JPS6117127B2 - - Google Patents

Info

Publication number
JPS6117127B2
JPS6117127B2 JP57157052A JP15705282A JPS6117127B2 JP S6117127 B2 JPS6117127 B2 JP S6117127B2 JP 57157052 A JP57157052 A JP 57157052A JP 15705282 A JP15705282 A JP 15705282A JP S6117127 B2 JPS6117127 B2 JP S6117127B2
Authority
JP
Japan
Prior art keywords
iron loss
transformer
loss
range
rolling direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57157052A
Other languages
Japanese (ja)
Other versions
JPS5946009A (en
Inventor
Hiroshi Shimanaka
Isao Ito
Bunjiro Fukuda
Keiji Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP57157052A priority Critical patent/JPS5946009A/en
Publication of JPS5946009A publication Critical patent/JPS5946009A/en
Publication of JPS6117127B2 publication Critical patent/JPS6117127B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は鉄損の低い積変圧器に関するもので
ある。 周知のように変圧器は主に方向性電磁鋼板を鉄
心に用いているが、その鉄心の構成によつて積変
圧器と巻変圧器とに大別される。すなわち積変圧
器は所望の形状に切断された鋼板を積層すること
によつて鉄心が形成されたものであるのに対し、
巻変圧器は所望の幅にスリツトされた鋼帯を型枠
等に巻付けることにより鉄心が形成されたもので
あり、大容量用の変圧器としては専ら積変圧器が
使用されている。 ところで変圧器に要求される重要な特性として
は変圧器鉄損があげられる。変圧器鉄損とは変圧
器鉄心が励磁された時に生じるエネルギー損失で
あり、これが大きければ電力損失が大きくなるか
ら、変圧器鉄損を可及的に小さくすることが強く
要求されている。 変圧器鉄損を小さくするためには、鉄心の素材
となる鋼板の鉄損を小さくすれば良いと考えられ
る。しかるに巻変圧器においては素材鉄損と変圧
器鉄損とがほぼ一対一で対応するから、素材鉄損
を小さくすることによつて変圧器鉄損を小さくす
ることができるが、積変圧器においては素材鉄損
と変圧器鉄損とが一定の対応関係とならず、した
がつて素材鉄損が小さいからといつて必ずしも変
圧器鉄損が小さいとは限らないのが実情である。
その理由は、素材鉄損の測定法(JIS−C−
2550)では磁束は正弦波状態であり、その方向も
ほぼ圧延方向であるのに対し、巻変圧器ではほぼ
素材鉄損測定時と同様な磁束状態にあるものの、
積変圧器では磁束が回転したり歪んだり、また圧
延方向以外にも流れたりして、磁束状態が素材鉄
損測定時と異なつてしまうためと言われている。
変圧器鉄損と素材鉄損との比はビルデイングフア
クタあるいはデイストラクシヨンフアクタと称さ
れており、その値は巻変圧器ではどのような素材
でもほぼ1であるのに対し、積変圧器では同じ型
でも素材により1.1〜1.5程度の範囲で変化し、前
述の如く素材鉄損が小さいからといつて必ずしも
変圧器鉄損が小さいとは限らない。しかるに従来
は、変圧器鉄損に関係する素材の特性としては素
材鉄損以外は認識されておらず、したがつて変圧
器鉄損を小さくするための素材特性の指標として
は不満足ながらも素材鉄損を用いざるを得ず、そ
のためややもすれば過剰に高品質の電磁鋼板を用
いていたずらに高コスト化を招いたり、またその
ように高品質の電磁鋼板を用いても確実に変圧器
鉄損を小さくし得ないこともある等の問題があつ
た。 この発明は以上の事情に鑑みてなされたもの
で、確実に変圧器鉄損を小さくした積変圧器を提
供することを目的とするものである。 本発明者等は上述の目的を達成するべく鋭意実
験・研究を重ねたところ、積変圧器においては電
磁鋼板の1.7テスラ(以下Tと記す)における圧
延方向に直角な方向の透磁率μCと圧延方向の透
磁率μLとの比μC/μLの値が変圧器鉄損に関係
し、その値が3×10-3〜11×10-3の範囲内にある
場合に変圧器鉄損が最小となることを見出し、こ
の発明をなすに至つたのである。 したがつてこの発明の積変圧器は、前記比μ
C/μLの値が3×10-3〜11×10-11の範囲内にあ
る方向性電磁鋼板を使用したことを特徴とするも
のである。 以下この発明をさらに詳細に説明する。 先ずこの発明をなすに至つた知見について説明
すると、本発明者等は種々の方向性電磁鋼板を用
いて種々の積変圧器を製作して、変圧器鉄損を測
定し、かつ素材の各方向性電磁鋼板の各種磁気特
性との関係を調べたところ、第1図に示すように
変圧器鉄損と素材鉄損との比、すなわち所謂ビル
デイングフイクタは、素材鋼板の1.7Tにおける
圧延方向に直角な方向の透磁率μCと圧延方向の
透磁率μLとの比μC/μLと相関関係があること
を新規に見出した。すなわちビルデイングフアク
タはμC/μLが小さくなるほど増加する。この理
由は充分には解明されていないが、積変圧器にお
いては鋼板の圧延方向以外にも磁束が流れるのを
避け得ず、そのためμC/μLの値が小さければ磁
束の曲がり等が生じて歪波磁束等が生じ、ビルデ
イングフアクタが大きくなるものと考えられる。 さらに本発明者等は上記実験に基いて素材鋼板
の1.7TにおけるμC/μLと変圧器鉄損との関係
を調べたところ、第2図に示すようにμC/μL
3×10-3〜11×10-3の範囲内にある場合に変圧器
鉄損が最小となり、その範囲を越えた場合および
その範囲に至らない場合のいずれにおいても変圧
器鉄損が大きくなることを新規に知見したのであ
る。このようにμC/μLが特定の範囲で変圧器鉄
損が最小値を持つ理由は、次のように考えられ
る。すなわち、一般に素材の鉄損は圧延方向の鉄
損であるから、μC/μLが小さくなれば素材鉄損
の値は小さくなるが、前述のようにμC/μLが小
さくなればビルデイングフアクタが増加し、一方
μC/μLが大きくなれば素材鉄損の値は大きくな
るがビルデイングフアクタが減少し、これらの相
反する2種の関係からμC/μLに対しそのある範
囲内で変圧器鉄損が最小値を持つものと考えられ
る。 以上のような関係は、単相または三相、内鉄型
または外鉄型等の変圧器の型式や、鋼板の積層方
法等によらず積変圧器の場合には常に成立し、し
たがつてμC/μLが3×10-3〜11〜10-3の方向性
電磁鋼板を用いることによつて、積変圧器の変圧
器鉄損を確実に最少値とし得ることが判明したの
である。 以下この発明の実施例を記す。 実施例 1.7TにおけるμC/μLの値の異なる7種の方
向性電磁鋼板を用いて、それぞれ三相三脚積変圧
器を作成した。各素材鋼板の鉄損W17/50(磁束
密度1.7T、周波数50Hzで磁化した場合の鉄損)
と、変圧器鉄損W17/50とを調べた結果第1表に
示す結果が得られた。
This invention relates to a product transformer with low iron loss. As is well known, transformers mainly use grain-oriented electromagnetic steel sheets for their cores, and are broadly classified into multilayer transformers and wound transformers depending on the configuration of the core. In other words, while a laminated transformer has an iron core formed by laminating steel plates cut into a desired shape,
A winding transformer has an iron core formed by winding a steel strip slit to a desired width around a formwork or the like, and a bulk transformer is exclusively used as a large-capacity transformer. By the way, one of the important characteristics required of a transformer is transformer iron loss. Transformer iron loss is the energy loss that occurs when the transformer core is excited, and the larger this loss is, the greater the power loss, so there is a strong demand to reduce transformer iron loss as much as possible. In order to reduce transformer iron loss, it is considered that the iron loss of the steel plate that is the material of the iron core should be reduced. However, in a wound transformer, there is a nearly one-to-one correspondence between the material iron loss and the transformer iron loss, so the transformer iron loss can be reduced by reducing the material iron loss. The actual situation is that the material iron loss and the transformer iron loss do not have a fixed correspondence, and therefore, just because the material iron loss is small, it does not necessarily mean that the transformer iron loss is small.
The reason is that the material iron loss measurement method (JIS-C-
2550), the magnetic flux is in a sine wave state and its direction is almost in the rolling direction, whereas in a winding transformer, the magnetic flux state is almost the same as when measuring material iron loss.
