JPS61171530A - Fuel reforming device - Google Patents
Fuel reforming deviceInfo
- Publication number
- JPS61171530A JPS61171530A JP60009100A JP910085A JPS61171530A JP S61171530 A JPS61171530 A JP S61171530A JP 60009100 A JP60009100 A JP 60009100A JP 910085 A JP910085 A JP 910085A JP S61171530 A JPS61171530 A JP S61171530A
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- fuel
- combustion
- packed bed
- reaction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/06—Combination of fuel cells with means for production of reactants or for treatment of residues
- H01M8/0606—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
- H01M8/0612—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
- H01M8/0625—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
- H01M8/0631—Reactor construction specially adapted for combination reactor/fuel cell
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/02—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
- B01J8/0278—Feeding reactive fluids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/02—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
- B01J8/04—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
- B01J8/0446—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical
- B01J8/0449—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical beds
- B01J8/0453—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical beds the beds being superimposed one above the other
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/02—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
- B01J8/04—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
- B01J8/0446—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical
- B01J8/0461—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical annular shaped beds
- B01J8/0465—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical annular shaped beds the beds being concentric
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
- Fuel Cell (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は燃料改質器に係り、特に燃料電池発電システム
等に使用するに好適な燃料改質器に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a fuel reformer, and particularly to a fuel reformer suitable for use in a fuel cell power generation system and the like.
従来、燃焼触媒を用いて、炭化水素などの燃料を酸化剤
と燃焼反応させる過程を含む燃料改質器は公知であり、
例えば米国文献(1978年に、キャタリチカ アソシ
ュート社(CatalyticaAssociates
社)発行のオーバービュー オブ ツユエルプロセシン
グ チクノロシース フォーツユエル パワー ジェネ
レーション)に詳しい。Conventionally, fuel reformers are known that include a process of causing a combustion reaction between a fuel such as a hydrocarbon and an oxidizer using a combustion catalyst.
For example, in the US literature (1978, Catalytica Associates
He is familiar with Overview of Tsuyuel Processing Chikunoroshis Fortsuyuel Power Generation) published by Co., Ltd.
上記文献の5ページ〜37ページに、燃焼触媒を用いて
、炭化水素などの燃料を酸化剤と燃焼反応させ、発生す
る反応熱を利用できるように、燃焼触媒層のすぐ後段に
改質触媒層を設けた燃料改質器が説明されている。この
技術は所謂オートサーマルリフオーマの基本構成をなし
ている。このオートサーマルリフオーマにおける1つの
問題点は、燃焼触媒層あるいは改質触媒層の温度分布で
あり、さらにもう1つの問題点は、燃焼触媒と改質触媒
の最適使用温度あるいは耐用温度の相違である。これら
2つの問題点は、前記の両触媒の寿命に重大な影響を及
ぼすため、オートサーマルリフォーマの設計の制約条件
となる。後者の問題点については、現在のところ燃焼触
媒としてptあるいはPd系触媒が1,000℃弱程度
で、改質触媒としてNi系触媒が800℃程度で使用さ
れる。On pages 5 to 37 of the above document, a reforming catalyst layer is placed immediately after the combustion catalyst layer so that a fuel such as a hydrocarbon is caused to undergo a combustion reaction with an oxidizer using a combustion catalyst, and the generated reaction heat can be utilized. A fuel reformer is described. This technology constitutes the basic structure of a so-called autothermal reformer. One problem with this autothermal reformer is the temperature distribution of the combustion catalyst layer or the reforming catalyst layer, and another problem is the difference in the optimum operating temperature or durability temperature of the combustion catalyst and the reforming catalyst. be. These two problems have a significant effect on the lifetime of both catalysts, and therefore become constraints on the design of the autothermal reformer. Regarding the latter problem, at present, a PT or Pd type catalyst is used as a combustion catalyst at a temperature of about 1,000°C, and a Ni type catalyst is used as a reforming catalyst at a temperature of about 800°C.
前記2つの問題の中で、燃焼触媒と改質触媒との最適使
用温度や耐用温度が異なるという問題は新しい触媒を開
発しない限り根本的な解決を望み得ない。Of the two problems mentioned above, the problem that the combustion catalyst and the reforming catalyst have different optimal operating temperatures and durability temperatures cannot be fundamentally solved unless a new catalyst is developed.
