JPS61171507A - Purification of organic solvent - Google Patents

Purification of organic solvent

Info

Publication number
JPS61171507A
JPS61171507A JP1132485A JP1132485A JPS61171507A JP S61171507 A JPS61171507 A JP S61171507A JP 1132485 A JP1132485 A JP 1132485A JP 1132485 A JP1132485 A JP 1132485A JP S61171507 A JPS61171507 A JP S61171507A
Authority
JP
Japan
Prior art keywords
exchange resin
cation exchange
metal
moisture
organic solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1132485A
Other languages
Japanese (ja)
Inventor
Hajime Fujioka
藤岡 元
Makoto Ishikawa
誠 石川
Noboru Ueki
植木 昇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP1132485A priority Critical patent/JPS61171507A/en
Publication of JPS61171507A publication Critical patent/JPS61171507A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To easily separate and remove a metal and moisture, by contacting an org. solvent containing a minute amount of a metal and moisture with a dried porous strong acidic cation exchange resin having a sulfonic acid group. CONSTITUTION:A sulfonic acid group is introduced into a polymer having physical fine pores, which was obtained by polymerizing styrene and divinylbenzene by a special method, as an exchange group to obtain a porous strong acidic cation exchange resin which is, in turn, dried to usually adjust the water content thereof to 0.2% or less, pref., 0.03% or less. Thus obtained cation exchange resin is contacted with an org. solvent containing a minute amount of a metal and moisture to adsorb the metal and moisture. The metal is desorbed by contacting an aqueous hydrochloric acid solution with the ion exchange resin and moisture is desorbed by the drying treatment of said resin.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は微量の金属と水分とを含有する有機溶剤の精製
法に関するものである。詳しくは。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for purifying an organic solvent containing trace amounts of metal and water. For more information.

本発明は有機溶剤を特定の処理剤と接触させて有機溶剤
中に含有されている微量の金属と水分とを同時に除去す
る方法に関するものである。
The present invention relates to a method for simultaneously removing trace amounts of metal and water contained in an organic solvent by bringing the organic solvent into contact with a specific processing agent.

〔従来の技術〕[Conventional technology]

化学工場で製造・貯蔵された有機溶剤中には通常、配管
、貯槽等の装置内面から溶出した微量の金属1例えば、
鉄が含有されている。有機溶剤は樵々の用途に用いられ
るものであるが、用途によっては微量の金属が悪い影響
を及ぼすことがしばしばある。
Organic solvents manufactured and stored in chemical factories usually contain trace amounts of metals leached from the inner surfaces of equipment such as piping and storage tanks.
Contains iron. Organic solvents are used by lumberjacks, but trace amounts of metals often have a negative effect on some applications.

例えば、l、コージクロルエタンを熱分解して剤として
作用して異常コーキングを生起する。
For example, it thermally decomposes cordichloroethane and acts as an agent to cause abnormal coking.

これはデコーキングの頻度を増加させると共に熱分解装
置の寿命を短<シ、かつ塩化ビニルモノマーの生産量の
減少にもつながるため、原料l、−−ジクロルエタン中
の鉄濃度を極力減少させることが必要となっている。
This increases the frequency of decoking, shortens the life of the pyrolysis equipment, and also leads to a decrease in the production amount of vinyl chloride monomer. Therefore, it is important to reduce the iron concentration in the raw material l, - dichloroethane as much as possible. It has become necessary.

また、半導体の用途に用いられる有機溶剤もその高性能
化に対応して極力金属の含有量を小さくすることが必要
とされている。
In addition, organic solvents used for semiconductor applications are required to have as low a metal content as possible in response to improved performance.

