JPS6165142A - Method for measuring immune reaction by using fluctuation of light intensity - Google Patents

Method for measuring immune reaction by using fluctuation of light intensity

Info

Publication number
JPS6165142A
JPS6165142A JP18628384A JP18628384A JPS6165142A JP S6165142 A JPS6165142 A JP S6165142A JP 18628384 A JP18628384 A JP 18628384A JP 18628384 A JP18628384 A JP 18628384A JP S6165142 A JPS6165142 A JP S6165142A
Authority
JP
Japan
Prior art keywords
light
antigen
cell
chopped
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18628384A
Other languages
Japanese (ja)
Inventor
Koichi Karaki
幸一 唐木
Tatsuo Nagasaki
達夫 長崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP18628384A priority Critical patent/JPS6165142A/en
Priority to US06/769,965 priority patent/US4762413A/en
Priority to DE19853531891 priority patent/DE3531891A1/en
Priority to DE3546566A priority patent/DE3546566C2/de
Publication of JPS6165142A publication Critical patent/JPS6165142A/en
Priority to US07/197,336 priority patent/US4826319A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/44Raman spectrometry; Scattering spectrometry ; Fluorescence spectrometry
    • G01J3/4412Scattering spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0205Investigating particle size or size distribution by optical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0205Investigating particle size or size distribution by optical means
    • G01N15/0211Investigating a scatter or diffraction pattern
    • G01N2015/0216Investigating a scatter or diffraction pattern from fluctuations of diffraction pattern
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N2021/0325Cells for testing reactions, e.g. containing reagents
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/59Transmissivity
    • G01N21/5907Densitometers
    • G01N2021/5969Scanning of a tube, a cuvette, a volume of sample
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/08Optical fibres; light guides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00029Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with flat sample substrates, e.g. slides

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To improve S/N and measurement accuracy by converting pho toelectrically the scattered light from a cell, taking out the output synchronized with the chopped light out of the outputs thereof and determining the power spectral density of the intensity fluctuation. CONSTITUTION:Antigen-antibody reaction arises in a cell 7 and the light scat tered by the pulverous particles formed by such reaction is made incident through a collimator 10 having a pair of pincholes to a photodetector 11 consisting of a photoelectron multiplier. The output monitor light of a photode tector 8 is supplied to a data processing unit 14 through a lock-in amplifier 103 which takes out only the light passed actually through a reference cell 102 in synchronization with the chopping operation of a chopper 101. The output signal from the photodetector 11 is supplied to the unit 14 through a lock-in amplifier 104 which takes out only the light passed actually through the cell 7 in sychronization with the chopping operation of the chopper 101. The result of the antigen-antibody reaction is outputted by the unit 14.

Description

【発明の詳細な説明】 (従来技術) 本発明は、抗原−抗体反応に暑く免疫反応を、微粒子に
よる散乱光の強度ゆらぎを利用して測定する免疫反応測
定装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Prior Art) The present invention relates to an immune reaction measuring device that measures an antigen-antibody reaction by using intensity fluctuations of light scattered by fine particles.

免疫物質、ホルモン、医薬品、免疫調節等生体内微量成
分の測定法として免疫反応の特異的選択反応を利用した
免疫分析法があり、大別すると酵素や放射性アイソトー
プを標識物質どして用いる標識免疫分析法と、抗原・抗
体複合体を直接測定する非標識免疫分析法の2方法がよ
く知られている。
There are immunoassay methods that utilize specific selective reactions of immune reactions as a method for measuring trace components in living bodies such as immune substances, hormones, medicines, and immunomodulators.They can be roughly divided into labeled immunoassays that use enzymes or radioactive isotopes as labeling substances. Two well-known methods are analytical methods and non-labeled immunoassay methods that directly measure antigen-antibody complexes.

前者の標識免疫分析法としてはラジオイムノアッセイ(
RIA)、WI素免疫分析(E[A>、蚤光免疫分Ui
(F I A ) ’8 カ、j: < X+”I ’
B しT J> ツ、3ノ感度であるがアイソトープの
取り吸い、廃棄物迅埋等の種々の制限があり、又測定に
長時間を要するうえに標識試薬が高価であるため検査コ
ストか高い等の欠点がある。
The former labeled immunoassay is radioimmunoassay (
RIA), WI elementary immunoassay (E[A>, flea immunoassay Ui
(F I A) '8 Ka, j: <X+"I'
Although it has a sensitivity of 3, there are various limitations such as isotope absorption and rapid burying of waste, and the test cost is high because it takes a long time to measure and the labeling reagent is expensive. There are drawbacks such as.

後者の非標識免疫分析法には免疫電気泳動法、免疫拡散
法、沈降法等があり、簡便な分析法であるが感度、定量
性、再現性の点で精密測定としては不充分である。この
ような免疫分析法に関しては「臨床検査法提要」 (金
井泉原?、金井正光編著、余震出版)や、「臨床検査J
vo i、22゜No 、5 (1978)、第471
〜487頁に詳しく説明されている。
The latter non-labeled immunoassay methods include immunoelectrophoresis, immunodiffusion, and precipitation, and although they are simple analytical methods, they are insufficient for precise measurements in terms of sensitivity, quantitative performance, and reproducibility. Regarding this type of immunoassay method, please refer to ``Clinical Test Methods Summary'' (edited by Izumihara Kanai and Masamitsu Kanai, Aftershock Publishing) and ``Clinical Test J
vo i, 22° No. 5 (1978), No. 471
It is explained in detail on pages 487 to 487.

また、「l mmunochemistryj 、 V
o i 、 12゜No、4 <197’5)、第34
9〜351頁には、i尺体または抗原を表面に担持させ
た粒子を抗原または抗体と反応させ、凝集粒子の大きざ
に比かjして減少するブラウン運動の指標となる平均拡
散定数を、レーザ光の散乱光のスペクトル幅の変化から
求めることにより抗原または抗体を定量分析する方法が
開示されている。この分析方法では標識試薬を用いない
利点はあるが、粒子のブラウン運動によるドツプラ効果
によって入射光のスペクトルが広がるのを分光計を用い
て検出しているため、装置が大形で高価となる欠点があ
ると共に分光計を機械的に駆動する際に誤差が生じ、精
度および再現性が悪くなる欠点がある。また、この方法
では光のスペクトル幅から平均拡散定数を求めているだ
けであり、情報量が少ないという欠点もある。
Also, “l mmunochemistry, V
o i, 12°No, 4 <197'5), 34th
On pages 9 to 351, the average diffusion constant, which is an index of Brownian motion, which decreases compared to the size of aggregated particles, is calculated by reacting particles with i scales or antigens on their surfaces with antigens or antibodies. discloses a method for quantitatively analyzing antigens or antibodies by determining from changes in the spectral width of scattered laser light. This analysis method has the advantage of not using labeled reagents, but it uses a spectrometer to detect the broadening of the spectrum of incident light due to the Doppler effect caused by the Brownian motion of particles, so the disadvantage is that the equipment is large and expensive. In addition, errors occur when the spectrometer is mechanically driven, resulting in poor accuracy and reproducibility. Furthermore, this method only calculates the average diffusion constant from the spectral width of light, and has the disadvantage that the amount of information is small.