前記2つの問題中のもう一つの問題、即ち温度分布につ
いては、その不適当な温度分布が形成される理由は次の
如くである。Regarding the other problem of the above two problems, that is, the temperature distribution, the reason why the inappropriate temperature distribution is formed is as follows.
燃料と酸化剤の混合気をそのまま燃焼触媒層あるいは改
質触媒層に、いわゆる押出し流れ的に送入するために触
媒層入口付近で多くの反応が起こり、このようにして反
応進行状態の不均一に起因して触媒層内に不適当な温度
分布が形成される。Because the mixture of fuel and oxidizer is directly fed into the combustion catalyst layer or reforming catalyst layer in a so-called extrusion flow, many reactions occur near the inlet of the catalyst layer, resulting in uneven reaction progress. An inappropriate temperature distribution is formed in the catalyst layer due to this.
この問題は、反応物質の流動、拡散、混合の状態を改良
することによって解消され得るものと考え題は、反応物
質の流動、拡散、混合の状態を改良することによって解
消され得るものと考えられる。It is thought that this problem can be solved by improving the flow, diffusion, and mixing conditions of the reactants.It is thought that the problem can be solved by improving the flow, diffusion, and mixing conditions of the reactants. .
本発明の目的は、酸化剤もしくは燃料を、触媒層に分散
供給することにより、触媒層に良好な温度分布を実現し
得る燃料改質器を提供することにある。An object of the present invention is to provide a fuel reformer that can achieve good temperature distribution in the catalyst layer by dispersing and supplying an oxidizing agent or fuel to the catalyst layer.
通常、燃料電池発電システムに用いられる燃料改質器は
、連続操作のできる管型反応器である。Typically, a fuel reformer used in a fuel cell power generation system is a tubular reactor that can be operated continuously.
管型反応器は単管式あるいは単管を複数まとめた多管式
の構成であり、管内に触媒を充填し、一方を入口として
反応物質を流し込み、他方の出口より生成物質が排出さ
れる。A tubular reactor has a single-tube type or a multi-tube type configuration in which a plurality of single tubes are grouped together.The tubes are filled with a catalyst, reactants are poured into one tube as an inlet, and produced substances are discharged from the other outlet.
次に1本発明の基本的な原理について説明する。Next, the basic principle of the present invention will be explained.
本発明は、燃料電池発電システムでの燃料改質器におい
て、燃焼反応が燃料と酸化剤、改質反応が、主として燃
料とスチームというように、2種類の流体の反応である
ことに着目し1例えば一方の種。□い71ゎう、よ1、
□、よ□ヶ。□ 1“を有する導入管を設け、上記
の孔を有する導入管内にもう一種類の物質Bを流し、該
孔から物質Bを吹き出させて物質Aと反応させる。これ
により。The present invention focuses on the fact that in a fuel reformer in a fuel cell power generation system, the combustion reaction is a reaction between two types of fluids: fuel and oxidizer, and the reforming reaction is mainly a reaction between two types of fluids: fuel and steam. For example, one species. □I71ゎu, yo1,
□, yo□. □ An inlet tube having a diameter of 1" is provided, another substance B is flowed into the inlet tube having the above-mentioned holes, and the substance B is blown out from the holes to react with the substance A. This causes the substance B to react with the substance A.
管軸方向の触媒層に対して、反応物質AおよびBを分散
供給した形にし、触媒層の不適当な温度分布を回避しよ
うとするものである。The reactants A and B are distributed and supplied to the catalyst layer in the tube axis direction to avoid inappropriate temperature distribution in the catalyst layer.
上述の[11に基づいて前記の目的を達成するため、本
発明に係る燃料改質器は、燃焼触媒を用いて、炭化水素
などの燃料を酸化剤と燃焼反応せしめる過程を含む燃料
改質器において、前記の燃料触媒を含む触媒充填層の中
に酸化剤の導入管を埋設し、上記導入管の管壁に酸化剤
流出用の透孔を設け、かつ、上記の触媒充填層に燃料を
通過せしめるように構成したことを特徴とする。In order to achieve the above object based on [11] above, the fuel reformer according to the present invention is a fuel reformer that includes a process of causing a fuel such as a hydrocarbon to undergo a combustion reaction with an oxidizer using a combustion catalyst. An oxidizing agent introduction pipe is buried in the catalyst packed bed containing the fuel catalyst, a through hole is provided in the wall of the introduction pipe for the oxidizing agent to flow out, and the fuel is introduced into the catalyst packed bed. It is characterized by being configured so that it can pass through.