従来、金属、例えば鉄を微量含有する有機溶剤から金属
を分離する方法として、一般的には種々の方法が知られ
ておシ、例えば、 ■ 蒸留による分離法 ■ 活性炭等の吸着剤による吸着分離法等が知られてい
る。
Conventionally, various methods have been known to separate metals, such as iron, from organic solvents that contain trace amounts of iron. The law is known.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、上記■の方法では、有機溶剤中の金属の
分離除去は容易であるが、有機溶剤を留出させるために
多量の熱源等のユーテイリイテイーを必要とし、必ずし
も工業的に有利な方法とは言えない。また、該蒸留法で
は有機溶剤中に含有されている微量の水分を同時に分離
除去することはできない場合が多い。例えば、微量の水
分及び鉄を含有するl、−一ジクロルエタンの場合には
、蒸留によって鉄は分離除去されるが、水は/、コージ
クロルエタンと共沸混合物を形成して留出側に水分が留
出するため7塔では分離除去ができないという問題かめ
る。
However, although it is easy to separate and remove the metals in the organic solvent in the method (2) above, it requires utilities such as a large amount of heat source to distill the organic solvent, so it is not necessarily an industrially advantageous method. I can't say that. Furthermore, in many cases, it is not possible to simultaneously separate and remove trace amounts of water contained in the organic solvent using the distillation method. For example, in the case of l,-1 dichloroethane that contains trace amounts of water and iron, the iron is separated and removed by distillation, but the water forms an azeotrope with the co-dichloroethane and the water is absorbed on the distillate side. This poses a problem in that the 7 columns cannot separate and remove the water as it distills off.

次に、上記■の方法では有機浴剤中の金属の分離除去は
容易であるが、吸着剤に含まれる不純物の溶出によシ逆
に有機溶剤が汚染されるという問題がある。また、吸着
剤の種、類によっては吸着剤に有機溶剤自身が吸着され
て損失が多かったシ、あるbは有機溶剤中の微量の水分
が同時には吸着分離できないという問題もある。
Next, although it is easy to separate and remove the metals in the organic bath agent in the method (2) above, there is a problem in that the organic solvent is contaminated by the elution of impurities contained in the adsorbent. In addition, depending on the type of adsorbent, the organic solvent itself is adsorbed by the adsorbent, resulting in a large loss, and in some cases, there is also the problem that a small amount of water in the organic solvent cannot be adsorbed and separated at the same time.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者等#:t%かかる従来技術に鑑み、微量の金属
と水分を含有する有機溶剤から金属及び水分を工業的有
利に分離除去する方法について鋭意検討を重ねた結果、
該有機溶剤を、乾燥させた、スルホン酸基を有する多孔
性の強酸性陽イオン交換樹脂と接触させることによシ、
金属及び水が該イオン交換樹脂に吸着されて、該有機溶
剤から容易に分離除去できることを見出し。
The present inventors #: t% In view of the prior art, as a result of intensive study on a method for industrially advantageous separation and removal of metals and water from organic solvents containing trace amounts of metals and water,
By bringing the organic solvent into contact with a dried porous strongly acidic cation exchange resin having sulfonic acid groups,
It was discovered that metals and water are adsorbed on the ion exchange resin and can be easily separated and removed from the organic solvent.

本発明を完成するに至った。The present invention has now been completed.

すなわち、本発明の要旨は、微量の金属及び水分を含有
する有機溶剤を、乾燥した、スルホン酸基を有する多孔
性の強酸性陽イオン交換樹脂と接触させて金属及び水分
を同時に除去するこhw%@hf7:、*“71ゝ*、
 IICWf;E:、・  1以下、本発明につきさら
に詳細に説明する。
That is, the gist of the present invention is to simultaneously remove metals and water by bringing an organic solvent containing trace amounts of metal and water into contact with a dry, porous, strongly acidic cation exchange resin having sulfonic acid groups. %@hf7:, *“71ゝ*,
IICWf;E:,・1 The present invention will be explained in more detail below.