This is said to be because in multilayer transformers, the magnetic flux rotates, is distorted, and flows in directions other than the rolling direction, causing the magnetic flux state to be different from that when measuring material iron loss.
The ratio of transformer iron loss to material iron loss is called the building factor or destruction factor, and its value is approximately 1 for any material in a wound transformer, whereas in a product transformer Even for the same type, the difference varies in the range of 1.1 to 1.5 depending on the material, and as mentioned above, just because the material iron loss is small, it does not necessarily mean that the transformer iron loss is small. However, in the past, material properties other than material iron loss have not been recognized as properties related to transformer iron loss, and therefore material iron loss, although unsatisfactory, has not been recognized as an indicator of material properties for reducing transformer iron loss. Therefore, it is possible to unnecessarily increase costs by using excessively high-quality electrical steel sheets, and even if such high-quality electrical steel sheets are used, it is difficult to ensure that the transformer iron loss is reduced. There were some problems, such as things that could not be done. This invention was made in view of the above circumstances, and an object of the invention is to provide a multilayer transformer in which transformer iron loss is reliably reduced. The present inventors conducted extensive experiments and research to achieve the above-mentioned purpose, and found that in a multilayer transformer, the magnetic permeability μ C of an electrical steel sheet in the direction perpendicular to the rolling direction at 1.7 Tesla (hereinafter referred to as T) The value of the ratio μ CL to the magnetic permeability μ L in the rolling direction is related to the transformer iron loss, and if the value is within the range of 3 × 10 -3 to 11 × 10 -3 , the transformer iron loss He discovered that the loss could be minimized and came up with this invention. Therefore, the product transformer of the present invention has the ratio μ
The present invention is characterized in that a grain-oriented electrical steel sheet having a C / μL value within the range of 3×10 −3 to 11×10 −11 is used. This invention will be explained in more detail below. First, to explain the findings that led to this invention, the present inventors manufactured various laminated transformers using various grain-oriented electrical steel sheets, measured the transformer iron loss, and measured the core loss in each direction of the material. As shown in Figure 1, the ratio of the transformer iron loss to the material iron loss, that is, the so-called building factor, is It was newly discovered that there is a correlation with the ratio μ CL of magnetic permeability μ C in the perpendicular direction and magnetic permeability μ L in the rolling direction. That is, the building factor increases as μ CL becomes smaller. The reason for this is not fully understood, but in a multilayer transformer, it is unavoidable that magnetic flux flows in directions other than the rolling direction of the steel plate, and therefore, if the value of μ C / μ L is small, bending of the magnetic flux will occur. It is thought that this causes distortion wave magnetic flux, etc., and increases the building factor. Furthermore, based on the above experiment, the present inventors investigated the relationship between μ CL and transformer iron loss at 1.7T of the material steel plate, and found that μ CL is 3 × The transformer iron loss is minimum when it is within the range of 10 -3 to 11 × 10 -3 , and the transformer iron loss increases both when it exceeds that range and when it does not reach that range. This was a new discovery. The reason why the transformer iron loss has a minimum value within a certain range of μ CL is considered as follows. In other words, the iron loss of the material is generally the iron loss in the rolling direction, so the smaller μ CL , the smaller the material iron loss, but as mentioned earlier, if μ C / μ L becomes smaller, the As the factor increases and μ CL increases, the value of material iron loss increases, but the building factor decreases, and from these two contradictory relationships, there is a certain value for μ C / μ L. It is considered that the transformer iron loss has a minimum value within this range. The above relationship always holds true in the case of multilayer transformers, regardless of the type of transformer (single-phase or three-phase, internal iron type or external iron type), the method of laminating steel plates, etc. It has been found that by using grain-oriented electrical steel sheets with μ C / μ L of 3×10 -3 to 11 to 10 -3 , the transformer core loss of multilayer transformers can be reliably minimized. . Examples of this invention will be described below. Example Three-phase three-legged volume transformers were made using seven types of grain-oriented electrical steel sheets having different values of μ CL at 1.7T. Iron loss W of each material steel plate 17/50 (iron loss when magnetized at magnetic flux density 1.7T and frequency 50Hz)
As a result of investigating the transformer iron loss W 17/50 , the results shown in Table 1 were obtained.