以下、本発明の一実施例を第1図により説明する。第1
図は単管形の燃料改質器1の断面図を示している。燃料
改質器1は、容器2とキャップ3とをボルト4により結
合され、外観が形成される。An embodiment of the present invention will be described below with reference to FIG. 1st
The figure shows a cross-sectional view of a single-tube fuel reformer 1. As shown in FIG. The fuel reformer 1 has a container 2 and a cap 3 connected together by bolts 4 to form an external appearance.
キャップ3は、仕切り管5を有し、さらに仕切り管5内
にキャップ3に貫通固着した導入管6が設けられている
。キャップ3の中央部には燃料入ロア、酸化剤人口8お
よび触媒挿入口9が、その周辺部には数個の触媒挿入口
10が設けられており、側面部にはガス出口11がある
。前記の酸化剤人口9は導入管6の入口である。仕切り
管5と導入管6は、容器2の底部に到達するいくらか手
前まで伸びており、仕切り管5と導入管6の間隙には触
媒挿入口9から挿入した燃焼触媒12が容器2の高さ程
度に充填されている。導入管6には、燃焼触媒12に囲
まれた部分に多数の小孔13が設けられており、導入管
6の末端は塞がれている。The cap 3 has a partition tube 5, and an introduction tube 6 that penetrates and is fixed to the cap 3 is provided within the partition tube 5. A lower fuel inlet, an oxidizer port 8 and a catalyst insertion port 9 are provided in the center of the cap 3, several catalyst insertion ports 10 are provided in the peripheral portion thereof, and a gas outlet 11 is provided in the side portion. The oxidizing agent port 9 is the inlet of the inlet pipe 6. The partition pipe 5 and the introduction pipe 6 extend a little before reaching the bottom of the container 2, and the combustion catalyst 12 inserted through the catalyst insertion port 9 is inserted into the gap between the partition pipe 5 and the introduction pipe 6 at the height of the container 2. It is filled to a certain extent. The introduction pipe 6 is provided with a large number of small holes 13 in a portion surrounded by the combustion catalyst 12, and the end of the introduction pipe 6 is closed.
仕切り管5と容器2の間隙には触媒挿入口10より挿入
した改質触媒14が容器2の高さ程度に充填されている
。The gap between the partition pipe 5 and the container 2 is filled with a reforming catalyst 14 inserted through the catalyst insertion port 10 to about the height of the container 2.
以上のように構成した燃料改質器1の作動について次に
説明する。The operation of the fuel reformer 1 configured as above will be explained next.
予熱された燃料15と酸化剤16が、それぞれ燃料入ロ
アおよび酸化剤入口8から燃料改質器1内へ流入される
。燃料改質器1内へ流入した燃料15は燃焼触媒12の
充填層を通過する。一方、酸化剤入口8から燃料改質器
1内へ流入した酸化剤16は導入管6中を流れるが5通
過途中の小孔13から燃焼触媒12の中へ放出される。Preheated fuel 15 and oxidizer 16 flow into fuel reformer 1 from the fuel input lower and oxidizer inlet 8, respectively. The fuel 15 that has flowed into the fuel reformer 1 passes through a packed bed of combustion catalysts 12 . On the other hand, the oxidizer 16 that has flowed into the fuel reformer 1 from the oxidizer inlet 8 flows through the introduction pipe 6, but is discharged into the combustion catalyst 12 from the small hole 13 midway through the introduction pipe 6.