本発明方法において、処理対象となる微量の金属と水分
とを含有する有機溶剤としては、化学工場等で装造成い
は貯蔵された各種用途に使用される有機溶剤が挙げられ
る。特に微量の金属と水分が悪い影響を及ぼす用途に用
いる有機溶剤に適用するのが好適である。例えば、塩化
とニルモノマー製造の原料に用いる1、コージクはr−
ブチロラクトン等のラクトン類等の有機溶剤が挙げられ
る。また、微量の金属としては主に鉄が挙げられる。こ
れは有機溶剤製造時における装置、例えば配管及び貯槽
等の装置から溶出する金属、あるいは、有機溶剤輸送時
における容器、例えば、タンクローリ−、ドラム缶、船
舶等の容器から溶出する金属に起因するものである。
In the method of the present invention, examples of the organic solvent containing trace amounts of metal and water to be treated include organic solvents used for various purposes that have been packaged or stored in chemical factories and the like. It is particularly suitable for application to organic solvents used in applications where trace amounts of metals and moisture have an adverse effect. For example, 1, Kojik, which is used as a raw material for chlorination and nil monomer production, is
Examples include organic solvents such as lactones such as butyrolactone. In addition, the trace amount of metal mainly includes iron. This is caused by metals leaching from equipment such as piping and storage tanks during the production of organic solvents, or metals leaching from containers used during organic solvent transportation, such as tanks, drums, and ships. be.

本発明方法に用いる多孔性の強酸性陽イオン交換樹脂は
それ自体公知のものであって、スチレンとジビニルベン
ゼンとを特殊な方法で重合させることによって得られた
物理的細孔〔以下マクロポアという。〕を有するポリマ
ー(以下ポーラスポリマーという。)に交換基としてス
ルホン酸基を導入したものである。これはその内部に数
百〜数千1の孔径な有する多数のマクロポアな有する樹
脂であシ、大きな表面積と細孔容積とを有するものであ
る点において、従来のゲル型の強酸性陽イオン交換樹脂
とは区別される。該多孔性の強酸性陽イオン交換樹脂と
しては、通常の架橋度のポーラスポリマーにスルホン酸
基を導入したポーラス型強酸性陽イオン交換樹脂及び高
い架橋度のポーラスポリマーにスルホン酸基を導入した
ハイポーラス型強酸性陽イオン交換樹脂等があげられ、
一般に市販されている多孔性の強酸性陽イオン交換樹脂
から任意に選ぶことができる。また、水の単位gr。
The porous strongly acidic cation exchange resin used in the method of the present invention is known per se, and is made of physical pores [hereinafter referred to as macropores] obtained by polymerizing styrene and divinylbenzene in a special method. ] (hereinafter referred to as porous polymer) into which a sulfonic acid group is introduced as an exchange group. This is a resin with many macropores with a pore size of several hundred to several thousand 1 inside, and has a large surface area and pore volume, compared to conventional gel-type strong acid cation exchange. Distinguished from resin. The porous strongly acidic cation exchange resins include porous strongly acidic cation exchange resins in which sulfonic acid groups are introduced into a porous polymer with a normal degree of crosslinking, and high acid cation exchange resins in which sulfonic acid groups are introduced into a porous polymer with a high degree of crosslinking. Examples include porous strongly acidic cation exchange resins, etc.
It can be arbitrarily selected from commercially available porous strongly acidic cation exchange resins. Also, the unit of water is gr.

当りの吸着量は変わらないにも拘らず、金属、例えば鉄
の平衡吸着量はポーラス型強酸性陽イオン交換樹脂、ハ
イポーラス型強酸性陽イオン交換樹脂の顔に増加し2ノ
ーイボ−ラス型強酸性陽イオン交換樹脂のそれは最大値
を示す。従って、ハイポーラス型強酸性陽イオン交換樹
脂は。
Although the adsorption amount per unit does not change, the equilibrium adsorption amount of metals, such as iron, increases in the case of porous type strong acid cation exchange resins and high porous type strong acid cation exchange resins. that of the cation exchange resin shows the maximum value. Therefore, highly porous type strongly acidic cation exchange resin.

