計を必
要とすると某に精度や再現性も悪く、得られる情報量も
少ないという欠点があった。
As mentioned above, conventional immunoassay methods use expensive labeling reagents, resulting in high analysis running costs, troublesome liquid handling and processing, long processing times, and high costs. If a large spectrometer is required, the accuracy and reproducibility are poor, and the amount of information obtained is small.

このような欠点を克服するために、微粒子による散乱光
の強度ゆらぎが抗原−抗体反応と密接な関係にあること
を利用して抗原−抗体反応を測定することにより、高価
な標識試薬や高価でかつ大形な分光計を用いずに、高い
精度および再現性を以って測定を行なうことができ、し
かも測定時間の短縮、抗原−抗体反応測定の自動化が可
能であると共に抗原−抗体反応について多くの有用な情
報を得ることができる免疫反応測定方法が特願昭59−
148878号において提案されている。
In order to overcome these drawbacks, the antigen-antibody reaction can be measured by taking advantage of the fact that the intensity fluctuation of light scattered by fine particles is closely related to the antigen-antibody reaction. Moreover, it is possible to perform measurements with high precision and reproducibility without using a large spectrometer, and it is also possible to shorten the measurement time and automate antigen-antibody reaction measurements, as well as to improve the accuracy of antigen-antibody reactions. A patent application was filed in 1983 for an immune reaction measurement method that can obtain a lot of useful information.
No. 148878.

この免疫反応測定方法は、少なくとも抗原およ−び抗体
を含む抗原−抗体反応液にコヒーレントまたはインコヒ
ーレントな輻射線を投射し、抗原−抗体反応により生成
される微粒子による散乱光または反応液に加えた抗体ま
たは抗原を固定した微粒子の抗原−抗体反応によって生
ずる散乱光をホモダイン的にまたはヘテロダイン的に検
知し、この検知出力の強度ゆらぎのパワースペクトル密
度に基いて抗原−抗体反応を測定するものである。
This immune reaction measurement method involves projecting coherent or incoherent radiation onto an antigen-antibody reaction solution containing at least an antigen and an antibody, and in addition to light scattered by particles generated by the antigen-antibody reaction or the reaction solution. This method detects the scattered light generated by the antigen-antibody reaction of fine particles immobilized with antibodies or antigens in a homodyne or heterodyne manner, and measures the antigen-antibody reaction based on the power spectrum density of the intensity fluctuation of this detection output. be.

このような免疫反応測定方法においては、抗原−抗体反
応の結果として生成される微粒子による散乱光または抗
体または抗原を表面に固定した微粒子の抗原−抗体反応
によって生ずる散乱光の強度が、光の干渉によりゆらぐ
ため、この強度ゆらぎのパワースペクトル密度に粒子の
形状や大きさの依存性があることに着目し、強度ゆらぎ
のパワースペクトル密度を検知することにより抗原−抗
体反応の有無、抗原または抗体の定量、抗原−抗体反応
による微粒子の凝集状態(粒径分布)などの多くの有用
な情報を得ることができる。また、散乱光を光検出器で
受光し、その出力信号強度のゆらぎを検知するものであ
るから、標識試薬を用いる必要はないと共に散乱光のス
ペクトル分析を行なうものではないので分光計を用いる
必要もない。具体的に抗体または抗原濃度を検出する方
法としては、散乱光をホモダイン的に検知し、その強度
ゆらぎのパワースペクトル密度の緩和周波数が粒子の大
きさに依存することを利用して、抗原−抗体反応の前後
における緩和周波数の比を求め、この比の値から抗原−
抗体反応を測定する方法が提案されている。
In such an immune reaction measurement method, the intensity of scattered light generated by microparticles as a result of an antigen-antibody reaction, or the intensity of scattered light generated by an antigen-antibody reaction of microparticles on which antibodies or antigens are immobilized, is determined by light interference. We focused on the fact that the power spectral density of this intensity fluctuation depends on the shape and size of the particle, and by detecting the power spectral density of the intensity fluctuation, we can determine whether there is an antigen-antibody reaction or not. It is possible to obtain a lot of useful information such as quantitative determination and the aggregation state (particle size distribution) of microparticles due to antigen-antibody reactions. In addition, since the scattered light is received by a photodetector and fluctuations in the output signal intensity are detected, there is no need to use a labeling reagent, and a spectrometer is not required since the method does not perform spectrum analysis of the scattered light. Nor. Specifically, a method for detecting antibody or antigen concentration is to detect scattered light in a homodyne manner and utilize the fact that the relaxation frequency of the power spectral density of the intensity fluctuation depends on the particle size to detect the antigen-antibody concentration. The ratio of the relaxation frequencies before and after the reaction is determined, and from this ratio value, the antigen-
Methods have been proposed to measure antibody responses.