前記したように、導入管6の末端は塞がれており、酸化
剤16は導入管6に設けられた多数の小孔13からパス
カルの原理によって等圧で外側に向けて噴き出すことに
なる。これにより、燃焼触媒12の充填層において流れ
る燃料15に対し、酸化剤16を分散供給しながら燃焼
触媒12の充填層全体で燃焼反応(発熱反応)を起こさ
せる。燃焼反応を終えたガスは、仕切り管5と容器2の
間隙に充填された改質触媒14を通過しながら燃焼反応
によって生じた熱を受は取り、残燃料と燃焼反応によっ
て生じたスチームを主とした改質反応(吸熱反応)を起
こし、改質ガス17としてガス出口11から燃料改質器
1の外部へ放出される。As described above, the end of the introduction tube 6 is closed, and the oxidizing agent 16 is ejected outward from the large number of small holes 13 provided in the introduction tube 6 at equal pressure according to Pascal's principle. Thereby, the oxidizing agent 16 is distributed and supplied to the fuel 15 flowing in the packed bed of the combustion catalyst 12, and a combustion reaction (exothermic reaction) is caused in the entire packed bed of the combustion catalyst 12. The gas that has completed the combustion reaction receives and absorbs the heat generated by the combustion reaction while passing through the reforming catalyst 14 filled in the gap between the partition pipe 5 and the container 2, and mainly uses the remaining fuel and the steam generated by the combustion reaction. A reforming reaction (endothermic reaction) occurs, and the reformed gas 17 is released from the gas outlet 11 to the outside of the fuel reformer 1.
本実施例によれば、燃料改質器の中央部に設けた多数の
小孔を有する導入管によって、燃焼触媒充填層全体に燃
焼反応を分散できるので、燃焼触媒の局部的な温度上昇
が防止できる。その結果燃焼触媒の寿命を向上する効果
と、燃焼触媒充てん層の温度分布を均一ならしめて燃料
改質器全体の熱反応力を緩和する効果がある。According to this embodiment, the combustion reaction can be dispersed throughout the combustion catalyst packed bed by the introduction pipe having a large number of small holes provided in the center of the fuel reformer, thereby preventing a local temperature rise of the combustion catalyst. can. As a result, the life of the combustion catalyst is improved, and the temperature distribution of the combustion catalyst packed layer is made uniform, thereby reducing the thermal reaction force of the entire fuel reformer.
第2図に本発明の他の実施例を示す、第1図と異なる箇
所を含む部分を部分的に取り上げて説明する。この実施
例では、仕切り管5が触媒と接しないキャップ3の付近
に、リサイクル管18を数個設けたことを特徴とする。FIG. 2 shows another embodiment of the present invention, and the parts that are different from those in FIG. 1 will be partially taken up and explained. This embodiment is characterized in that several recycle pipes 18 are provided near the cap 3 where the partition pipe 5 does not come into contact with the catalyst.
このリサイクル管18により、仕切り管5内の上部の空
間すなわち燃焼触媒12の充填層上部の空間と、改質触
媒工4の充填層上部の空間とが連結される。この場合、
リサイクル管18は第2図に示したものに限らす、エジ
ェクタ構造のものであれば十分である。This recycle pipe 18 connects the upper space in the partition pipe 5, that is, the space above the packed bed of the combustion catalyst 12, and the space above the packed bed of the reforming catalyst device 4. in this case,
The recycle pipe 18 is limited to the one shown in FIG. 2, and it is sufficient if it has an ejector structure.
動作を説明すると、燃料入ロアより燃料改質器1内に入
った燃料15と、酸化剤人口8から燃料改質器1内に入
った酸化剤16とが燃焼触媒12の充填層で燃焼反応し
、さらに燃焼反応後のガスが改質触媒14の充填層にお
いて改質反応を起こし、水素リッチな改質ガス17とな
るが、この改質ガ 1ス17の一部のガス1
9がリサイクル管18を通して燃焼触媒12の充填層上
部に供給され、燃料15との混合ガスとして燃焼触媒1
2へ送入される。To explain the operation, the fuel 15 that entered the fuel reformer 1 from the fuel input lower and the oxidizer 16 that entered the fuel reformer 1 from the oxidizer population 8 undergo a combustion reaction in the packed bed of the combustion catalyst 12. However, the gas after the combustion reaction further undergoes a reforming reaction in the packed bed of the reforming catalyst 14 to become a hydrogen-rich reformed gas 17, but some of this reformed gas 17
9 is supplied to the upper part of the packed bed of the combustion catalyst 12 through the recycle pipe 18, and the combustion catalyst 1 is supplied as a mixed gas with the fuel 15.
2.