本発明の目的を達成するうえで最も優れた効果を示す。This shows the most excellent effect in achieving the object of the present invention.

さらに1本発明方法に用いられる上記した多孔質の強酸
性陽イオン交換樹脂はその交換基がR型またはNa型の
いずれであってもよい。
Furthermore, the above porous strongly acidic cation exchange resin used in the method of the present invention may have an exchange group of either R type or Na type.

上記した多孔性の強酸性陽イオン交換樹脂は乾燥してい
る必要があシ、微量の金属及び水分を含有する有機溶媒
と接触させるに先たち、乾燥処理してその含水率を通常
0.2 %以下、特に処理溶媒の水分濃度を数ppm以
下にしたい場合にはその含水率をo、oy%以下にして
おくことが望ましい。該イオン交換樹脂の乾燥処理には
従来公知の方法が採用され、例えば窒素気流中で室温で
乾燥する方法、および100−110℃の温度で熱風流
によシ乾燥する方法、あるいは水と共沸混合物を形成す
る共沸剤共存下での共沸蒸留による乾燥等が挙げられる
The porous strongly acidic cation exchange resin described above must be dry; before it is brought into contact with an organic solvent containing trace amounts of metal and moisture, it is dried to reduce its moisture content to usually 0.2. % or less, particularly when the water concentration of the processing solvent is desired to be several ppm or less, it is desirable to keep the water content below o, oy %. Conventionally known methods are employed for drying the ion exchange resin, such as drying at room temperature in a nitrogen stream, drying with a hot air stream at a temperature of 100-110°C, or azeotropic drying with water. Examples include drying by azeotropic distillation in the presence of an azeotropic agent to form a mixture.

本発明方法による微量の金属及び水分を含有する有機溶
媒と上記した強酸性陽イオン交換樹脂とを接触させる方
法としては回分法あるいは連続法のいずれも採用可能で
ある。
Either a batch method or a continuous method can be employed as a method for bringing the organic solvent containing trace amounts of metal and water into contact with the above-mentioned strongly acidic cation exchange resin according to the method of the present invention.

回分法による場合には微量の金属及び水分を含有する有
機溶媒に上記強酸性陽イオン交換樹脂を該有機溶媒に対
して、重量比で(吸着容量にもよるが〕通常14%以上
添加し、700℃以下の温度、好ましくは常温で通常3
0分以上。
In the case of a batch method, the above-mentioned strongly acidic cation exchange resin is added to an organic solvent containing trace amounts of metal and water in a weight ratio of 14% or more (depending on the adsorption capacity), Normally 3 at a temperature of 700°C or less, preferably at room temperature
More than 0 minutes.

好ましくは一時間以上攪拌して行なう。Preferably, stirring is carried out for one hour or more.

また、連続法による場合には、上記強酸性陽イオン交換
樹脂を充填した充填層に、微量の金属及び水分を含有す
る有機溶媒を上向流または下向流で通過させて行なう。
Further, in the case of a continuous method, an organic solvent containing trace amounts of metal and water is passed through a packed bed filled with the above-mentioned strongly acidic cation exchange resin in an upward flow or a downward flow.

該有機溶媒の通過条件は、通常、通過液温度なioo℃
以下、好ましくは常温で、線速度なO03〜/、 Or
IL/ hrで、かつ、空塔速度を該イオン交換樹脂を
吸着帯の長さ以上の充填層高に保った状態で、通常コ、
Ohr”以下の範囲で行なう。
The passing conditions for the organic solvent are usually such that the temperature of the passing liquid is ioo°C.
Hereinafter, preferably at room temperature, the linear velocity O03~/, Or
IL/hr and with the superficial velocity of the ion exchange resin maintained at a packed bed height equal to or greater than the length of the adsorption zone, usually
This is done within the range of ``Ohr'' or less.