ここで、パワースペクトル密度の緩和周波数は粒子の径
に反比例し、粒径0.0915μmでは約400 Hz
、0.188μmでは約200Hz、0.805μmで
は約100H2となる。したがって、緩和周波数を求め
るに当っては、緩和周波数よりも遥かに高い、例えば緩
和周波数が200Hz前後と予想される場合においては
約1 o xazより上の高い周波数は必要でなく、む
しろこのような高周波成分には散乱光を受光する光検出
器の雑音等が多く含まれるため測定誤差の原因となる。
Here, the relaxation frequency of the power spectral density is inversely proportional to the particle size, and is approximately 400 Hz for a particle size of 0.0915 μm.
, at 0.188 μm, it is approximately 200 Hz, and at 0.805 μm, it is approximately 100 H2. Therefore, when determining the relaxation frequency, it is not necessary to use a frequency much higher than the relaxation frequency, for example, if the relaxation frequency is expected to be around 200 Hz, a high frequency above about 1 o xaz is not necessary; The high frequency component contains a lot of noise from the photodetector that receives the scattered light, which causes measurement errors.

またく粒子濃度や測定光量があまり低い場合には、信号
成分のレベルが高周波側での雑音レベルと同程度となつ
て測定困矯となることもある。
Furthermore, if the particle concentration or measurement light amount is too low, the level of the signal component may become comparable to the noise level on the high frequency side, making measurement difficult.

(発明の目的) 本発明の目的は、上述した不具合を解決し、雑音に影響
されることなく、光強度ゆらぎによる免疫反応を常に高
精度で測定できる方法を提供しようとするものである。
(Objective of the Invention) An object of the present invention is to solve the above-mentioned problems and to provide a method that can always measure an immune reaction due to light intensity fluctuation with high accuracy without being affected by noise.

(発明の概要) 本発明は、抗原および抗体を含む反応液に輻射線を投射
し、反応液中の微粒子による散乱光を検知し、この検知
出力の強度ゆらぎのパワースペクトル密度に基いて抗原
−抗体反応を測定するに当たり、前記検知出力の、パワ
ースペクトル密度の緩和周波数よりも高い高周波成分を
ローパスフィルタにより除去した後、パワースペクトル
密度を求めることを特徴とするものである。
(Summary of the Invention) The present invention projects radiation onto a reaction solution containing an antigen and an antibody, detects scattered light by fine particles in the reaction solution, and detects the antigen and antibody based on the power spectrum density of the intensity fluctuation of the detection output. In measuring the antibody reaction, the power spectral density is determined after removing high frequency components higher than the relaxation frequency of the power spectral density of the detection output using a low-pass filter.