本実施例によれば、第1図の実施例における効果に加え
て、燃焼触媒に水素を含む燃料が送入されるので、燃焼
温度を抑制でき、燃焼触媒の寿命をより向上する効果が
あり、かつ、燃料および酸化剤の流量が増加して燃焼反
応量が増えると、それに伴ってリサイクルされる水素リ
ッチな改質ガスも多く燃焼触媒に送入されるので、燃焼
温度の自己保障的な作用をし、燃焼触媒の温度上昇を未
然に防ぐという効果がある。According to this embodiment, in addition to the effects of the embodiment shown in FIG. 1, since fuel containing hydrogen is fed to the combustion catalyst, the combustion temperature can be suppressed and the life of the combustion catalyst can be further improved. Moreover, as the flow rate of fuel and oxidizer increases and the amount of combustion reaction increases, more hydrogen-rich reformed gas is also sent to the combustion catalyst to be recycled. This has the effect of preventing the temperature of the combustion catalyst from rising.
第3図に本発明の他の実施例を示す、第1図と異なる箇
所を含む部分を部分的に取り上げて説明する。この実施
例では、容器2の底辺に近い仕切り管5の部分の一程度
に、複数個の小穴20を設けたことを特徴とする。これ
らの小孔20により、燃焼ガスの一部が改質触媒14の
充填層へ流入し。FIG. 3 shows another embodiment of the present invention, and the parts that are different from those in FIG. 1 will be partially taken up and explained. This embodiment is characterized in that a plurality of small holes 20 are provided in a portion of the partition tube 5 near the bottom of the container 2. A portion of the combustion gas flows into the packed bed of the reforming catalyst 14 through these small holes 20 .
改質触媒14及び改質触媒14を取り巻くガスに直接熱
を与える。Heat is applied directly to the reforming catalyst 14 and the gas surrounding the reforming catalyst 14.
本実施例によれば、第1図の実施例における効果に加え
て、一部燃焼ガスの熱を直接改質反応に与えるので、燃
料改質器の熱効率が向上するという効果がある。According to this embodiment, in addition to the effects of the embodiment shown in FIG. 1, since some of the heat of the combustion gas is directly applied to the reforming reaction, there is an effect that the thermal efficiency of the fuel reformer is improved.
第4図に本実施例の他の実施例を示す、この実施例は、
第2図と第3図の特徴を複合させたもので、改質ガス1
9の燃料改質1Ihl内でのリサイクルおよび一部燃焼
ガスの熱を直接改質反応へ寄与させることが行なわれる
1本実施例の構成、動作の説明および効果は、第2図と
第3図の場合に準する。FIG. 4 shows another example of this example.
This is a combination of the features of Figures 2 and 3, and the reformed gas 1
The configuration, operation, and effects of this embodiment are shown in Figures 2 and 3, in which recycling within the fuel reforming 1Ihl and a portion of the heat of the combustion gas are directly contributed to the reforming reaction. The same applies to the case of
第5図に本発明の他の実施例を示す、第5図は単管の燃
料改質器1′の断面図を示している。燃料改質器1′は
、容器2′とキャップ3′とをボルト4によって結合し
た構造である。キャップ3′の中央部に燃料入口管7が
設けられ、該燃料入口管7内を通り、かつ、その管壁を
貫通して導入管6が設けられ、該導入管6の開口端が酸
化剤人口8を構成している。そして、キャップ3の周辺
の部分には数個の触媒挿入口9が設けられている。容器
2の末端には、触媒支持網21を保持したガス出口11
が設けられている。改質触媒14を触媒挿入口9から容
器2内に挿入し、容器2′のおよそ半分程度の体積を占
めるようにする0次に、同様に燃焼触媒12を触媒挿入
口9から容器2へ挿入し、容器2′の高さ程度まで充填
させる。Another embodiment of the present invention is shown in FIG. 5, which is a sectional view of a single-tube fuel reformer 1'. The fuel reformer 1' has a structure in which a container 2' and a cap 3' are connected by bolts 4. A fuel inlet pipe 7 is provided in the center of the cap 3', an introduction pipe 6 is provided passing through the fuel inlet pipe 7 and penetrating the pipe wall, and the open end of the introduction pipe 6 is provided with an oxidizing agent. It has a population of 8. Several catalyst insertion ports 9 are provided around the cap 3. At the end of the container 2, there is a gas outlet 11 holding a catalyst support network 21.
is provided. Insert the reforming catalyst 14 into the container 2 through the catalyst insertion port 9 so that it occupies approximately half the volume of the container 2'.Next, similarly insert the combustion catalyst 12 into the container 2 through the catalyst insertion port 9. Then, fill the container 2' to about the height.
