JPS6117166B2 - - Google Patents

Info

Publication number
JPS6117166B2
JPS6117166B2 JP56009332A JP933281A JPS6117166B2 JP S6117166 B2 JPS6117166 B2 JP S6117166B2 JP 56009332 A JP56009332 A JP 56009332A JP 933281 A JP933281 A JP 933281A JP S6117166 B2 JPS6117166 B2 JP S6117166B2
Authority
JP
Japan
Prior art keywords
circuit
output
fet
phase inversion
level shift
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56009332A
Other languages
Japanese (ja)
Other versions
JPS57123708A (en
Inventor
Tooru Akyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP56009332A priority Critical patent/JPS57123708A/en
Publication of JPS57123708A publication Critical patent/JPS57123708A/en
Publication of JPS6117166B2 publication Critical patent/JPS6117166B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Amplifiers (AREA)

Description

【発明の詳細な説明】 本発明は、FET差動幅巾回路に係り、特に通
常の半導体プロセスによつて製造し得、モノリシ
ツク化が容易な、高動作速度で作動電圧範囲の広
いFET差動増巾回路を得ることを目的とするも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a FET differential width circuit, and more particularly, to a FET differential width circuit that can be manufactured by a normal semiconductor process, is easily monolithic, has a high operating speed, and has a wide operating voltage range. The purpose is to obtain a widening circuit.

音声合成回路用のICの如くデジタル回路とア
ナログ回路とを同一の半導体基板上に構成するた
めには、高入力インピーダンスで応答速度の速い
演算増巾回路の実現が不可欠である。この様な要
請をバイ・モス(bi−Mos)技術の採用によつて
満たすことは可能であるが、製造プロセスが著し
く複雑となるために、コスト高となるのを余儀な
くされる。
In order to configure a digital circuit and an analog circuit on the same semiconductor substrate, such as an IC for a voice synthesis circuit, it is essential to realize an arithmetic amplification circuit with high input impedance and fast response speed. Although it is possible to meet such requirements by employing bi-Mos technology, the manufacturing process becomes extremely complicated and costs are inevitably high.

本発明は、このような要請を背景として為され
たものである。
The present invention was made against this background.

以下まず、従来のFET差動増巾回路の一例を
挙げて、このような従来例の持つ課題について説
明する。
First, an example of a conventional FET differential amplifier circuit will be given, and problems with such a conventional example will be explained.

第1図のFET差動増巾回路は、デプレツシヨ
ン型FET Q6,Q7を抵抗性ドレイン負荷とする一
対のエンハンスメント型の第1、第2FET Q1
Q2を共通ソース接続すると共に、この共通ソー
スを第3FET Q3のソース・ドレインチヤンネル
路を介して接地接続し、更に、前記第3FET Q3
のゲートに、デプレツシヨン型の第4FET Q4
エンハンスメント型の第5FET Q5の縦接続によ
る定電流電源を介して定バイアスを与えるべく接
続し、入力I1,I2の差動増巾出力をO1,O2の差出
力として取り出すべく構成している。
The FET differential amplifier circuit shown in Fig. 1 consists of a pair of enhancement type first and second FETs Q 1 , with depletion type FETs Q 6 and Q 7 serving as resistive drain loads.
Q 2 is connected to a common source, and this common source is connected to ground via the source-drain channel path of the third FET Q 3 , and further, the third FET Q 3
A constant current power supply is connected to the gate of the depletion type 4th FET Q 4 and an enhancement type 5th FET Q 5 are vertically connected to give a constant bias, and the differential amplified output of inputs I 1 and I 2 is connected to the gate of The configuration is such that it can be extracted as a differential output between O 1 and O 2 .

しかし乍ら、このような従来例の構成では、 (イ) 入力電圧I1,I2、がエンハンスメント型FET
のしきい値電圧以下では動作しない。FET Q1
及びQ2をデプレツシヨン型にすればこの問題
はなくなるがゲインがかなり低下する。
However, in such a conventional configuration, (a) the input voltages I 1 and I 2 are
It does not operate below the threshold voltage of . FET Q 1
If Q 2 and Q 2 are made depletion type, this problem will be solved, but the gain will be considerably reduced.