上述したように従来の免疫分析方法では、高価な標識試
薬を用いるため分析のランニングコストが高価となると
共に液体の取扱いおよび処理が面倒となったり、処理時
間が長くなる欠点があったり、高価で大形な分光計を必
要とすると共に精度や再現性も悪く、得られる情報量も
少ないという欠点があった。
As mentioned above, conventional immunoassay methods use expensive labeling reagents, resulting in high analysis running costs, troublesome liquid handling and processing, long processing times, and high costs. The disadvantages are that it requires a large spectrometer, has poor accuracy and reproducibility, and provides only a small amount of information.

(発明の目的) 本発明の目的は、微粒子による散乱光の強度ゆらぎが抗
原−抗体反応と密接な関係にあることを利用して抗原−
抗体反応を測定することにより、上述した従来の欠点を
除去し、高1簡な漂識試薬や高価でかつ大形な分光計を
用いずに、高い精度および再現性を以って測定を行なう
ことができ、しかも測定時間の短縮、抗原−抗体反応測
定の自動化が可能であると共にバックグラウンドノイズ
を除去しざらに試料自身のノイズをも除去してSZN比
を向上させることにより、抗原−抗体反応について多く
の有用な情報を得ることができる免疫反応測定装置を提
供しようとするものである。
(Objective of the Invention) The object of the present invention is to utilize the fact that the intensity fluctuation of light scattered by fine particles is closely related to the antigen-antibody reaction.
By measuring antibody reactions, the above-mentioned drawbacks of the conventional methods are eliminated, and measurements can be performed with high accuracy and reproducibility without using simple bleaching reagents or expensive and large spectrometers. Furthermore, it is possible to shorten the measurement time and automate the antigen-antibody reaction measurement, and to improve the SZN ratio by removing not only background noise but also the noise of the sample itself. The present invention aims to provide an immune reaction measuring device that can obtain a lot of useful information about reactions.

(発明の概要) 本発明の免疫反応測定装置は、抗原および抗体を含む反
応液に光を投射し、抗原−抗体反応により生成される微
粒子による散乱光または反応波に加えた抗体または抗原
を固定した微粒子によって生ずる散乱光を検知し、この
検知出力の強度のゆらぎのパワースペクトル密度に基い
て抗原−抗体反応を測定する装置において、前記抗原−
抗体反応を行なう反応液を収容するセルと、コヒーレン
トなチョップ光を放射し、これを前記セルに入射させる
光源装置と、前記セルからの散乱光を用独または入用光
と共に受光する光検出装置と、この光検出装置からの出
力信号のうちチョップ光に同期して出力を取り出すロッ
クインアンプと、このロックインアンプからの出力信号
を受け、その強度ゆらぎのパワースペクトル密度を求め
、それに基づいて抗原−抗体反応を測定する手段とを具
えることを特徴とするものである。
(Summary of the Invention) The immune reaction measurement device of the present invention projects light onto a reaction solution containing an antigen and an antibody, and immobilizes the antibody or antigen added to the scattered light or reaction wave by fine particles generated by the antigen-antibody reaction. In this apparatus, the antigen-antibody reaction is measured based on the power spectrum density of the intensity fluctuation of the detected output by detecting scattered light generated by the antigen-antibody.
A cell that contains a reaction solution for performing an antibody reaction, a light source device that emits coherent chopped light and makes it enter the cell, and a photodetector that receives scattered light from the cell together with the used or used light. Then, a lock-in amplifier extracts the output signal from the photodetector in synchronization with the chopped light, receives the output signal from this lock-in amplifier, calculates the power spectrum density of the intensity fluctuation, and calculates the power spectrum density of the intensity fluctuation. The method is characterized by comprising a means for measuring an antigen-antibody reaction.

上述した本発明の免疫反応測定装置においては、抗原−
抗体反応の結果どして生成される微粒子による散乱光ま
たは抗体または抗原を表面に固定した微粒子の抗原−抗
体反応によって生ずる散乱光の強度か、光の干渉により
ゆらぐため、この強度ゆらぎのパワースペクトル密度に
粒子の形状や大きさの依存惟があることに着目し、強度
ゆらぎのパワースペクトル密度を検知することにより抗
原−抗体反1.δの有無、抗原または抗体の定量、抗原
−抗体反応による微粉子の凝集状7態(粒径分布)など
の多くの有用な情報を得ることができる。このように本
発明では散乱光を光検出器で受光し、その出力信号強度
のゆらぎを検知するものであるから、標識試薬を用いる
必要はないと共に散乱光のスペクトル分析を行なうもの
ではないので分光計を用いる必要もない。さらに、散乱
光を1qるために照射する光をチョッパによりチョッピ
ングしているため、散乱光による出力信号中のS/N比
を向上することができる。
In the above-mentioned immune reaction measuring device of the present invention, antigen-
The intensity of scattered light generated by fine particles generated as a result of antibody reaction or the scattered light generated by antigen-antibody reaction of fine particles on which antibodies or antigens are immobilized fluctuates due to light interference, so the power spectrum of this intensity fluctuation is Focusing on the fact that density depends on the shape and size of particles, we can detect the antigen-antibody reaction by detecting the power spectrum density of intensity fluctuations. A lot of useful information can be obtained, such as the presence or absence of δ, the quantification of antigen or antibody, and the state of aggregation (particle size distribution) of fine particles due to antigen-antibody reactions. In this way, in the present invention, scattered light is received by a photodetector and fluctuations in the output signal intensity are detected, so there is no need to use a labeling reagent, and since spectral analysis of scattered light is not performed, spectroscopic There is no need to use a meter. Furthermore, since the irradiated light is chopped by the chopper in order to reduce the scattered light by 1q, the S/N ratio in the output signal due to the scattered light can be improved.

後述する本発明の一実施例では、散乱光をホモダイン的
に検知し、その強度ゆらぎのパワースペクトル密度の緩
和周波数が粒子の大きさに依存することを利用し−C1
抗原−抗体反応の前後における緩和周波数の比を求め、
この比の値から抗原−抗体反応を測定する。また、他の
実施例においては、散乱光の強度ゆらぎのパワースペク
トル密度の低周波数側の周波数に関する積分値が粒子の
大きざに依存することを利用して、抗原−抗体反応の前
後における積分値の比を求め、この比の値から抗原−抗
体反応を測定する。
In one embodiment of the present invention, which will be described later, scattered light is detected in a homodyne manner, and the relaxation frequency of the power spectrum density of the intensity fluctuation depends on the particle size.
Find the ratio of relaxation frequencies before and after the antigen-antibody reaction,
The antigen-antibody reaction is measured from this ratio value. In other embodiments, the integral value before and after the antigen-antibody reaction can be calculated by taking advantage of the fact that the integral value of the power spectrum density of the power spectral density of the intensity fluctuation of scattered light depends on the size of the particles. The antigen-antibody reaction is measured from the value of this ratio.

本発明では、このように粒子の凝集によって、粒子によ
る散乱光の強度ゆらぎが変化するのを、パワースペクト
ル密度に基いて検出するものであるから、高(illi
な標識試薬や分光計を用いることなく、高感度かつ再現
性高く短時間で抗原−抗体反応に関する多くの有用なデ
ータを得ることができる。
In the present invention, changes in the intensity fluctuation of light scattered by particles due to agglomeration of particles are detected based on the power spectrum density.
It is possible to obtain a large amount of useful data regarding antigen-antibody reactions in a short time with high sensitivity and high reproducibility without using specific labeling reagents or spectrometers.