(実施例) 第1図は本発明の免疫反応測定方法を実施する装置の一
例の構成を示す図である。本例においては、光源1とし
て波長682.8nHのコヒーレント光を放出する[8
− N8ガスレーザを用いる。コヒーレント光を放射す
る光[1としては、このようなガスレーザの他に半導体
レーザのような固体レーザを用いることもできる。また
、本発明の方法ではインコヒーレントな光を放射する光
源を用イることもできる。光源1から放射されるレーザ
光束2は、半透鏡8により光束4と光束6とに分離し、
一方の光束4を集光レンズ6により集光して透明なセル
フに投射させ、他方の光束6をシIJ コン7オトダイ
オードより成る光検出器8に入射させて光源lの出力光
強度の変動を表わすモニタ信号に変換する。
(Example) FIG. 1 is a diagram showing the configuration of an example of an apparatus for implementing the immune reaction measuring method of the present invention. In this example, the light source 1 emits coherent light with a wavelength of 682.8 nH [8
- Using N8 gas laser. As the light [1 that emits coherent light], in addition to such a gas laser, a solid laser such as a semiconductor laser can also be used. Furthermore, the method of the present invention can also use a light source that emits incoherent light. A laser beam 2 emitted from a light source 1 is separated into a beam 4 and a beam 6 by a semi-transparent mirror 8,
One light beam 4 is focused by a condensing lens 6 and projected onto a transparent self, and the other light beam 6 is made incident on a photodetector 8 consisting of a silicon 7 photodiode to vary the output light intensity of the light source 1. Convert to a monitor signal representing

セルフの中には、表面に抗体または抗原を結合した微粒
子9を分散させた緩衝液と、抗原または抗体を含む被検
液との混合物である抗原−抗体反応液を収容する。した
がってセルフ中で抗原−抗体反応が起こり、微粒子間に
相互作用が生じたり、微粒子が相互に付着するため、ブ
ラウン運動の状態が変化することになる。セルフ中の微
粒子〇によって散乱された散乱光は、一対のピンホール
を有するコリメータ10を経て光電子増倍管より成る光
検出器11に入射させる。コリメータ10は外光の影響
を除くために暗箱構造として、その内面には反射防止処
理を施し、暗箱の前後にピンホールを形成する。
The self contains an antigen-antibody reaction solution, which is a mixture of a buffer solution in which fine particles 9 having antibodies or antigens bound to their surfaces are dispersed, and a test solution containing the antigen or antibody. Therefore, an antigen-antibody reaction occurs in the self, interactions occur between fine particles, and fine particles adhere to each other, resulting in a change in the state of Brownian motion. The scattered light scattered by the microparticles 〇 in the self passes through a collimator 10 having a pair of pinholes and is made incident on a photodetector 11 consisting of a photomultiplier tube. The collimator 10 has a dark box structure to eliminate the influence of external light, and its inner surface is subjected to antireflection treatment, and pinholes are formed at the front and rear of the dark box.

光検出器8の出力モニタ信号は低雑音増幅器13を経て
データ処理装置14に供給すると共に、光検出器11の
出力信号は低雑音増幅器15およびローパスフィルタ1
6を経てデータ処理装置14に供給する。データ処理装
置14には、A/D変換部17.高速7一リエ変換部1
8および演算処理部19を設け、このデータ処理装置1
4において光検出器11の出力信号、すなわちセルフか
らの散乱光強度を、光検出器8からの光源強度モニタ信
号の短時間平均値出力によって、光源1から放射される
レーザ光強度の変動を除去して規格化した後、その散乱
光の強度ゆらぎのパワースペクトル密度の緩和周波数を
求め、これに基いてセルフ中での微粒子9の凝集状態、
シたがって抗原−抗体反応を測定し、その測定結果を表
示装置20に供給して表示させる。
The output monitor signal of the photodetector 8 is supplied to the data processing device 14 via the low-noise amplifier 13, and the output signal of the photodetector 11 is supplied to the low-noise amplifier 15 and the low-pass filter 1.
6 and then supplied to the data processing device 14. The data processing device 14 includes an A/D conversion section 17. High-speed 7-layer converter 1
8 and an arithmetic processing section 19, this data processing device 1
4, the output signal of the photodetector 11, that is, the intensity of the scattered light from the self, is used to remove fluctuations in the intensity of the laser light emitted from the light source 1 by outputting the short-term average value of the light source intensity monitor signal from the photodetector 8. After normalization, the relaxation frequency of the power spectrum density of the intensity fluctuation of the scattered light is determined, and based on this, the aggregation state of the fine particles 9 in the self,
Therefore, the antigen-antibody reaction is measured, and the measurement results are supplied to the display device 20 for display.