f、iie、lj法“″微量0941着t、&lHe 
    $強酸性陽イオン交換樹脂はそれを塩酸水溶液
と接触させることによシ、該強酸性陽イオン交換樹脂か
ら金属、例えば鉄を塩化鉄の形態で脱着させて容易に再
生することができる。また、再生した水で湿潤された該
強酸性陽イオン交換樹脂の乾燥は、前記した乾燥法によ
って容品に乾燥して該強酸性陽イオン交換樹脂を再生す
ることができ1%に水と共沸混合物を形成する共沸剤、
例えばキシレン、トルエン等の芳香族炭化水素、  /
、コージクロルエタン等のハロゲン化炭化水素の共存下
に共沸蒸留して乾燥する方法が工業的に実施する方法と
して有利である。
f, iie, lj method "" trace amount 0941 t, &lHe
Strongly acidic cation exchange resins can be easily regenerated by desorbing metals, such as iron, in the form of iron chloride from the strongly acidic cation exchange resins by contacting them with aqueous hydrochloric acid. In addition, the strongly acidic cation exchange resin moistened with the regenerated water can be dried into a container by the drying method described above to regenerate the strongly acidic cation exchange resin. an azeotrope forming a boiling mixture;
For example, aromatic hydrocarbons such as xylene and toluene, /
A method of drying by azeotropic distillation in the coexistence of a halogenated hydrocarbon such as Kodichloroethane is advantageous as a method to be carried out industrially.

〔実施例〕〔Example〕

次に実施例により本発明を更に詳細に説明するが、本発
明はその要旨を越えない限シ以下の実施例によって限定
されるものではない。
Next, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to the following Examples unless the gist thereof is exceeded.

実施例1 に乾燥した含水率Q、/重童チ以下のポーラス型強酸性
陽イオン交換樹脂(三菱化成工業@4製、商品名ダイヤ
イオンPK−コ/AH型)を4rnl充填し、上部よシ
水分/ 00 ppm及び鉄分u、2ppmを含有する
粗l、コージクロルエタンをコよ℃でへ011117分
の速度で滴下し、該イオン交換樹脂層出口のl、−一ジ
クロルエタン液の一部+カールフィッシャー用水分計に
直結し、一定時間毎にH,O9度を測定すると同時に一
部につき原子吸光法によってFe #度を測定した。
Example 1 4rnl of a porous strongly acidic cation exchange resin (manufactured by Mitsubishi Chemical Corporation @ 4, trade name: Diaion PK-Co/AH type) with a moisture content of Q, /Jidochi or less was filled into a flask, and the mixture was poured from the top. Crude dichloroethane containing 0.00 ppm of water and 2 ppm of iron was added dropwise at a rate of 0.11117 min to the ion exchange resin layer, and a portion of the dichloroethane solution at the outlet of the ion exchange resin layer was added. It was directly connected to a Karl Fischer moisture meter, and the H and O degrees were measured at regular intervals, and at the same time, the Fe # degree was also measured in part by atomic absorption spectrometry.

H,Oに関しては破過点をJ wtppm、 Fsに関
しては0./ wtppmを破過点として、計算すると
水分の吸着量は約IAダター&い(ry Re5inで
あシ、鉄の吸着量は/、 0 / my −Fe/Ji
’−fflry Re5inであった。
For H and O, the breakthrough point is J wtppm, and for Fs, it is 0. /wtppm as the breakthrough point, the amount of moisture adsorption is approximately IA data & I (ry Re5in), and the adsorption amount of iron is /, 0 / my -Fe/Ji
'-fflry Re5in.