(実施例) 第1図は本発明による免疫反応測定装置の一実施例の構
成を示す図である。本例においては、コヒーレント光を
放出する光源として波長632.8qmのHe−Neガ
スレーザ1を設ける。コヒーレント光を放射する光源と
しては、このようなガスレーザの他に半導体レーザのよ
うな固体レーザを用いることもできる。光11iii1
から放射されるレーザ光束2に対してチョッパ101に
よりその光束2をある周波数でON、OFFするチョッ
ピング操作を行なう。チョッピング操作後のチョップ光
を半透鏡3により光束4と光束5とに分離する。このと
きのチョッピング周波数は強度ゆらぎの周波数成分と重
ならない周波数、例えば1k Hz以上の周波数とする
必要がある。一方の光束4を集光レンズ6により集光し
で、透明なセルフに投射する。
(Example) FIG. 1 is a diagram showing the configuration of an example of the immune reaction measuring device according to the present invention. In this example, a He--Ne gas laser 1 with a wavelength of 632.8 qm is provided as a light source that emits coherent light. In addition to such a gas laser, a solid laser such as a semiconductor laser can also be used as a light source that emits coherent light. light 11iii1
A chopper 101 performs a chopping operation to turn on and off the laser beam 2 emitted from the laser beam 2 at a certain frequency. The chopped light after the chopping operation is separated into a light beam 4 and a light beam 5 by a semi-transparent mirror 3. The chopping frequency at this time needs to be a frequency that does not overlap with the frequency component of the intensity fluctuation, for example, a frequency of 1 kHz or more. One of the light beams 4 is condensed by a condensing lens 6 and projected onto a transparent self.

他方の光束5を標準試料、例えば微粒子を含む緩衝液を
収容する参照セル102を介してシリコンフォトダイオ
ードより成る光検出器8に入射させ、光#i1の出力光
強度および標準試料のFR間に対するドリフトによる変
動を表わすモニタ信号に変換する。
The other light beam 5 is made incident on a photodetector 8 made of a silicon photodiode via a reference cell 102 containing a standard sample, for example, a buffer containing fine particles, and the output light intensity of light #i1 and the difference between the FRs of the standard sample are determined. It is converted into a monitor signal that represents fluctuations due to drift.

セルフの中には、表面に抗体または抗原を結合した微粒
子9を分散させた緩衝液と、抗原または抗体を含む被検
液との混合物である抗原−抗体反応液を収容する。した
がってセルフ中で抗原−抗体反応が起こり一1微粒子間
に相互作用が生じたり、微粒子が相互に付着するため、
ブラウン運動の状態が変化することになる。セルフ中の
微粒子9によって散乱された散乱光を、一対のピンホー
ルを有するコリメータ10を経て光電子増倍管より成る
光検出器11に入射させる。光検出器8の出力モニタ信
号はチョッパ101のチョッピング操作に同期して実際
に参照セル102を通過した光だけを取り出すロックイ
ンアンプ103を経てデータ処理装置14に供給する。
The self contains an antigen-antibody reaction solution, which is a mixture of a buffer solution in which fine particles 9 having antibodies or antigens bound to their surfaces are dispersed, and a test solution containing the antigen or antibody. Therefore, an antigen-antibody reaction occurs in the self, and interactions occur between microparticles, and microparticles adhere to each other.
The state of Brownian motion will change. Scattered light scattered by the fine particles 9 in the self is made to enter a photodetector 11 consisting of a photomultiplier tube through a collimator 10 having a pair of pinholes. The output monitor signal of the photodetector 8 is supplied to the data processing device 14 via a lock-in amplifier 103 that extracts only the light that actually passed through the reference cell 102 in synchronization with the chopping operation of the chopper 101 .

また、光検出器11の出力信号もチョッパ101のチョ
ッピング操作に同期して実際にセルフを通過した光だけ
を取り出すロックインアンプ104を経てデータ処理装
置14に供給する。データ(l!l理装置14にはA/
D変換部17.高速フーリエ変換部18および演算処理
部19を設け、後述するような信号処理を行ない、抗原
−抗体反応の測定結果を出力する。この測定結果は表示
装置20に供給して表示する。
Further, the output signal of the photodetector 11 is also supplied to the data processing device 14 through a lock-in amplifier 104 that extracts only the light that actually passed through the self in synchronization with the chopping operation of the chopper 101. data (l!l management device 14 has A/
D conversion unit 17. A fast Fourier transform section 18 and an arithmetic processing section 19 are provided to perform signal processing as described later and output measurement results of antigen-antibody reactions. This measurement result is supplied to the display device 20 and displayed.

セルフからの散乱光強度は、光検出器8からの抗原強度
モニタ信号の短時間平均値出力によって規格化され、光
源から放射されるレーザ光強度および標準試料の時間に
対するドリフトの変動を除去した後、散乱光の強度ゆら
ぎのパワースペクトル密度を求め、これに基いてセルフ
中での微粒子9の凝集状態、したがって抗原−抗体反応
の進行状態の測定を行なう。
The scattered light intensity from the self is normalized by the short-time average value output of the antigen intensity monitor signal from the photodetector 8, and after removing the fluctuation of the laser light intensity emitted from the light source and the drift of the standard sample over time. The power spectrum density of the intensity fluctuation of the scattered light is determined, and based on this, the state of aggregation of the fine particles 9 in the self, and therefore the progress state of the antigen-antibody reaction, is measured.

第2図は第1図に示したコリメータ10の詳細な構成を
示す図である。本例のコリメータ10は空胴構造となっ
ており、空胴10aは外光の影響を除くために暗箱構造
となっており、その内面は反射防止構造となっている。
FIG. 2 is a diagram showing a detailed configuration of the collimator 10 shown in FIG. 1. The collimator 10 of this example has a cavity structure, and the cavity 10a has a dark box structure to remove the influence of external light, and its inner surface has an antireflection structure.

’;:1li10aの1iQ il tこはピンホール
+obおよび+Ocを形成する。今、これらビンホール
10b83よび10cの半径をそれぞれa+Bよびa2
.ピンホール間の距離をり、空胴10a’の内 ゛部課
体の屈折率を11.波長をλとするどき、次式(1)を
満足するように構成する。
';:1iQilt of 1li10a forms pinholes +ob and +Oc. Now, the radius of these bin holes 10b83 and 10c are a+B and a2, respectively.
.. The distance between the pinholes is calculated, and the refractive index of the inner part of the cavity 10a' is set to 11. When the wavelength is λ, the configuration is made to satisfy the following equation (1).

本発明では、上述したように散乱光の強度ゆらぎのパワ
ースペクトル密度を検出するが、このパワースペクトル
密度は、微粒子が波長程度の距離を拡散してゆくことに
よる干渉成分のゆらぎによる項ど、散乱体積−への微粒
子の出入りによって生ずる粒子数のゆらぎによる項とか
ら成っているうこの内、干渉による散乱光のゆらぎはス
ペックルパターンの空間的なゆらぎとして観測されるが
、これをそのまま広い受光面を持った光検出器11に入
射させると、受光面の面積に亘って空間的な平滑化が行
なわれるので、検出されるゆらぎは小さくなってしまう
。そこで上述したようなピンホールを有するコリメータ
10を用いて光検出器11の視野を限定することにより
、ゆらぎを高感度で検出することができるようになる。
In the present invention, as described above, the power spectral density of the intensity fluctuation of the scattered light is detected, but this power spectral density includes a component due to the fluctuation of the interference component caused by the scattering of the fine particles over a distance of about the wavelength. The fluctuation of the scattered light due to interference is observed as a spatial fluctuation of the speckle pattern, but this is directly reflected in the wide light receiving field. When the light is incident on the photodetector 11 having a surface, spatial smoothing is performed over the area of the light receiving surface, so the detected fluctuation becomes small. Therefore, by limiting the field of view of the photodetector 11 using the collimator 10 having a pinhole as described above, fluctuations can be detected with high sensitivity.