本実施例においては、光検出器11の出力信号をローパ
スフィルタ16を経てデータ処理装置14に供給するが
、このローパスフィルタ16は検出されるパワースペク
トル密度の緩和周波数よりも十分高い周波数成分を除去
するよう構成し、そのカットオフ周波数は、微粒子9と
して粒径0.1〜0.8μm程度のラテックス粒子を用
いる場合にはほぼ10 K11zとする。
In this embodiment, the output signal of the photodetector 11 is supplied to the data processing device 14 through a low-pass filter 16, but this low-pass filter 16 removes frequency components sufficiently higher than the relaxation frequency of the detected power spectral density. The cutoff frequency is approximately 10 K11z when latex particles having a particle size of about 0.1 to 0.8 μm are used as the fine particles 9.

このように、光検出器11の出力信号のうち、緩和周波
数よりも十分高い周波数成分をローパスフィルタ16に
より除去すれば、粒子濃度や測定光量が低い場合であっ
ても、光検出器11の雑音等に影響されることなく、緩
和周波数を高精度で検出できる。
In this way, if the frequency component sufficiently higher than the relaxation frequency of the output signal of the photodetector 11 is removed by the low-pass filter 16, the noise of the photodetector 11 can be suppressed even when the particle concentration or the amount of measured light is low. The relaxation frequency can be detected with high accuracy without being affected by

第2図および第3図は、第1図に示す測定装置において
、Tris −110tでPH7に調整した緩衝液に、
直径0.3μmのラテックス粒子の表面に免疫グロブリ
ンGの抗体を固定したものと、抗原としてl O”’ 
f/mlおよび10 9/m1(D濃度の免疫グロブリ
ンGとを加えた抗原−抗体反応液をセルアに収容したと
きの抗原−抗体反応の開始前とR始後(15分後)のパ
ワースペクトル密度の測定値を示すものである。第2図
および第8図から明らかなように、パワースペクトル密
度ハローバスフィルタ16のカットオフ周波数である1
0KHzから急激に低下する。したがって、第2図のよ
うな高濃度の場合は勿論、第8図のような低濃度の場合
であっても高周波成分に影響されることなく、各々の緩
和周波数を高精度で検出することができる0 第2図に示す抗原濃度10−’ 9 / mlの場合に
おいて、反応前の緩和周波数は約50 Hzであるのに
対し、反応15分後の緩和周波数は10 Hzに変化し
ている。これに対し、第8図に示す抗原濃度I Q−9
9/ mjの場合には、反応開始前の、緩和周波数は約
95 Hzで、反応後の緩和周波数は約40Hzとなっ
ている。したがって、抗原−抗体反応前後の緩和周波数
の比Fを、 抗原−抗体反応後の緩和周波数 と定義し、この値を幾つかの既知の抗原濃度について求
めて、抗原濃度と緩和周波数の比Fとの関係を表わす検
量線を予しめ求めておけば、未知の抗原濃度における緩
和周波数の比Fを検出することにより、検量線からその
抗原濃度を求めることができる。
Figures 2 and 3 show that in the measuring apparatus shown in Figure 1, a buffer solution adjusted to pH 7 with Tris-110t was used.
Immunoglobulin G antibody was immobilized on the surface of latex particles with a diameter of 0.3 μm, and l O''' as an antigen.
Power spectrum before the start of the antigen-antibody reaction and after the start of the R (15 minutes later) when the antigen-antibody reaction solution containing immunoglobulin G at f/ml and 109/ml (D concentration) is housed in Cerua. 2 and 8, the cutoff frequency of the power spectral density halo bass filter 16 is 1.
It drops rapidly from 0KHz. Therefore, it is possible to detect each relaxation frequency with high accuracy without being affected by high frequency components, not only in the case of high concentration as shown in Fig. 2, but also in the case of low concentration as shown in Fig. 8. In the case of an antigen concentration of 10-'9/ml shown in FIG. 2, the relaxation frequency before the reaction is approximately 50 Hz, whereas the relaxation frequency 15 minutes after the reaction has changed to 10 Hz. On the other hand, the antigen concentration IQ-9 shown in FIG.
In the case of 9/mj, the relaxation frequency before the reaction starts is about 95 Hz, and the relaxation frequency after the reaction is about 40 Hz. Therefore, the ratio F of the relaxation frequencies before and after the antigen-antibody reaction is defined as the relaxation frequency after the antigen-antibody reaction, and this value is determined for several known antigen concentrations to calculate the ratio F of the antigen concentration and relaxation frequency. If a calibration curve representing the relationship is determined in advance, the antigen concentration can be determined from the calibration curve by detecting the ratio F of relaxation frequencies at an unknown antigen concentration.