このとき、導入管6は燃焼触媒12の充填層全体に渡っ
て容器2′の中央に挿入された状態となっている。また
導入管6は燃焼触媒12に囲まれた部分に多数の小孔1
3を有しており、導入管の末端は塞がれている。燃料改
質器1′の構成は以上のようであり、次にその動作につ
いて説明する。At this time, the introduction pipe 6 is inserted into the center of the container 2' over the entire packed bed of the combustion catalyst 12. In addition, the introduction pipe 6 has many small holes 1 in the part surrounded by the combustion catalyst 12.
3, and the end of the introduction tube is closed. The structure of the fuel reformer 1' is as described above, and its operation will be explained next.
予熱された燃料15と酸化剤16が、それぞれ燃料入ロ
アおよび酸化剤入口8から燃料改質器1′内へ流入され
る。燃料改質器1′内へ流入した燃料15は、燃焼触媒
12の充填層を通過する。一方、酸化剤16は、導入管
d中を流れるが1通過途中の小孔13から燃焼触媒12
が充填されている中へ放出される。これにより、燃焼触
媒12の充填層において流れる燃料15に対し、酸化剤
16を分散供給しながら燃焼触媒12の充填層全体で燃
焼反応(発熱反応)を起こさせる。燃焼反応を終えたガ
スは、続く改質触媒14の充填層を通過しながら、燃焼
反応によって温度が高められた燃焼ガスの熱を消費して
改質反応(吸熱反応)を起こし、改質のガス17として
ガス出口11から燃料改質器1の外部へ放出される。Preheated fuel 15 and oxidizer 16 flow into the fuel reformer 1' from the fuel input lower and oxidizer inlet 8, respectively. The fuel 15 that has entered the fuel reformer 1' passes through a packed bed of combustion catalysts 12. On the other hand, the oxidizer 16 flows through the introduction pipe d, but the oxidizer 16 passes through the combustion catalyst 12 from the small hole 13 during its passage.
is released into the filled container. Thereby, the oxidizing agent 16 is distributed and supplied to the fuel 15 flowing in the packed bed of the combustion catalyst 12, and a combustion reaction (exothermic reaction) is caused in the entire packed bed of the combustion catalyst 12. The gas that has completed the combustion reaction passes through the packed bed of the reforming catalyst 14, and consumes the heat of the combustion gas whose temperature has been raised by the combustion reaction to cause a reforming reaction (endothermic reaction), resulting in reforming. The gas 17 is released from the gas outlet 11 to the outside of the fuel reformer 1 .
本実施例によれば、燃焼触媒中に設けた導入管によって
一化剤を燃焼触媒の充填層全体に分散供給できるので、
燃焼触媒の局部的な温度上昇を防止し、燃焼触媒の寿命
向上と燃料改質器全体の熱応力を緩和する効果があり、
また簡単な構造なので、生産性と経済性が向上するとい
う効果がある。According to this embodiment, the unifying agent can be distributed and supplied to the entire packed bed of the combustion catalyst using the introduction pipe provided in the combustion catalyst.
This has the effect of preventing local temperature increases in the combustion catalyst, extending the life of the combustion catalyst, and alleviating thermal stress in the entire fuel reformer.
Moreover, since it has a simple structure, it has the effect of improving productivity and economic efficiency.
以上に示した本発明の各実施例においては、燃焼触媒と
改質触媒を混合させた形でも可能であり、さらにそのこ
とは、今後の新しい触媒の開発に伴って実施される可能
性が大きい、また、燃焼触媒中1酸化剤を分散供給す6
以外ゝ・燃料1導入管 11により分散供給し
たり、改質触媒中にも導入管を設けて、燃料あるいはス
チームなどを分散供給する燃料改質器を構成することも
、本発明から容易に察することができよう、加えて、導
入管の材料候補としては、耐熱用SUS材の他に多孔質
セラミックスなどが挙げられる。In each of the embodiments of the present invention shown above, it is also possible to mix a combustion catalyst and a reforming catalyst, and it is highly likely that this will be implemented as new catalysts are developed in the future. , and also disperses and supplies 1 oxidizer in the combustion catalyst 6
Other than that, it is easily understood from the present invention that the fuel reformer may be constructed such that the fuel 1 is supplied in a distributed manner through the introduction pipe 11, or an introduction pipe is also provided in the reforming catalyst to supply fuel or steam in a distributed manner. In addition, possible materials for the introduction tube include porous ceramics in addition to heat-resistant SUS material.