本実施例では上式(1)を(^足させるには、空胴10
a内の媒体は屈折率11=1の空気e十分実用的である
。すなわち、直径0.3mmのピンホール10b 、 
10cを30cm離したコリメータ10を用いれば上式
(1)は満足されることになる。
In this example, in order to add (^) to the above formula (1), the cavity 10
The medium in a is air with a refractive index of 11=1, which is sufficiently practical. That is, a pinhole 10b with a diameter of 0.3 mm,
If a collimator 10 with 10c separated by 30 cm is used, the above formula (1) will be satisfied.

上述した実施例においては、セルフに入射する光束4の
方向と、コリメータ10の光軸方向とを90°とし、入
射光束は直接光検出器11に入射しないホモダイン法を
採用したが、入射光束の一部を光検出器11に入射させ
るヘテロダイン法を採用することもできる。すなわち゛
、本発明においては、第3図に示すようにセルフへの入
射光束4とコリメータ10の光軸との成す角度θは任意
にとることができる。ここでホモダイン的に散乱光を検
出する場合には、光電子増倍管より成る光検出器11の
出力信号は、散乱光の電界強度をES とすると、その
自乗の平均値ES2に比例したちのとなり、散乱光と入
射光とを併わせで検出するヘテロダイン的検出の場合に
は、直接の入射光の電界強度をEe とすると、光検出
器11の出力信号は、・E +ES2 となる。ここでE はゆらぎがない(ちしあったどしで
も散乱光のゆらぎに比べて緩つくりしている)ので、光
検出器11の出力の変動成分は殆んど第2項2Ee −
ES に等しい。つまり、散乱光の電界強度E にほぼ
比例した出力信号が得られることになる。
In the above embodiment, the direction of the light beam 4 incident on the self and the optical axis direction of the collimator 10 are set at 90 degrees, and the homodyne method is adopted in which the incident light beam does not directly enter the photodetector 11. It is also possible to adopt a heterodyne method in which a portion of the light is incident on the photodetector 11. That is, in the present invention, as shown in FIG. 3, the angle θ between the light beam 4 incident on the self and the optical axis of the collimator 10 can be set arbitrarily. When detecting the scattered light in a homodyne manner, the output signal of the photodetector 11 consisting of a photomultiplier tube is proportional to the average value ES2 of the square of the electric field strength of the scattered light ES. In the case of heterodyne detection in which scattered light and incident light are detected together, if the electric field strength of directly incident light is Ee, the output signal of the photodetector 11 becomes .E + ES2. Here, since E has no fluctuation (it is made gentler than the fluctuation of the scattered light even if there is a dust), the fluctuation component of the output of the photodetector 11 is almost entirely the second term 2Ee −
Equal to ES. In other words, an output signal approximately proportional to the electric field strength E of the scattered light can be obtained.

また、コリメーター0も上述した構成に限定されるもの
ではなく、光検出器11の視野を1スペツクルパターン
以下に制限できるものであれば任意の構成とすることが
できる。
Further, the collimator 0 is not limited to the above-mentioned configuration, but may have any configuration as long as it can limit the field of view of the photodetector 11 to one speckle pattern or less.

上述した装置を用い、光検出器11の出力信号をロック
インアンプ104を経てデータ処理装置14へ供給し、
光検出器8からのモニタ信号と共!、:2!1理をして
散乱光の強度ゆらぎのパワースペクトル密度を求めた結
果を次に説明する。ここで定常確立過稈× (t)のパ
ワースペクトル密度S(「)は、次のように表わすこと
ができる。
Using the above-described device, the output signal of the photodetector 11 is supplied to the data processing device 14 via the lock-in amplifier 104,
Along with the monitor signal from photodetector 8! , :2!1 The result of determining the power spectrum density of the intensity fluctuation of the scattered light will be explained next. Here, the power spectral density S(') of steady established overculm x (t) can be expressed as follows.

このく2)式をもとに高速フーリ」−変換を用いてパワ
ースペクトル密度の計樺を行なう。ツなゎら、光検出器
11からの出力信号をロックインアンプ104により、
データffi I!!装置14におけるA/D変換の量
子化レベルを信号の直載ができるだけ広くおおうように
増幅し、この量子化したデータをマイクロプロセッサに
よって演算処理してパワースペクトル密度を求めた。こ
のようにして求めたパワースペクトル密度から免疫反応
の進行状況を表示装置20で数置的に表示した。
Based on equation 2), the power spectral density is estimated using a fast Fourie transform. The output signal from the photodetector 11 is output by the lock-in amplifier 104.
Data ffi I! ! The quantization level of the A/D conversion in the device 14 was amplified so that the direct signal coverage was as wide as possible, and the quantized data was processed by a microprocessor to obtain the power spectral density. The progress status of the immune reaction was numerically displayed on the display device 20 from the power spectral density obtained in this manner.

第4図および第5図は、粒径がそれぞれ0.1g、!1
μn+、P3よび0.305μn1のラテックス粒子を
分散させた液をセルフに収容したときに得られるパワー
スペクトル密度を示すものであり、これはローレンツ型
パワースペクトル密度を表わすものでおり、散乱光の強
度ゆらさ゛のパワースペクトル密度の内、干渉効果によ
るもの′Cある。これらのパワースペクトル密度の緩和
周波数は微粒子の直径に反比例することがわかる。ツな
わち、散乱光の強度ゆらぎは上述したように微粒子の運
動に暴くコヒーレント光の干渉による成分と、散乱体積
内の粒子数の変動による成分との合成されたものとなる
が、本実施例では干渉成分が主として検出されてあり、
パワースペクトル徴度の緩和周波数は粒子が光の波長の
距離を移動する時間の逆数となるので、粒径が大きくな
ると移動時間は長くなり、緩和周波数が減少することに
なる。
In Figures 4 and 5, the particle size is 0.1g, respectively! 1
This shows the power spectrum density obtained when a liquid containing latex particles of μn+, P3, and 0.305 μn1 is placed in a self-contained cell. Some of the power spectral density of the fluctuation is due to interference effects. It can be seen that the relaxation frequency of these power spectral densities is inversely proportional to the particle diameter. In other words, the intensity fluctuation of the scattered light is a combination of the component due to the interference of coherent light exposed to the movement of fine particles as described above, and the component due to fluctuations in the number of particles within the scattering volume. In this case, interference components are mainly detected.
The relaxation frequency of the power spectrum signature is the reciprocal of the time it takes for a particle to travel the distance of the wavelength of light, so as the particle size increases, the travel time becomes longer and the relaxation frequency decreases.

第6図は横軸に粒径をμmの単位でとり、縦軸に緩和周
波数をとってそれぞれ対数目盛りで示したものである。
In FIG. 6, the horizontal axis represents the grain size in micrometers, and the vertical axis represents the relaxation frequency, each plotted on a logarithmic scale.