なお、本発明は上述した例にのみ限定されるものではな
く、幾多の変形または変更が可能である。
Note that the present invention is not limited to the above-mentioned example, and can be modified or changed in many ways.

例えば上述した実施例においては、セルフに入射する光
束4の方向と、コリメータ10の光軸方向とを90°と
し、入射光束が直接光検出器11に入射しないホモダイ
ン法を採用したが、入射光束の一部を光検出器11に入
射させるヘテロダイン法を採用することもできる。また
、表示装置20での表示は緩和周波数に限らず、パワー
スペクトル密度データをも合わせて表示してもよいし、
演算により求めた緩和周波数に基いて更に所要の演算を
行なって抗原濃度を表示させるようにしてもよ、い。ま
た、上述した説明は免疫グロブリンG (I9G >に
ついて例示したが、免疫グロブリンA(IgA)。
For example, in the above-mentioned embodiment, the direction of the light beam 4 incident on the self and the optical axis direction of the collimator 10 are set at 90 degrees, and a homodyne method is adopted in which the incident light beam does not directly enter the photodetector 11, but the incident light beam It is also possible to adopt a heterodyne method in which a part of the light is incident on the photodetector 11. Furthermore, the display on the display device 20 is not limited to the relaxation frequency, but may also display power spectral density data.
The antigen concentration may be displayed by further performing necessary calculations based on the relaxation frequency obtained by calculation. Furthermore, although the above explanation has been given as an example of immunoglobulin G (I9G), immunoglobulin A (IgA) is used.

Xy M 、  IgD 、 XりE、オーストラリア
抗原、梅毒抗原1.インシュリンなど抗原−抗体反応に
よって凝集を生ずるすべての物質の測定に適用すること
ができる。更に、上述した実施例では、微粒子の表面に
抗体を固定して、被検体中の抗原を検出するようにした
が、微粒子の表面に抗原を固定し、被検体中の抗体を検
出することもできる。また、上述した実施例では微粒子
としてポリスチレンラテックス粒子を用いたが他の有機
物粒子や、ガラスなどの無機物粒子を用いることもでき
る。
XyM, IgD, XriE, Australian antigen, syphilis antigen 1. It can be applied to the measurement of all substances that cause agglutination due to antigen-antibody reactions, such as insulin. Furthermore, in the above-mentioned embodiments, antibodies were immobilized on the surface of microparticles to detect antigens in the specimen, but it is also possible to immobilize antigens on the surface of microparticles and detect antibodies in the specimen. can. Furthermore, although polystyrene latex particles were used as the fine particles in the above embodiments, other organic particles or inorganic particles such as glass may also be used.