本発明によれば、酸化剤もしくは燃料を、触媒層に分散
供給することができるので、触媒層に良好な温度分布を
実現できる効果がある。According to the present invention, since the oxidizing agent or fuel can be distributed and supplied to the catalyst layer, it is possible to realize a good temperature distribution in the catalyst layer.
第1.2,3,4.5図はそれぞれ本発明の実施例を示
す断面図である。
1.1′・・・燃料改質器、6・・・導入管、12・・
・燃料触媒、13・・・小孔、14・・・改質触媒。1.2, 3, and 4.5 are cross-sectional views showing embodiments of the present invention, respectively. 1.1'...Fuel reformer, 6...Introduction pipe, 12...
-Fuel catalyst, 13...Small hole, 14...Reforming catalyst.
Claims (1)
燃焼反応せしめる過程を含む燃料改質器において、前記
の燃料触媒を含む触媒充填層の中に酸化剤の導入管を埋
設し、上記導入管の管壁に酸化剤流出用の透孔を設け、
かつ、上記の触媒充填層に燃料を通過せしめるように構
成したことを特徴とする燃料改質器。 2、前記の触媒充填層は、その下流側に改質触媒層を設
けたものとし、かつ、上記の改質触媒層を通過した改質
ガスの一部を前記触媒充填層の上流側に還流せしめる通
路を設けたことを特徴とする特許請求の範囲第1項に記
載の燃料改質器。[Claims] 1. In a fuel reformer that includes a process of causing a fuel such as a hydrocarbon to undergo a combustion reaction with an oxidizer using a combustion catalyst, an oxidizer is contained in a catalyst packed bed containing the fuel catalyst. An inlet pipe is buried, a through hole is provided in the wall of the inlet pipe for the oxidant to flow out,
A fuel reformer characterized in that the fuel reformer is configured to allow fuel to pass through the catalyst packed bed. 2. The catalyst packed bed is provided with a reforming catalyst bed on its downstream side, and a part of the reformed gas that has passed through the reforming catalyst bed is refluxed to the upstream side of the catalyst packed bed. 2. The fuel reformer according to claim 1, further comprising a passage for causing the fuel to deteriorate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60009100A JPS61171530A (en) | 1985-01-23 | 1985-01-23 | Fuel reforming device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60009100A JPS61171530A (en) | 1985-01-23 | 1985-01-23 | Fuel reforming device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61171530A true JPS61171530A (en) | 1986-08-02 |
Family
ID=11711201
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60009100A Pending JPS61171530A (en) | 1985-01-23 | 1985-01-23 | Fuel reforming device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61171530A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02145651U (en) * | 1989-05-15 | 1990-12-11 | ||
JPH0526142U (en) * | 1991-09-19 | 1993-04-06 | 株式会社日本技術開発センター | Fluid contact device for fluid and granular solids |
EP0967006A2 (en) * | 1998-06-27 | 1999-12-29 | Krupp Uhde GmbH | Apparatus for the catalytic reaction of a fluid in the gas phase |
WO2001023080A1 (en) * | 1999-09-29 | 2001-04-05 | Imperial Chemical Industries Plc | Catalytic reactor |
WO2002047805A3 (en) * | 2000-12-15 | 2002-11-28 | Shell Int Research | Catalytic partial oxidation process using a catalyst system having an upstream and a downstream part |
JP2004167483A (en) * | 2002-11-15 | 2004-06-17 | Haldor Topsoe As | High temperature fixed bed reactor |
JP2008222526A (en) * | 2007-03-15 | 2008-09-25 | Ngk Insulators Ltd | Selective permeation membrane type reactor, and hydrogen production method |
EP2520542A1 (en) * | 2011-05-04 | 2012-11-07 | Vaillant GmbH | Reformer |
WO2018055054A1 (en) | 2016-09-23 | 2018-03-29 | Casale Sa | Axial-radial flow catalytic chemical reactor with two layers of catalyst |
-
1985
- 1985-01-23 JP JP60009100A patent/JPS61171530A/en active Pending
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02145651U (en) * | 1989-05-15 | 1990-12-11 | ||
JPH0526142U (en) * | 1991-09-19 | 1993-04-06 | 株式会社日本技術開発センター | Fluid contact device for fluid and granular solids |