(ロ) 入力電圧I1,I2が電源電圧VDDに近くなると
ゲインが急速に低下して使用できなくなる。
(b) When the input voltages I 1 and I 2 approach the power supply voltage V DD , the gain rapidly decreases and the device becomes unusable.

(ハ) FET Q6,Q7は抵抗性の負荷であるから、ゲ
インを大きくしようとすればFET Q1,Q2のゲ
イン定数βを相当大きくする必要があるが、そ
のために入力端子の寄生容量が大きくなつて差
動増巾器を複数段接続した場合にスピードの低
下をもたらす原因となる。従つて高速の演算増
巾器を設計する場合には、比較的ゲインが小さ
くて高速の差動増巾器を複数段接続して、ある
程度大きな差動出力を得、レベルシフト回路及
び出力用直流増巾回路を通して出力を得るが、
この場合にも信号は数個の増巾段を通過するの
で速度の低下を避けることは困難である。本発
明は、斯る従来例の欠点に鑑み為されたもので
ある。
(c) Since FETs Q 6 and Q 7 are resistive loads, in order to increase the gain, it is necessary to considerably increase the gain constant β of FETs Q 1 and Q 2 , but in order to do so, parasitic This increases the capacity and causes a reduction in speed when multiple stages of differential amplifiers are connected. Therefore, when designing a high-speed operational amplifier, connect multiple stages of high-speed differential amplifiers with relatively small gains to obtain a reasonably large differential output, and use the level shift circuit and output DC Output is obtained through an amplification circuit, but
In this case as well, since the signal passes through several amplification stages, it is difficult to avoid speed reduction. The present invention has been made in view of the drawbacks of the conventional example.

以下、本発明の詳細を第2図と第3図に示す一
実施例を参照し乍ら説明する。
The details of the present invention will be explained below with reference to an embodiment shown in FIGS. 2 and 3.

本発明のFET差動増巾回路は、基本的に特性
の揃つた一対のレベルシフト回路として機能する
第1、第2電圧発生回路1,2と、各々対応する
電圧発生回路のレベルシフト出力を入力とする斉
一特性の高ゲイン第1、第2位相反転増巾回路1
1,12と、前記第1位相反転増巾回路11から
前記第1電圧発生回路1に至る負帰還接続21及
び上記第1位相反転増巾回路11から前記第2電
圧発生回路2に至る準負帰還接続22とを備え
る。
The FET differential amplifier circuit of the present invention basically has first and second voltage generation circuits 1 and 2 that function as a pair of level shift circuits with the same characteristics, and level shift outputs of the corresponding voltage generation circuits. High-gain first and second phase-inverting amplification circuits with uniform characteristics as inputs 1
1, 12, a negative feedback connection 21 from the first phase inversion amplification circuit 11 to the first voltage generation circuit 1, and a quasi-negative connection 21 from the first phase inversion amplification circuit 11 to the second voltage generation circuit 2. and a return connection 22.

前記第1、第2電圧発生回路1,2は、それぞ
れデプレツシヨン型(或はエンハンスメント型)
FET F11,F12或はF21,F22の縦接続で構成され
る。各電圧発生回路は、下段のFET F11(或は
F21)のゲートに印加される入力をレベルシフト
し、そのドレイン出力を対応する位相反転増巾回
路11(或は12)に入力として供給する。
The first and second voltage generating circuits 1 and 2 are each of a depletion type (or an enhancement type).
It consists of vertically connected FETs F 11 and F 12 or F 21 and F 22 . Each voltage generation circuit is connected to the lower stage FET F 11 (or
The input applied to the gate of F 21 ) is level-shifted, and its drain output is supplied as an input to the corresponding phase inversion amplification circuit 11 (or 12).

上記第1、第2位相反転増巾回路11,12
を、第3図イに図示させる如きインバータ或はロ
に図示せる如きプツシユプルインバータで構成す
る。
The first and second phase inversion amplifier circuits 11 and 12
is constituted by an inverter as shown in FIG. 3A or a push-pull inverter as shown in FIG.