すなわら、粒径0.0915μmの粒子の緩和周波数は
約400)1z 、  0.188μmでは約200H
z 、  0.305μmでは約100 H2となる。
In other words, the relaxation frequency for particles with a particle size of 0.0915 μm is approximately 400)1z, and for particles with a particle size of 0.188 μm, it is approximately 200H.
When z is 0.305 μm, it is approximately 100 H2.

この第6図のグラフから明らかなように、パワースペク
トル密度の緩和周波数は粒径に反比例するので、この緩
和周波数の変化から抗原−抗体による凝集の有無や凝集
の程度を検出することができる。
As is clear from the graph of FIG. 6, the relaxation frequency of the power spectral density is inversely proportional to the particle size, so the presence or absence of antigen-antibody aggregation and the degree of aggregation can be detected from changes in this relaxation frequency.

第7図および第8図は、粒径0.3μmのラテックス粒
子を緩衝液中に0.1重量%および0.09重■%の濃
度で分散させたときのパワースペクトル密度を示すグラ
フであり、ともにローレンツ型のパワースペクトル密度
が得られていることがわかる。上述したように、散乱光
の強度ゆらぎは粒子のブラウン運動による干渉性成分と
、散乱体積内の粒子数の変化による非干渉性成分との和
になるが、散乱体積内の粒子数が少なくなり、干渉性成
分が少なくなって、非干渉性成分と同程度となると、粒
子のブラウン運動による散乱光強度変化以外の成分も検
出してしまい、抗原−抗体反応を精度よく検出すること
はでさなくなる。したがって、粒子の濃度は、散乱体積
内での入射光強度が十分得られる程度に低く、かつ干渉
性成分が非干渉性成分よりも大きくなるような範囲に選
ぶ必要がある。
Figures 7 and 8 are graphs showing the power spectrum density when latex particles with a particle size of 0.3 μm are dispersed in a buffer solution at concentrations of 0.1% by weight and 0.09% by weight. , it can be seen that Lorentzian power spectral densities are obtained in both cases. As mentioned above, the intensity fluctuation of scattered light is the sum of the coherent component due to the Brownian motion of particles and the incoherent component due to changes in the number of particles within the scattering volume, but as the number of particles within the scattering volume decreases. When the amount of interfering components decreases to the same level as non-interfering components, components other than changes in scattered light intensity due to Brownian motion of particles will also be detected, making it difficult to accurately detect antigen-antibody reactions. It disappears. Therefore, the concentration of particles needs to be selected in a range that is low enough to obtain a sufficient intensity of incident light within the scattering volume and such that the coherent component is larger than the incoherent component.

が、散乱体の粒径が一定であれば相当広い粒子温度に亘
って相対ゆらぎは一定となる。
However, if the particle size of the scatterer is constant, the relative fluctuation will be constant over a fairly wide range of particle temperatures.

第10図および第11図は、直径0.3μmのラテック
ス粒子の表面に免疫グロブリンGの抗体を固定したもの
を、TriS−HCIでPH7に調整した緩衝液に分散
させたものに、抗原として10−“0 /’m(2およ
び10−’q/mλの濃度の免役グロー1リンGを加え
た抗原−抗体反応液をセルに収容し、抗原−抗体反応の
開始前と開始後(15分後)のパワースペクトル密度を
示すものである。第10図に示す抗原濃度10−’g/
m犯の場合には、反応前の緩和周波数が約5011zで
あるのに対し、反応15分限の緩和周波数が10 Hz
に変化している。これに灼し、抗原濃度が10’ g 
/m flの場合には、反応開始前の緩和周波数は約9
587.で、反応後の緩和周波数は約40 Hzとなっ
ている。したがって、抗原−抗体反応前後の緩和周波数
の比Fを、 抗原−抗体反応後の媛和周波数 こ定義し、この(直をRつかの抗1京泰度について求め
ると第12図(こ示すようになる。すなわら、第12図
に43いて横軸iは抗原濃度をとり、縦軸は緩和周波数
の比Fの値をとって示すもので必るが、緩和周波数の比
Fを求めることにより抗原yA度を検出することができ
る。
Figures 10 and 11 show that immunoglobulin G antibodies immobilized on the surface of latex particles with a diameter of 0.3 μm were dispersed in a buffer solution adjusted to pH 7 with TriS-HCI, and 10% of the antigen was used as an antigen. An antigen-antibody reaction solution containing immunoglow 1 phosphorus at a concentration of -0/'m (2 and 10-'q/mλ) was placed in a cell, and the cells were incubated for 15 minutes before and after the start of the antigen-antibody reaction. Figure 10 shows the power spectral density of the antigen concentration 10-'g/
In the case of the m offender, the relaxation frequency before the reaction is approximately 5011 z, while the relaxation frequency within 15 minutes of the reaction is 10 Hz.
is changing. This was burnt until the antigen concentration was 10'g.
/m fl, the relaxation frequency before the reaction starts is about 9
587. The relaxation frequency after the reaction is approximately 40 Hz. Therefore, the ratio F of the relaxation frequencies before and after the antigen-antibody reaction is defined as the relaxation frequency after the antigen-antibody reaction, and this (direction) is calculated for the anti-1 quintillion relaxation rate as shown in Figure 12. In other words, in Figure 12, the horizontal axis i is the antigen concentration and the vertical axis is the value of the relaxation frequency ratio F, but it is necessary to find the relaxation frequency ratio F. The antigen yA degree can be detected by this method.

一方、第10図J3よび第11図において、抗原−抗体
反応の前後にあける相対ゆらぎの比(R)が抗原濃度と
一定の関係を有ザることもわかる。このとき、パワース
ペクトル密度のグラフから緩和周波数frを求めること
により相対ゆらぎを算出りることかできる。このとき相
対ゆらぎ比Rは次式で表わすことができる。
On the other hand, in FIG. 10 J3 and FIG. 11, it can be seen that the ratio (R) of relative fluctuation before and after the antigen-antibody reaction has a certain relationship with the antigen concentration. At this time, the relative fluctuation can be calculated by finding the relaxation frequency fr from the graph of the power spectral density. At this time, the relative fluctuation ratio R can be expressed by the following equation.

この(3)式により相対ゆらぎ比Rを求め、これど抗原
濃度との関係をグラフにして求めたのか第13図である
。このグラフより明らかなように、抗原−抗体反応前後
における相対ゆらぎの比Rを求めることにより未知の抗
原潤度を知るここができる。すなわら、測定に先立って
既知の異なる抗原濃度の標t1!1ナンプルについて相
対ゆらぎ比Rを求めて第13図のように検量線を求めて
おき、未知の抗原濃度の被検体について相対ゆらぎ比R
を求め、先に求めた検量線に基いて抗原濃度を知ること
ができる。
The relative fluctuation ratio R was determined using this equation (3), and its relationship with the antigen concentration was determined in a graph as shown in FIG. 13. As is clear from this graph, the unknown antigen moisture content can be determined by determining the ratio R of relative fluctuation before and after the antigen-antibody reaction. That is, prior to measurement, the relative fluctuation ratio R is determined for the sample t1!1 samples with different known antigen concentrations, and a calibration curve is obtained as shown in Figure 13. ratio R
The antigen concentration can be determined based on the previously determined calibration curve.

一方、(3)式による相対ゆらぎ比Rは第10図および
第11図に示すパワースペクトル密度の低周波帯域にお
ける積分値の変化の比としても求めることができる。す
なわら、 に基いて相対ゆらぎ比Rを求めることができる。
On the other hand, the relative fluctuation ratio R according to equation (3) can also be determined as a ratio of changes in the integral value in the low frequency band of the power spectral density shown in FIGS. 10 and 11. In other words, the relative fluctuation ratio R can be determined based on the following.