更に1上述した実施例では抗原−抗体反応液の中には最
初から微粒子を存在させたが、このような微粒子を用い
ずに、抗原−抗体反応の結果として生ずる微粒子状生成
物による散乱光を利用することもできる。このような抗
原−抗体反応の実施例としては、抗原としてヒト絨毛ゴ
ナドトロピン(HOG)を用い、抗体として抗ヒト絨毛
ゴナドトロピン(抗HOG)を用いる反応があり、この
反応により生成される抗原−抗体複合体は微粒子として
扱うことができる。また、抗原そのものを粒子として用
いることもできる。このような抗原−抗体反応としては
抗原としてカンデイダ・アルビカンス(酵母)を用い、
抗体として抗カンデイダ・アルビカンスを用いる例や、
他に血球、細胞、微生物などを粒子として用いることも
できる。更に、第1図に示す実施例では抗原−抗体反応
液をセルに収容して測定を行なうパッチ方式としたが、
抗原−抗体反応液を連続的に流しながら測定を行なう7
0一方式とすることも勿論可能である。
Furthermore, in the above-mentioned example, fine particles were present in the antigen-antibody reaction solution from the beginning, but instead of using such fine particles, the scattered light by the fine particulate products generated as a result of the antigen-antibody reaction could be absorbed. You can also use it. An example of such an antigen-antibody reaction is a reaction using human chorionic gonadotropin (HOG) as an antigen and anti-human chorionic gonadotropin (anti-HOG) as an antibody, and the antigen-antibody complex generated by this reaction is The body can be treated as a particle. Furthermore, the antigen itself can also be used as particles. In such an antigen-antibody reaction, Candida albicans (yeast) is used as the antigen.
Examples of using anti-Candida albicans as an antibody,
In addition, blood cells, cells, microorganisms, etc. can also be used as particles. Furthermore, in the embodiment shown in FIG. 1, a patch method was adopted in which the antigen-antibody reaction solution was contained in a cell and the measurement was carried out.
Measurement is performed while continuously flowing the antigen-antibody reaction solution 7
Of course, it is also possible to use one type.

(発明の効果) 以上述べたように、本発明においては、検知出力の、パ
ワースペクトル密度の緩和周波数よりも高い高周波成分
をローパスフィルタにより除去してから、パワースペク
トル密1度を求めるので、粒子濃度や光量が低い場合で
も、強度ゆらぎによる免疫反応を常に高精度で測定する
ことができる。
(Effects of the Invention) As described above, in the present invention, the power spectral density 1 degree is obtained after removing the high frequency component of the detection output higher than the relaxation frequency of the power spectral density using a low-pass filter. Even when the concentration and light intensity are low, immune reactions due to intensity fluctuations can always be measured with high precision.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の免疫反応測定方法を実施する装置の一
例の構成を示す線図、 第2図および第3図は第1図に示す装置による測定例を
示す図である。 1・・・レーザ光源    2,4,5・・・光束8・
・・半透鏡      6・・・集光レンズ7・・・セ
ル       8・・・光検出器9・・・微粒子  
    10・・・コリメータ11・1.光検出器  
   18.15・・・低雑音増幅器14・・・データ
処理装置  16・・・ローパスフィルタ17・−A 
/ D変換部 18・・・高速フーリエ変換部 19・・・演算処理部    20・・・表示装置第2
図 第3図 1: 原波数(Hz)
FIG. 1 is a diagram showing the configuration of an example of an apparatus for implementing the immune reaction measuring method of the present invention, and FIGS. 2 and 3 are diagrams showing an example of measurement using the apparatus shown in FIG. 1. 1... Laser light source 2, 4, 5... Luminous flux 8.
... Semi-transparent mirror 6 ... Condensing lens 7 ... Cell 8 ... Photodetector 9 ... Fine particles
10... Collimator 11.1. photodetector
18.15...Low noise amplifier 14...Data processing device 16...Low pass filter 17.-A
/D conversion unit 18...Fast Fourier transform unit 19...Arithmetic processing unit 20...Display device 2nd
Figure 3 Figure 1: Original wave number (Hz)