実施例コ 樹脂をハイボー2ス型強酸性陽イオン交換樹脂(三菱化
成工業■製、商品名ダイヤイオンHPK−&、tH型)
にかえた以外は全て実施例1と同条件で処理を行なった
。その結果、水分の吸着量は約ダコ〜ダダ■−He O
/I!−dry Resinであシ、鉄の吸着量はざ、
りi my −Fe/Jil−dryResinであっ
た。
The example resin was a Hibo 2S type strong acidic cation exchange resin (manufactured by Mitsubishi Chemical Corporation, trade name: Diaion HPK-&, tH type).
The treatment was carried out under the same conditions as in Example 1, except that the conditions were changed. As a result, the amount of moisture adsorbed is approximately 10 to 10 - He O
/I! -With dry resin, the adsorption amount of iron is
The material was my-Fe/Jil-dryResin.

比較例! 樹脂をゲル型強酸性陽イオン交換樹脂(三菱化成工業■
製、ダイヤイオン5x−1BNa型)にかえた以外は全
て実施例/と同条件で処理を行なった。結果は常温で水
分の吸着量は約コ5〜Q 4tm9LO/hry Re
Blmであり、鉄は初期通液直後から吸着能は全くなか
った。
Comparative example! Gel-type strongly acidic cation exchange resin (Mitsubishi Chemical Corporation)
All treatments were carried out under the same conditions as in Example 1, except that the treatment was changed to a Diaion 5x-1BNa type (manufactured by Diaion Co., Ltd.). The result is that the amount of moisture adsorbed at room temperature is approximately 5~Q 4tm9LO/hry Re
Blm, and there was no adsorption ability for iron at all immediately after the initial liquid flow.

実施例3 実施例、2VCおいて被処理溶剤をl、コージクロルエ
タンのかわシに水分/ 4 Q pp、及び鉄分!、O
ppmを含有するイソブチルアルコールに&えたこと以
外は実施例コと同様の条件で処理を行なった。その結果
、agoの吸着量Fi、7.7■−Ha O/I ar
y Re5in b鉄の吸着量は/、、 g m9− 
F e/1−dry Re5inであった。
Example 3 In Example, 2 VC, 1 of the solvent to be treated, 1 of Kodichloroethane, water/4 Q pp, and iron! , O
The treatment was carried out under the same conditions as in Example 1, except that isobutyl alcohol containing ppm was used. As a result, the adsorption amount Fi of ago is 7.7■-Ha O/I ar
y Re5in b Adsorption amount of iron is /,, g m9-
It was Fe/1-dry Re5in.

〔発明の効果〕〔Effect of the invention〕

本発明方法によれば、微量の水分及び金属、例えば鉄を
含有する有機溶媒を特定の多孔性のイオン交換樹脂と接
触させることによって容易に微量の金属及び水分を同時
に分離除去することができる。
According to the method of the present invention, trace amounts of metal and water can be easily separated and removed at the same time by bringing an organic solvent containing trace amounts of water and metals, such as iron, into contact with a specific porous ion exchange resin.

Claims (1)

【特許請求の範囲】[Claims] (1)微量の金属及び水分を含有する有機溶剤を乾燥し
た、スルホン酸基を有する多孔性の強酸性陽イオン交換
樹脂と接触させて金属及び水分を同時に除去することを
特徴とする有機溶剤の精製法。
(1) An organic solvent that simultaneously removes metals and water by contacting an organic solvent containing trace amounts of metal and water with a dry porous strongly acidic cation exchange resin having sulfonic acid groups. Purification method.
JP1132485A 1985-01-24 1985-01-24 Purification of organic solvent Pending JPS61171507A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1132485A JPS61171507A (en) 1985-01-24 1985-01-24 Purification of organic solvent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1132485A JPS61171507A (en) 1985-01-24 1985-01-24 Purification of organic solvent

Publications (1)

Publication Number Publication Date
JPS61171507A true JPS61171507A (en) 1986-08-02

Family

ID=11774843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1132485A Pending JPS61171507A (en) 1985-01-24 1985-01-24 Purification of organic solvent

Country Status (1)