この第1位相反転増巾回路11の出力を、上記
第1電圧発生回路1の上段のFET F12のゲート
に負帰還接続することによつて、第1電圧発生回
路1の出力レベルを、第1位相反転増巾回路11
の閾値近傍に設定することが可能となる。
By connecting the output of the first phase inverting amplification circuit 11 to the gate of the upper stage FET F 12 of the first voltage generating circuit 1 through negative feedback, the output level of the first voltage generating circuit 1 can be changed to 1 phase inversion amplifier circuit 11
can be set near the threshold value.

上述の如く第1、第2位相反転増巾回路11,
12は、高ゲインで斉一特性のプツシユプルイン
バータ等で構成しているので、上記第1位相反転
増巾回路11の出力を上記第2電圧発生回路2の
上段のFET,F12のゲートに準負帰還接続22を
施すことによつて、第2電圧発生回路2の出力レ
ベルを対応する第2位相反転増巾回路12の動作
閾値レベルに近接することが出来る。
As described above, the first and second phase inversion amplifier circuits 11,
Since 12 is composed of a push-pull inverter with high gain and uniformity characteristics, the output of the first phase inversion amplification circuit 11 is connected to the gate of the upper stage FET, F12, of the second voltage generation circuit 2. By providing the quasi-negative feedback connection 22, the output level of the second voltage generation circuit 2 can be made close to the operating threshold level of the corresponding second phase inversion amplification circuit 12.

而して、上記FET、F11,F12,F21及びF22
デプレツシヨン型とし、そのβを適当な値に設定
しておくことによつて、入力I1I2の電圧VI1,V
I2がVSSからVDDまで変化したときに、フイー
ドバツク電圧Vo1が、VSS(或はVDD)を越えぬ
様に設定することが出来る。
By making the FETs F 11 , F 12 , F 21 and F 22 depletion type and setting β to an appropriate value, the voltages V I1 and V of the input I 1 I 2 can be
When I2 changes from V SS to V DD , the feedback voltage Vo 1 can be set so as not to exceed V SS (or V DD ).

上述の如く、両位相反転増巾回路11,12の
ゲインAが相当大きく設定してあるから、入力電
圧VI1に対応してFET F12は第1位相反転増巾
回路11の出力によつてNF制御され、FET F11
のドレイン出力VX1が第1、第2位相反転増巾
回路11,12の閾値電圧に略等しくなつた状態
で安定になる。次に第2図の実施回路の動作説明
を定量的に行う。
As mentioned above, since the gain A of both phase inversion amplifier circuits 11 and 12 is set to be considerably large, FET F 12 is controlled by the output of the first phase inversion amplifier circuit 11 in response to the input voltage V I1 . NF controlled, FET F 11
becomes stable when the drain output V X1 becomes approximately equal to the threshold voltages of the first and second phase inversion amplification circuits 11 and 12. Next, the operation of the implementation circuit shown in FIG. 2 will be quantitatively explained.

第2図の回路においては、FET F11,F12
F21,F22は飽和領域、非飽和領域のどちらで動作
しても問題はないが、以下の説明ではすべてデプ
レツシヨン型(しきい値電圧をVTDとする。)
で、ゲイン定数βはすべて等しくF11F21は非飽和
領域、F21は飽和領域で動作すると仮定する。
In the circuit of Fig. 2, FETs F 11 , F 12 ,
There is no problem whether F 21 and F 22 operate in the saturated region or the non-saturated region, but in the following explanation they are all depletion type (the threshold voltage is assumed to be V TD ).
Assume that the gain constants β are all equal and that F 11 F 21 operates in the non-saturated region and F 21 operates in the saturated region.

いま条件、VX1=VTCで安定しているとすれ
ば、FET、F11を流れる電流は、 ID=β×VTC×(VI1−VTD−1/2VTC) ……(1) FET F12を流れる電流は、 ID=1/2×β×(VO1−VTC−VTD ……(2) 両者は等しいので、 となる。
If the current condition is that V _ ) The current flowing through FET F12 is ID = 1/2 x β x (V O1 - V TC - V TD ) 2 ... (2) Since both are equal, becomes.