【表】 第1表から、素材鋼板1.7TにおけるμC/μL
が3×10-3〜11×10-3の範囲内にある場合に変圧
器鉄損が小さいことが明らかである。 以上の説明で明らかなようにこの発明の積変圧
器は、1.7TにおけるμC/μLが3×10-3〜11×
10-3の範囲内にある方向性電磁鋼板を使用するこ
とによつて確実かつ安定して変圧器鉄損を低減し
得たものであり、したがつて電力損失の低減や変
圧器騒音の低減等に極めて有効なものである。
[Table] From Table 1, μ C / μ L for the material steel plate 1.7T
It is clear that the transformer iron loss is small when is within the range of 3×10 -3 to 11×10 -3 . As is clear from the above explanation, the product transformer of the present invention has μ CL at 1.7 T of 3×10 -3 to 11×
By using grain-oriented electrical steel sheets within the range of 10-3 , transformer iron loss can be reliably and stably reduced, thereby reducing power loss and transformer noise. It is extremely effective for such purposes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は方向性電磁鋼板を用いた積変圧器にお
けるビルデイングフアクタと素材鋼板のμC/μL
の値との関係を示す相関図、第2図は積変圧器に
おける変圧器鉄損と素材鋼板のμC/μLの値との
関係を示す相関図である。
Figure 1 shows the building factors and μ CL of the material steel sheet in a multilayer transformer using grain-oriented electrical steel sheets.
FIG. 2 is a correlation diagram showing the relationship between the transformer iron loss in a multilayer transformer and the value of μ CL of the material steel plate.