粒径が一定の場合にはパワースペクトル密度はローレン
ツ型であり、緩和周波数より大きい周波数においては周
波数の自乗に反比例して減少する。
When the particle size is constant, the power spectral density is Lorentzian and decreases inversely as the square of the frequency at frequencies greater than the relaxation frequency.

ところが、粒径が分布している場合には、それぞれの粒
径に対応した緩和周波数を持ったローレンツ型スペクト
ルを重ね合わせたものが観測されるので高周波部分にお
けるパワースペクトル密度は最早や周波数の自乗に反比
例しなくなる。したがってこの部分の形状から逆に反応
によって凝集した粒子の粒径分布を知ることができる。
However, when the particle sizes are distributed, a superposition of Lorentzian spectra with relaxation frequencies corresponding to each particle size is observed, so the power spectral density in the high frequency part is no longer the square of the frequency. is no longer inversely proportional to . Therefore, from the shape of this part, the particle size distribution of the particles aggregated by the reaction can be determined.

このようなデータは従来は得られなかったものであり、
抗I京−抗体反応の状態を解析する上で有用な情報であ
る。
This kind of data has not been available in the past,
This is useful information in analyzing the state of anti-Ikyo-antibody reaction.

第14図は本発明による免疫反応測定装置の他の実施例
の崩成を示す図である。第14図に示す実施例にJ51
a”C、第1図と同じ部分には同一の符号を1寸しその
説明を省略する。本例では、光束2のチョップ光を得る
ためにチョッパを使用ぜず、変調器+05によりレーザ
光+11ii1を直接変調してチョップ光を得ている。
FIG. 14 is a diagram showing the construction of another embodiment of the immune reaction measuring device according to the present invention. J51 in the embodiment shown in FIG.
a''C, the same parts as in Fig. 1 are given the same reference numerals and their explanations are omitted.In this example, in order to obtain the chopped beam of luminous flux 2, a chopper is not used, but the laser beam is generated by the modulator +05. +11ii1 is directly modulated to obtain chopped light.

第15図は本発明による免疫反応測定装置のさらに他の
例の溝成を示す図である。第15図に示す実施例にd3
いCも、第1図と同じ部分には同一の71号を付しその
説明を省略する。本例では、レーザ光源1を出q・1シ
た光束2を半透鏡3で光束4,5に二分割した後、光束
4,5に対して各別にチョッパ106,107を設けて
光束4.5に対しチョッごング操作を行なっている。こ
のとき、各チョップ光の位相が反転するように、すなわ
ち第16図(a >、(b)に示すように一方がQNの
ときは他方がOFFになるチョップ光を得ている。その
ため、参照セル102を介して光検出器8で検知した各
種ドリフトに対応するモニタ信号と、ロル7を介して光
検出器11で検知した各秤ドリフトによる影響を含む散
乱光強度信号とは、それぞれ第17図(a )、(b)
に示したようになる。図中斜1腺の部分は、光源から放
射されるレーザ光強度および標準試料の時間に対するド
リフトの変動分を示すもので、これら第17図(a)、
<b)に示すモニタ信号と散乱光強度信号を加算器10
8で加韓すると第17図(C)に示したようになる。そ
のため、この信号をロックインアンプ+09に通Uば、
各種ドリフI〜成分を除却した散乱光強度信号を1qる
ことができる。
FIG. 15 is a diagram showing the structure of still another example of the immune reaction measuring device according to the present invention. d3 in the embodiment shown in FIG.
In C, the same parts as in FIG. 1 are designated by the same number 71, and the explanation thereof will be omitted. In this example, after the light beam 2 emitted from the laser light source 1 is divided into two light beams 4 and 5 by the semi-transparent mirror 3, choppers 106 and 107 are provided separately for the light beams 4 and 5 to separate the light beams 4 and 5, respectively. Chogging operation is being performed on 5. At this time, the chopped lights are obtained so that the phase of each chopped light is inverted, that is, when one is QN, the other is OFF as shown in Fig. 16 (a>, (b). The monitor signal corresponding to various drifts detected by the photodetector 8 via the cell 102 and the scattered light intensity signal including the influence of each scale drift detected by the photodetector 11 via the roll 7 are the 17th Figures (a), (b)
The result will be as shown in . The oblique 1 part in the figure shows the fluctuation of the laser light intensity emitted from the light source and the drift of the standard sample with respect to time;
The monitor signal shown in <b) and the scattered light intensity signal are added to the adder 10.
If Korea is entered at 8, the result will be as shown in Figure 17 (C). Therefore, if this signal is passed to lock-in amplifier +09,
It is possible to obtain 1q of scattered light intensity signals from which various drift I~ components have been removed.

本発明は上述した実施例にのみ限定されるもの’CIt
なく、幾多の変形や変更が可1jシである。上述した説
明は免疫グロブリンG([]G)について例示したが、
免疫グロブリン△(IgA)。
The invention is limited only to the embodiments described above.
It is possible to make many modifications and changes. Although the above explanation was given as an example for immunoglobulin G ([]G),
Immunoglobulin Δ (IgA).

rc+ M、IQ D、Ifl E、オーストラリア抗
原、梅毒抗原、インシュリンなど抗原−抗体反応によっ
て凝集を生ずるすべての物質の測定に適用ツることがで
きる。また、上jホした実施例では、微粒子の表面に抗
体を固定して、被検体中の抗原を検出り−るようにした
か、微粒子の表面に抗原を固定し、被検体中の抗体を検
出することもできる。さらに、上述した実施例では微粒
子どしてポリスチレンラテックス粒子を用いたが他の有
機物粒子や、ガラスなどの無機物粒子を用いることもひ
きる。
It can be applied to the measurement of all substances that cause agglutination due to antigen-antibody reactions, such as rc+ M, IQ D, Ifl E, Australian antigen, syphilis antigen, and insulin. In addition, in the above-mentioned example, antibodies were immobilized on the surface of microparticles to detect antigens in the specimen, or antigens were immobilized on the surface of microparticles to detect antibodies in the specimen. It can also be detected. Furthermore, although polystyrene latex particles were used as the fine particles in the above embodiments, other organic particles or inorganic particles such as glass may also be used.

ざらに上述した実施例では抗原−抗体反応液の中には最
初から微粒子を存在させたが、このような微粒子を用い
ずに、抗原−抗体反応の結果として生ずる微粒子状生成
物による散乱光を利用ゴることもできる。このような抗
原−抗体反応の実施例としては、抗原としてヒト絨毛ゴ
ナドトロピン(HCG)を用い、抗体として抗ヒト絨毛
ゴナド1〜日ビン(抗HCG)を用いる反応があり、こ
の反応(こより生成される抗原−抗体後合体は微4:☆
子どして扱うことができる。さらに抗原そのものを粒子
として用いることもできる。このような抗原−抗体反応
としては抗原としてカンディダ・アルビカンス(酵母)
を用い、抗体として抗カンディグ・アルビカンスを用い
る例や、池に血球、細胞、微生物などを粒子としてnノ
いることもできる。、ナだ第1図に示1実施例ぐは抗原
−抗体反応液をセルに収容して測定を行なうバッチ方式
としたが、抗原−抗体反応液を連続的に流しながら測定
を行なうフロ一方式とすることも勿論可能である。
In the example briefly described above, fine particles were present in the antigen-antibody reaction solution from the beginning. You can also use it. An example of such an antigen-antibody reaction is a reaction in which human chorionic gonadotropin (HCG) is used as an antigen and anti-human chorionic gonado 1 to 1 to 100% (anti-HCG) is used as an antibody. After antigen-antibody combination is minute 4:☆
You can treat it like a child. Furthermore, the antigen itself can also be used as particles. In such an antigen-antibody reaction, Candida albicans (yeast) is used as an antigen.
It is also possible to use anti-Candig albicans as an antibody, or to have blood cells, cells, microorganisms, etc. as particles in the pond. The first embodiment shown in Figure 1 was a batch method in which the antigen-antibody reaction solution was stored in a cell and measured, but a flow-type method was used in which the measurement was performed while the antigen-antibody reaction solution was continuously flowing. Of course, it is also possible.