次に、VTC=1/5VDD、VTD=−1/3VDDの場合
を例 にとつてVI1とVO1の関係をみると、 (i) VI1=VSSのとき VO1=0.172×VD
(ii) VI1=1/2VDDのとき VO1=0.409×VD
D
(iii) VI1=VDDのとき VO1=0.569×VD
となる。
Next, taking the case of V TC = 1/5V DD and V TD = -1/3V DD as an example, and looking at the relationship between V I1 and V O1 , (i) When V I1 = V SS , V O1 = 0.172× VD
D (ii) When V I1 = 1/2V DD , V O1 = 0.409×V D
D
(iii) When V I1 = V DD, V O1 = 0.569×V D
It becomes D.

従つて、このように入力動作点がVSSからVDD
まで変動しても出力の動作点をうまく制御するこ
とができることが判る。さて次に電圧発生回路1
或は2のゲインを考える。
Therefore, the input operating point changes from V SS to V DD in this way.
It can be seen that the output operating point can be well controlled even if the output varies up to . Now, next is voltage generation circuit 1.
Or consider a gain of 2.

(1)式と同様にFET、F21を流れる電流は ID=β×VX2×(VI2−VTD−1/2VX2) ……(4) ∴△ID=β{(VI2−VTD −VX2)×△VX2+VX2×△VI2} …(5) (2)式と同様にFET、FB22を流れる電流は、 ID=1/2×β×(VO1−VX2−VTD ……………(6) ∴ △ID=−β×(VO1−VX2−VTD) ×△VX2 ……(7) (4)、(6)両式より電圧発生回路1或は2のゲイン
Vは AV=△VX2/△VI2=VX2/(2VX2+2VTD −VI2−VO1) ……(8) 次に前述の例の場合のゲインを計算すると、
(但しVX2〓VTC、VI2〓VI1のとき) (i) VI2〓VI1=VSSのとき AV=−0.456 (ii) VI2〓VI1=1/2VDDのとき AV=−0.170 (iii) VI2〓VI1=VDDのとき AV=−0.109 第2図の回路が差動増巾器として機能するため
にはAV×Aが1よりもかなり大きいことが必要
である。入力I1,I2の動作点がVDDに近い場合に
はゲインが小さく不利であるが、出力の動作点は
1/2VDDに近づくので、次段に本発明の差動増巾器 を接続する場合には前段よりも大きなゲインを得
ることができる。
Similar to equation (1), the current flowing through the FET and F21 is ID = β × V X2 × (V I2 −V TD −1 / 2V −V TD −V X2 ) × V −V X2 −V TD ) 2 ……………(6) ∴ △I D =−β × ( V O1 −V From both equations, the gain A V of voltage generation circuit 1 or 2 is A V = △V X2 / △V I2 = V X2 / ( 2V Calculating the gain for the example case, we get
(However , when V X2 〓V TC , V I2 〓V I1 ) (i) When V I2 〓V I1 = V SS A V = -0.170 (iii) V I2 〓V I1 = V DD When A V = -0.109 In order for the circuit in Figure 2 to function as a differential amplifier, A V ×A must be significantly larger than 1. is necessary. If the operating point of inputs I 1 and I 2 is close to V DD , the gain is small and disadvantageous, but since the output operating point approaches 1/2 V DD , the differential amplifier of the present invention is used in the next stage. When connected, it is possible to obtain a larger gain than the previous stage.

本発明は上述の如き構成であるから、通常の
MOSトランジスタ製造プロセスにより、高い動
作速度で作動電圧範囲が広い低コストの差動増巾
回路を実現し得るものである。又、附随的に、パ
ラメータの変動や、温度変化に対しても強く、常
に増巾回路として動作点の近傍で作動することと
も相俟つて、低電源電圧でも有効に動作するとい
う効果も併せもつ。
Since the present invention has the above-mentioned configuration, it is possible to
The MOS transistor manufacturing process makes it possible to realize a low-cost differential amplifier circuit with high operating speed and wide operating voltage range. Additionally, it is resistant to parameter fluctuations and temperature changes, always operates near the operating point as an amplifier circuit, and has the effect of operating effectively even at low power supply voltages. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この種のFET差動増巾回路の従来
例を示す回路図である。第2図及び第3図は、本
発明のFET差動増巾回路に係り、第2図は一実
施回路図、第3図は要部回路図である。
FIG. 1 is a circuit diagram showing a conventional example of this type of FET differential amplifier circuit. 2 and 3 relate to the FET differential amplifier circuit of the present invention, FIG. 2 is an implementation circuit diagram, and FIG. 3 is a main part circuit diagram.