EP0967006A2 (en) * | 1998-06-27 | 1999-12-29 | Krupp Uhde GmbH | Apparatus for the catalytic reaction of a fluid in the gas phase |
EP0967006A3 (en) * | 1998-06-27 | 2000-05-24 | Krupp Uhde GmbH | Apparatus for the catalytic reaction of a fluid in the gas phase |
EP1704915A1 (en) * | 1999-09-29 | 2006-09-27 | Johnson Matthey PLC | Catalyc Reactor |
US6982067B2 (en) | 1999-09-29 | 2006-01-03 | Johnson Matthey Plc | Catalytic reactor |
WO2001023080A1 (en) * | 1999-09-29 | 2001-04-05 | Imperial Chemical Industries Plc | Catalytic reactor |
US7771677B2 (en) | 1999-09-29 | 2010-08-10 | Johnson Matthey Plc | Catalytic reactor |
WO2002047805A3 (en) * | 2000-12-15 | 2002-11-28 | Shell Int Research | Catalytic partial oxidation process using a catalyst system having an upstream and a downstream part |
US7232532B2 (en) | 2000-12-15 | 2007-06-19 | Shell Oil Company | Catalytic partial oxidation process using a catalyst system having an upstream and a downstream part |
JP2004167483A (en) * | 2002-11-15 | 2004-06-17 | Haldor Topsoe As | High temperature fixed bed reactor |
JP2008222526A (en) * | 2007-03-15 | 2008-09-25 | Ngk Insulators Ltd | Selective permeation membrane type reactor, and hydrogen production method |
EP2520542A1 (en) * | 2011-05-04 | 2012-11-07 | Vaillant GmbH | Reformer |
WO2018055054A1 (en) | 2016-09-23 | 2018-03-29 | Casale Sa | Axial-radial flow catalytic chemical reactor with two layers of catalyst |
CN109715283A (en) * | 2016-09-23 | 2019-05-03 | 卡萨尔公司 | Axial direction with two layers of catalyst-radial flow ejector half catalytic chemistry reactor |
US10596538B2 (en) | 2016-09-23 | 2020-03-24 | Casale Sa | Axial-radial flow catalytic chemical reactor with two layers of catalyst |
CN109715283B (en) * | 2016-09-23 | 2021-09-28 | 卡萨尔公司 | Catalytic chemical reactor of axial-radial flow type with two layers of catalyst |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4374184A (en) | Fuel cell generator and method of operating same | |
EP1473272B1 (en) | Apparatus for reforming fuel | |
US6936238B2 (en) | Compact partial oxidation/steam reactor with integrated air preheater, fuel and water vaporizer | |
US6254848B1 (en) | Process for the production of hydrogen-rich gas | |
US6284398B1 (en) | Reformer for a fuel cell | |
US6428758B1 (en) | Reformation reactor and operating method | |
JPS62252077A (en) | Fule cell generator | |
US6797244B1 (en) | Compact light weight autothermal reformer assembly | |
EA010329B1 (en) | Reformer for a fuel cell | |
JPH09503615A (en) | Built-in converter / CPN solid oxide fuel cell stack / module design | |
AU2005289675B2 (en) | Apparatus and method for preferential oxidation of carbon monoxide | |
JPS61171530A (en) | Fuel reforming device | |
JPH11106204A (en) | Hydrogen production apparatus and hydrogen production process | |
EP1941008B1 (en) | Steam reforming unit | |
JP2000169102A (en) | Fuel reformer | |
US7638213B2 (en) | Multi-stage rapid vaporization apparatus and method | |
KR20110114417A (en) | Burner nozzle and fuel reformer having the same | |
JP2003321206A (en) | Single tubular cylinder type reforming apparatus | |
JPS63232275A (en) | Fuel cell of lamination type | |
JP2004519405A (en) | Fuel gas reformer assembly | |
WO2000061491A1 (en) | Apparatus for selective oxidation of carbon monoxide | |
JPS63190630A (en) | Gas supply apparatus composed of pipe having narrow part | |
JP2930456B2 (en) | Reactor for dehydrogenation reaction | |
JP3545254B2 (en) | Fuel cell carbon monoxide remover | |
JPH0679664B2 (en) | Fuel reformer |