(発明の効果〉 上述した本発明の効果を要約すると以下の通りである。(Effect of the invention> The effects of the present invention described above are summarized as follows.

(1)酵素やラジオアイソトープのような標識試薬のよ
うな高1萌で、取扱いの面倒な試薬を用いる必要がない
ので、安洒かつ容易に実施することができる。
(1) Since there is no need to use reagents that are expensive and difficult to handle, such as labeling reagents such as enzymes and radioisotopes, it can be carried out in a simple and easy manner.

(2)免疫電気泳動法、免疫拡散法、沈降法なと・の非
標識免疫分析法に比べ精度が高く、再現性が高いので信
頼性の高い測定結果を高精度で1ひることができる。
(2) It has higher precision and reproducibility than non-labeled immunoanalysis methods such as immunoelectrophoresis, immunodiffusion, and precipitation, so it is possible to obtain highly reliable measurement results with high precision.

(3)微粒子のブラウン運動に基く散乱光の強度ゆらぎ
を検出するものであるから、超微量の被検体で高精度の
測定ができると共に測定時間も短時間となる。
(3) Since the method detects intensity fluctuations of scattered light based on the Brownian motion of fine particles, highly accurate measurement can be performed using an ultra-trace amount of sample, and the measurement time can be shortened.

(4)平均拡散定数を散乱光のスペクトル幅の変化から
求めることにJ:り抗原または抗体を定量する方法に比
べ分光計が不要であるので装置は小形かつ安呵となると
共に精度および信頼性の高い測定結果が得られる。
(4) Determining the average diffusion constant from changes in the spectral width of scattered light does not require a spectrometer compared to methods that quantify antigens or antibodies, so the device is small and safe, and has high accuracy and reliability. High measurement results can be obtained.

(5)光ゆらぎのパワースペクトル密度に基いて測定を
行なうため、抗原−抗体反応についての多くの有用な情
報を得ることができる。
(5) Since measurements are performed based on the power spectral density of optical fluctuations, a lot of useful information about antigen-antibody reactions can be obtained.

(6)レーザ光源に対してチョッピング操作をしてチョ
ップ光を試料に対する照射光とし、チョップ光に同期し
た信号のみをロックイン検出により取り出しているため
、パックグラウンドノイズと共に試料自身のドリフ1−
にょるノイズを有効に除去でき、S / N比の向上を
達成でき、測定精度を著しく向上することができる。
(6) A chopping operation is performed on the laser light source to use the chopped light as irradiation light for the sample, and only the signal synchronized with the chopped light is extracted by lock-in detection, so there is drift of the sample itself as well as background noise.
It is possible to effectively remove noise, improve the S/N ratio, and significantly improve measurement accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による免疫反応測定装置の一実施例の構
成を示す線図、 第2図は同じくそのコリメータの詳細な構成を示す線図
、 第3図は本発明の免疫反応測定装置の他の実施例の要部
の構成を示す線図、 第4図および第5図はそれぞれ粒径がo、 iaaμm
6よひ0,305μmの微粒子に対するバワースペク1
〜ル密度を示すグラフ、 第6図は粒径と、パワースペクトルビ度の緩和周波数ど
の関係を示すグラフ、 第7図および第8図はそれぞれ粒子濃度が0.1宙吊%
および0609重量%のときのパワースペクトル密度を
示すグラフ、 第9図は粒子濃度と緩和周波数との関係を示すグラフ、 第1 i’) l>、l 、I> 、J、ひ々゛)11
図はそれぞれ抗原、―度か1O−4Q、−’mf21−
rよび10−3g/m 、+2 ニ対# ル抗UN −
fA 体反LQ+前J3−L G−後のパワースペクト
ル密度を示すグラフ、 第12図は抗原濃度と緩和周波数の比との関係を示すグ
ラフ、 第13図は抗原濃度と相対ゆらぎ比どの関係を示すグラ
フ、 第14図J3よび第15図は本発明による免疫反応測定
装置の他の例の構成を示す線図、 第16図(a)、(b)は第15図に示す実施例におけ
るチョップ光を示す波形図、 第17図(a )〜(C)はそれぞれモニタ信号、散乱
光強度信号、加綽信号を示す波形図である。 1・・・レーザ光源   2. 4. 5・・・光束3
・・・半透鏡6・・・集光レンズ 7・・・ロル       8・・・光検出器9・・・
微粒子     10・・・コリメータ11・・・光検
出器    13.15・・・低雑音増幅器14・・・
データ処理装置 16・・・低域通過フィルタ2o・・
・表示表置    10a  ・・空引+Ob 、 1
0c −・・ピンホール101、106.107・・・
ヂョッパ102・・・参照セル 103、104 、109・・・ロックインアンプ10
5・・・変調器。 特許出願人   オリンパス光学工業株式会社第2図 第3図 (ZH)’fr昏百個口峯)雀 第用図 第11図 KI:fi、’R(Hz) 第12図 抗廁贋度(う/m!少 第13図 坑劇屓ル((/mlン
FIG. 1 is a diagram showing the configuration of an embodiment of the immune reaction measuring device according to the present invention, FIG. 2 is a diagram showing the detailed configuration of the collimator, and FIG. Diagrams showing the structure of the main parts of other examples, FIGS. 4 and 5, have particle sizes of o and iaaμm, respectively.
6 Power spec 1 for fine particles of 0,305 μm
Figure 6 is a graph showing the relationship between particle size and relaxation frequency of power spectrum intensity. Figures 7 and 8 are graphs showing the particle density at 0.1% suspension, respectively.
and 0609% by weight. Figure 9 is a graph showing the relationship between particle concentration and relaxation frequency.
The figure shows antigens, -degree or 1O-4Q, -'mf21-, respectively.
r and 10-3 g/m, +2 vs # le anti-UN -
fA Graph showing the power spectral density before and after body anti-LQ+ J3-L G- Figure 12 is a graph showing the relationship between antigen concentration and relaxation frequency ratio, Figure 13 is a graph showing the relationship between antigen concentration and relative fluctuation ratio. FIG. 14 J3 and FIG. 15 are diagrams showing the configuration of other examples of the immune reaction measuring device according to the present invention, and FIGS. Waveform diagrams showing light. FIGS. 17(a) to (C) are waveform diagrams showing a monitor signal, a scattered light intensity signal, and a steering signal, respectively. 1... Laser light source 2. 4. 5... Luminous flux 3
...Semi-transparent mirror 6...Condensing lens 7...Roll 8...Photodetector 9...
Fine particles 10...Collimator 11...Photodetector 13.15...Low noise amplifier 14...
Data processing device 16...Low pass filter 2o...
・Display display 10a ・・Empty pull + Ob, 1
0c - Pinhole 101, 106, 107...
Jopper 102...Reference cells 103, 104, 109...Lock-in amplifier 10
5...Modulator. Patent applicant: Olympus Optical Industry Co., Ltd. Figure 2 Figure 3 (ZH) m! Small Figure 13 Mine Drama ((/ml)