Claims (1)

【特許請求の範囲】[Claims] 1 縦接続した1対のFETを備える第1、第2
レベルシフト回路と、各々電気的特性の等しい第
1、第2FET位相反転増巾回路とを具備し、前記
第1レベルシフト回路の出力を入力とする第1位
相反転増巾回路の出力を、前記第1レベルシフト
回路を構成するFETのうちで負荷として動作す
るFETのゲートに直結して負帰還を施すと共
に、上記第2位相反転増巾回路に入力を供給する
前記第2レベルシフト回路を構成するFETのう
ちで、負荷を形成するFETのゲートに、上記第
1位相反転増巾回路の出力を供給し、上記第1、
第2レベルシフト回路の2入力に対する差動出力
を上記第1、第2位相反転増巾回路の出力端子間
から導出すべく構成したFET差動増巾回路。
1 First and second with a pair of vertically connected FETs
It is equipped with a level shift circuit, and first and second FET phase inversion amplification circuits each having the same electrical characteristics, and the output of the first phase inversion amplification circuit which receives the output of the first level shift circuit as an input is connected to the output of the first phase inversion amplification circuit. The second level shift circuit is directly connected to the gate of the FET that operates as a load among the FETs constituting the first level shift circuit to provide negative feedback, and also supplies input to the second phase inversion amplifier circuit. The output of the first phase inverting amplification circuit is supplied to the gate of the FET forming the load, and
A FET differential amplification circuit configured to derive a differential output for two inputs of a second level shift circuit from between the output terminals of the first and second phase inversion amplification circuits.
JP56009332A 1981-01-23 1981-01-23 Fet differential amplifying circuit Granted JPS57123708A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56009332A JPS57123708A (en) 1981-01-23 1981-01-23 Fet differential amplifying circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56009332A JPS57123708A (en) 1981-01-23 1981-01-23 Fet differential amplifying circuit

Publications (2)

Publication Number Publication Date
JPS57123708A JPS57123708A (en) 1982-08-02
JPS6117166B2 true JPS6117166B2 (en) 1986-05-06

Family

ID=11717510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56009332A Granted JPS57123708A (en) 1981-01-23 1981-01-23 Fet differential amplifying circuit

Country Status (1)

Country Link
JP (1) JPS57123708A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2615005B2 (en) * 1984-11-07 1997-05-28 株式会社日立製作所 Semiconductor integrated circuit
US5530403A (en) * 1995-05-03 1996-06-25 Motorola, Inc. Low-voltage differential amplifier

Also Published As

Publication number Publication date
JPS57123708A (en) 1982-08-02

Similar Documents

Publication Publication Date Title
US3984780A (en) CMOS voltage controlled current source
US5525897A (en) Transistor circuit for use in a voltage to current converter circuit
JP2543872B2 (en) Amplifier circuit
US4048575A (en) Operational amplifier
JP3158759B2 (en) Differential amplifier with enhanced common-mode stability
US5266887A (en) Bidirectional voltage to current converter
US4213098A (en) Semiconductor differential amplifier having feedback bias control for stabilization
US4697154A (en) Semiconductor integrated circuit having improved load drive characteristics
KR100210174B1 (en) Cmos transconductance amplifier with floating operating point
US4626794A (en) Amplifier circuit using a P channel MOS transistor
JPH1051246A (en) Low-voltage operational amplifier and its method
US4538114A (en) Differential amplifier
US5515006A (en) Low distortion efficient large swing CMOS amplifier output
EP1014567B1 (en) Improvements in or relating to an operational amplifier
US5006815A (en) Linear-gain amplifier arrangement
US5497124A (en) Class AB push-pull drive circuit, drive method therefor and class AB electronic circuit using the same
JPS6117166B2 (en)
JPS59178005A (en) Differential amplifier with biplar transistor
JP2542375B2 (en) Operational amplifier
US4333025A (en) N-Channel MOS comparator
JPS6122486B2 (en)
JPH098570A (en) Cmos operational amplifier
JPH051646B2 (en)
US11742812B2 (en) Output pole-compensated operational amplifier
JPH051649B2 (en)