Claims (1)

【特許請求の範囲】[Claims] 1 1.7テスラの磁束密度における圧延方向に直
角な方向の透磁率μCと圧延方向の透磁率μLと
の比μC/μLの値が3×10-3〜11×10-3の範囲内
にある方向性電磁鋼板を用いたことを特徴とする
鉄損の低い積変圧器。
1 The value of μ CL , the ratio of magnetic permeability μC in the direction perpendicular to the rolling direction to magnetic permeability μL in the rolling direction at a magnetic flux density of 1.7 Tesla, is within the range of 3×10 -3 to 11×10 -3 A product transformer with low iron loss characterized by using a grain-oriented electrical steel sheet.
JP57157052A 1982-09-09 1982-09-09 Transformer of low core loss Granted JPS5946009A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57157052A JPS5946009A (en) 1982-09-09 1982-09-09 Transformer of low core loss

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57157052A JPS5946009A (en) 1982-09-09 1982-09-09 Transformer of low core loss

Publications (2)

Publication Number Publication Date
JPS5946009A JPS5946009A (en) 1984-03-15
JPS6117127B2 true JPS6117127B2 (en) 1986-05-06

Family

ID=15641143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57157052A Granted JPS5946009A (en) 1982-09-09 1982-09-09 Transformer of low core loss

Country Status (1)

Country Link
JP (1) JPS5946009A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63157988U (en) * 1987-04-03 1988-10-17
JP2564631B2 (en) * 1988-11-04 1996-12-18 富士写真フイルム 株式会社 Electronic parts and equipment
JP3086387B2 (en) * 1994-12-14 2000-09-11 川崎製鉄株式会社 Non-oriented electrical steel sheet for transformers with small leakage flux

Also Published As

Publication number Publication date
JPS5946009A (en) 1984-03-15

Similar Documents

Publication Publication Date Title
Taguchi et al. New grain-oriented silicon steel with high permeability" ORIENTCORE HI-B"
US5371486A (en) Transformer core
JP2018157142A (en) Selection method of grain-oriented electromagnetic steel sheet and manufacturing method of wound core
JP2019087619A (en) Bf estimation method of wound core
WO2021166314A1 (en) Stationary induction apparatus and transformer
US2992951A (en) Iron-silicon magnetic sheets
JP4092791B2 (en) Low loss and low noise iron core and manufacturing method thereof
JP5256594B2 (en) Iron core transformer and method for manufacturing the same
JP3243099B2 (en) Manufacturing method of laminated electromagnetic steel sheet
JPS6117127B2 (en)
JPH06251966A (en) Three-phase laminated iron core transformer of low iron loss
KR100283302B1 (en) Non-oriented electromagnetic steel sheet for small transformer with small leakage flux and iron core and small transformer for small transformer using the same
US2892169A (en) Transformer core structures
JPH04116809A (en) Iron core of transformer
JP3869768B2 (en) Transformer
JPH04361508A (en) Low noise laminated core and wound core using extra high silicon electromagnetic steel
JPH03268311A (en) Iron core of transformer
CN209626001U (en) Loop product core construction
Valkovic Effect of electrical steel grade on transformer core audible noise
Lin et al. A desirable material for transformer cores
WO2023007953A1 (en) Wound core and wound core manufacturing method
Abe et al. Magnetic properties and domain structures in primary recrystallized thin-gauge Si-Fe with orientation near [110][001]
JPS63293906A (en) Magnetic band-shaped conductor
JP4258853B2 (en) Low iron loss and low noise core
JPH04250604A (en) Transformer core