Claims (1)

【特許請求の範囲】 1、抗原および抗体を含む反応液に光を投射し、抗原−
抗体反応により生成される微粒子による散乱光または反
応液に加えた抗体または抗原を固定した微粒子によって
生ずる散乱光を検知し、この検知出力の強度のゆらぎの
パワースペクトル密度に基いて抗原−抗体反応を測定す
る装置において、 前記抗原−抗体反応を行なう反応液を収容 するセルと、 コヒーレントなチョップ光を放射し、これ を前記セルに入射させる光源装置と、 前記セルからの散乱光を単独または入射光 と共に受光する光検出装置と、 この光検出装置からの出力信号のうちチョ ップ光に同期して出力を取り出すロックインアンプと、 このロックインアンプからの出力信号を受 け、その強度ゆらぎのパワースペクトル密度を求め、そ
れに基づいて抗原−抗体反応を測定する手段とを具える
ことを特徴とする光強度ゆらぎを用いる免疫反応測定装
置。 2、前記光源装置が、コヒーレント光を発生するレーザ
光源と、そのコヒーレント光からチョップ光を発生する
ためのチョッパと、このチョップ光を二分割する半透鏡
とよりなることを特徴とする特許請求の範囲第1項記載
の免疫反応測定装置。 3、前記光源装置がコヒーレント光を発生するレーザ光
源と、このレーザ光を変調してチョップ光を得るための
変調器と、このチョップ光を二分割する半透鏡とよりな
ることを特徴とする特許請求の範囲第1項記載の免疫反
応測定装置。 4、前記半透鏡により二分割したチョップ光の一方を前
記セルに入射させ、他方を参照セルと、別の光検出器と
、別のコックインアンプからなるドリフト補正装置へ入
射させドリフト補正信号を得た後、このドリフト補正信
号を使用して前記ロックインアンプからの出力信号から
ドリフトの影響を除去することを特徴とする特許請求の
範囲第2項または第3項記載の免疫学的装置。
[Claims] 1. Light is projected onto a reaction solution containing an antigen and an antibody, and the antigen-
Detects the scattered light caused by fine particles generated by the antibody reaction or the scattered light generated by the fine particles immobilized with antibodies or antigens added to the reaction solution, and detects the antigen-antibody reaction based on the power spectrum density of the intensity fluctuation of this detection output. The measuring device includes a cell containing a reaction solution for performing the antigen-antibody reaction, a light source device that emits coherent chopped light and makes it incident on the cell, and a light source that emits coherent chopped light and makes it incident on the cell, and a light source that uses scattered light from the cell alone or as incident light. A lock-in amplifier that extracts the output signal from the photo-detector in synchronization with the chopped light, and a power spectral density of the intensity fluctuation that receives the output signal from the lock-in amplifier. 1. An immune reaction measuring device using light intensity fluctuation, characterized in that it comprises means for determining the antigen-antibody reaction based on the determined antigen-antibody reaction. 2. The light source device comprises a laser light source that generates coherent light, a chopper that generates chopped light from the coherent light, and a semi-transparent mirror that divides the chopped light into two. The immune reaction measuring device according to scope 1. 3. A patent characterized in that the light source device comprises a laser light source that generates coherent light, a modulator that modulates this laser light to obtain chopped light, and a semi-transparent mirror that divides this chopped light into two. The immune reaction measuring device according to claim 1. 4. One of the chopped lights split into two by the semi-transparent mirror is incident on the cell, and the other is incident on a drift correction device consisting of a reference cell, another photodetector, and another cock-in amplifier to generate a drift correction signal. 4. The immunological apparatus according to claim 2, wherein the drift correction signal is used to remove the influence of drift from the output signal from the lock-in amplifier.
JP18628384A 1984-09-07 1984-09-07 Method for measuring immune reaction by using fluctuation of light intensity Pending JPS6165142A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP18628384A JPS6165142A (en) 1984-09-07 1984-09-07 Method for measuring immune reaction by using fluctuation of light intensity
US06/769,965 US4762413A (en) 1984-09-07 1985-08-27 Method and apparatus for measuring immunological reaction with the aid of fluctuation in intensity of scattered light
DE19853531891 DE3531891A1 (en) 1984-09-07 1985-09-06 METHOD AND DEVICE FOR MEASURING IMMUNOLOGICAL REACTIONS
DE3546566A DE3546566C2 (en) 1984-09-07 1985-09-06
US07/197,336 US4826319A (en) 1984-09-07 1988-05-23 Method and apparatus for measuring immunological reaction with the aid of fluctuation in intensity of scattered light

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18628384A JPS6165142A (en) 1984-09-07 1984-09-07 Method for measuring immune reaction by using fluctuation of light intensity

Publications (1)

Publication Number Publication Date
JPS6165142A true JPS6165142A (en) 1986-04-03

Family

ID=16185592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18628384A Pending JPS6165142A (en) 1984-09-07 1984-09-07 Method for measuring immune reaction by using fluctuation of light intensity

Country Status (1)

Country Link
JP (1) JPS6165142A (en)

Similar Documents

Publication Publication Date Title
US4446239A (en) Light scattering immunoassay involving particles with selective frequency band apparatus
US4725140A (en) Method of measuring specific binding reaction with the aid of polarized light beam and magnetic field
US4826319A (en) Method and apparatus for measuring immunological reaction with the aid of fluctuation in intensity of scattered light
US4799796A (en) Method and apparatus for measuring immunological reaction with the aid of phase-modulation of light
US4828388A (en) Method of measuring concentration of substances
JPH02118453A (en) Method and apparatus for optoacoustic immunoassay
JPS6128866A (en) Measuring method and apparatus for immuno-reaction using fluctuating intensity of light
JPS61173138A (en) Method for measuring immune reaction by intensity fluctuation of light
JPS62116263A (en) Method and apparatus for measuring immunoreaction using multiple scattering of linearly polarized light
JPS6165142A (en) Method for measuring immune reaction by using fluctuation of light intensity
JPS6166150A (en) Immunoreaction measuring method
JPS6165144A (en) Instrument for measuring immune reaction using intensity fluctuation of light
JPH0556817B2 (en)
JPH07113635B2 (en) Method for determining prozone in immune reaction
JPS61173139A (en) Method of measuring immune reaction by intensity fluctuation of light
JPS6166151A (en) Automatic immunoreaction measuring apparatus
JPS6166148A (en) Immunological-reaction measuring apparatus utilizing fluctuation of light intensity
JPH02275361A (en) Measurement of immunoreaction
JPS61173137A (en) Method for measuring immune reaction by intensity fluctuation of light
JPS61173136A (en) Method for measuring immune reaction by intensity fluctuation of light
JPS6190041A (en) Measuring method of immunoreaction using light intensity fluctuation
JPS61175549A (en) Immunological reaction measurement by fluctuations in intensity of light
JPS6165143A (en) Method and instrument for measuring immune reaction
JPH0478138B2 (en)
JPS61175548A (en) Immunological reaction measurement by fluctuations in intensity of light