Country Link
JP (1) JPS61171507A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09286748A (en) * 1996-04-19 1997-11-04 Dalian Chem Ind Co Ltd Dehydropurification of aqueous alcohol solution
EP0878454A1 (en) * 1997-05-15 1998-11-18 Elf Atochem S.A. Process for purifying quasi-anhydrous organic liquids
JP2013188701A (en) * 2012-03-14 2013-09-26 Toyobo Co Ltd Organic solvent dehydration device
CN103402596A (en) * 2011-02-21 2013-11-20 东洋纺株式会社 Organic solvent dehydrating device
JP2021001124A (en) * 2019-06-20 2021-01-07 オルガノ株式会社 Non-aqueous solvent purifying method
WO2022209233A1 (en) * 2021-03-31 2022-10-06 オルガノ株式会社 Dry ion exchange resin manufacturing method and manufacturing device, and treated liquid purifying method and purifying device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09286748A (en) * 1996-04-19 1997-11-04 Dalian Chem Ind Co Ltd Dehydropurification of aqueous alcohol solution
EP0878454A1 (en) * 1997-05-15 1998-11-18 Elf Atochem S.A. Process for purifying quasi-anhydrous organic liquids
FR2763330A1 (en) * 1997-05-15 1998-11-20 Atochem Elf Sa PROCESS FOR THE PURIFICATION OF QUASI ANHYDROUS ORGANIC LIQUIDS
US6123850A (en) * 1997-05-15 2000-09-26 Elf Atochem Process for the purification of virtually anhydrous organic liquids
CN103402596A (en) * 2011-02-21 2013-11-20 东洋纺株式会社 Organic solvent dehydrating device
CN103402596B (en) * 2011-02-21 2015-07-29 东洋纺株式会社 Dehydration of organic solvent device
JP2013188701A (en) * 2012-03-14 2013-09-26 Toyobo Co Ltd Organic solvent dehydration device
JP2021001124A (en) * 2019-06-20 2021-01-07 オルガノ株式会社 Non-aqueous solvent purifying method
WO2022209233A1 (en) * 2021-03-31 2022-10-06 オルガノ株式会社 Dry ion exchange resin manufacturing method and manufacturing device, and treated liquid purifying method and purifying device

Similar Documents

Publication Publication Date Title
US4917711A (en) Adsorbents for use in the separation of carbon monoxide and/or unsaturated hydrocarbons from mixed gases
US4874525A (en) Purification of fluid streams containing mercury
EP0196173B1 (en) Removal of iodide compounds from non-aqueous organic media
JPS61263642A (en) Regeneration of adsorbent
JPS62191021A (en) Drying method using chabazite type adsorbent
US3208157A (en) Regeneration of adsorbents
GB1057411A (en) Modified zeolitic molecular sieves, their production and use
JPH01201019A (en) Purification of silane
JPS61171507A (en) Purification of organic solvent
US3000988A (en) Purification of gas
US3438892A (en) Drying fluids with regenerable sulfonate cation-exchange resins
US5766565A (en) Purification of hydrochloric acid
US2582415A (en) Adsorption process for the separation of hydrocarbons
US3275549A (en) Desiccant regeneration
JPH11139805A (en) Composition and method for removing water content from hydrogen halide
JPS6128449A (en) Adsorbent for olefin and method of selectively removing olefin by using said adsorber
CA1187110A (en) Separation of isopropyl alcohol from tba (tebol) by selective adsorption
JPS60106532A (en) Regeneration of adsorbent for boron trichloride
US2920941A (en) Method of selectively separating hydrofluoric acid from its solution with other hydrohalogenic acids
US3598546A (en) Preparing anhydrous hydrazine using an activated aluminum oxide drying agent
US2472912A (en) Method of drying alcohols
JPS6126417B2 (en)
US2892686A (en) Conversion of hydrogen iodide to iodine
US2172025A (en) Manufacture ofethylene oxide
US3315441A (en) Process for separating ammonia from methyl chloride