Claims (1)

【特許請求の範囲】[Claims] 1、抗原および抗体を含む反応液に輻射線を投射し、反
応液中の微粒子による散乱光を検知し、この検知出力の
強度ゆらぎのパワースペクトル密度に基いて抗原−抗体
反応を測定するに当たり、前記検知出力の、パワースペ
クトル密度の緩和周波数よりも高い高周波成分をローパ
スフィルタにより除去した後、パワースペクトル密度を
求めることを特徴とする光強度ゆらぎによる免疫反応測
定方法。
1. In projecting radiation onto a reaction solution containing an antigen and an antibody, detecting light scattered by fine particles in the reaction solution, and measuring the antigen-antibody reaction based on the power spectrum density of the intensity fluctuation of this detection output, A method for measuring an immune reaction using light intensity fluctuation, characterized in that the power spectral density is determined after removing high frequency components higher than the relaxation frequency of the power spectral density of the detection output using a low-pass filter.
JP1392085A 1985-01-28 1985-01-28 Method for measuring immune reaction by intensity fluctuation of light Pending JPS61173136A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1392085A JPS61173136A (en) 1985-01-28 1985-01-28 Method for measuring immune reaction by intensity fluctuation of light

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1392085A JPS61173136A (en) 1985-01-28 1985-01-28 Method for measuring immune reaction by intensity fluctuation of light

Publications (1)

Publication Number Publication Date
JPS61173136A true JPS61173136A (en) 1986-08-04

Family

ID=11846610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1392085A Pending JPS61173136A (en) 1985-01-28 1985-01-28 Method for measuring immune reaction by intensity fluctuation of light

Country Status (1)

Country Link
JP (1) JPS61173136A (en)

Similar Documents

Publication Publication Date Title
US4446239A (en) Light scattering immunoassay involving particles with selective frequency band apparatus
US4725140A (en) Method of measuring specific binding reaction with the aid of polarized light beam and magnetic field
US3990851A (en) Process and device for measuring antigen-antibody reactions
US4799796A (en) Method and apparatus for measuring immunological reaction with the aid of phase-modulation of light
US4828388A (en) Method of measuring concentration of substances
JP3283078B2 (en) Immunological measurement device
JPH02118453A (en) Method and apparatus for optoacoustic immunoassay
JPS6128866A (en) Measuring method and apparatus for immuno-reaction using fluctuating intensity of light
JPS62116263A (en) Method and apparatus for measuring immunoreaction using multiple scattering of linearly polarized light
JPS61173138A (en) Method for measuring immune reaction by intensity fluctuation of light
JPS61173136A (en) Method for measuring immune reaction by intensity fluctuation of light
JPS6166150A (en) Immunoreaction measuring method
JPS6259841A (en) Method and instrument for measuring immunoreaction using linearly polarized light
JPH046465A (en) Method for treating specimen and method and apparatus for measuring specimen
JPS6165144A (en) Instrument for measuring immune reaction using intensity fluctuation of light
JPS61173139A (en) Method of measuring immune reaction by intensity fluctuation of light
JPS61173137A (en) Method for measuring immune reaction by intensity fluctuation of light
JPH02275361A (en) Measurement of immunoreaction
JPS63247644A (en) Method for measuring immune reaction
JPS61175548A (en) Immunological reaction measurement by fluctuations in intensity of light
JPS6165142A (en) Method for measuring immune reaction by using fluctuation of light intensity
JPH0552848A (en) Immunoassay and apparatus
JPH0478138B2 (en)
JPS6165143A (en) Method and instrument for measuring immune reaction
JPS61175549A (en) Immunological reaction measurement by fluctuations in intensity of light