JPS61170025A - Formation of diffusion layer - Google Patents

Formation of diffusion layer

Info

Publication number
JPS61170025A
JPS61170025A JP1012685A JP1012685A JPS61170025A JP S61170025 A JPS61170025 A JP S61170025A JP 1012685 A JP1012685 A JP 1012685A JP 1012685 A JP1012685 A JP 1012685A JP S61170025 A JPS61170025 A JP S61170025A
Authority
JP
Japan
Prior art keywords
impurity
temperature
diffusion
semiconductor substrate
diffusion layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1012685A
Other languages
Japanese (ja)
Inventor
Hiroshi Hayama
浩 葉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1012685A priority Critical patent/JPS61170025A/en
Publication of JPS61170025A publication Critical patent/JPS61170025A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation

Landscapes

  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To form the diffusion layer having a uniform impurity distribution by diffusing the impurity under the condition that the temperature of a plane of a semiconductor substrate is preset at such degree that a diffusion of the impurity does not progress. CONSTITUTION:The temperature of a plane of a semiconductor substrate on the side where an impurity is introduced is preset at such temperature that a diffusion of the impurity progresses and that of the side where the impurity is not introduced is preset at such temperature that the diffusion of impurity does not progress. Under these conditions, namely the conditions that a temperature gradient is produced in the semiconductor substrate or equivalently a temperature gradient is produced in the semiconductor substrate, the impurity is diffused. It becomes possible to form the diffusion layer having the depth which does not depend on a diffusing time, but is determined by a distribution of temperature primarily at low cost for manufacture. As a result, a depth of a diffusion well in the CMOS process can be made shallow, for example.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は半導体素子の製造時等に利用される拡散層の形
成方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for forming a diffusion layer used in the manufacture of semiconductor devices.

(従来技術とその問題点) 半導体素子の製造時等には、半導体基板に拡散層全形成
することが重要な工程として含まれることが多い。従来
、拡散層を形成する方法としては、(1)  不純物を
イオン注入して、基板表面に導入し、それら全押込み拡
散する方法や (2)基板上に、不純物を含んだエピタキシャル層を堆
積させる方法。
(Prior Art and its Problems) During the manufacture of semiconductor devices, forming a complete diffusion layer on a semiconductor substrate is often included as an important step. Conventionally, methods for forming a diffusion layer include (1) ion implantation of impurities, introducing them into the substrate surface, and then fully diffusing them; and (2) depositing an epitaxial layer containing impurities on the substrate. Method.

等が知られている口 これらの方法のうち、前記(11の方法では、不純物を
導入した基板は、均一な一定温度の電気炉中で押込み拡
散される。基板中の不純物分布は、同相拡散によシ決定
される。例えば、p形基板にn形不純物を拡散させる場
合には、イオン注入によシ導入した不純物の総址と、電
気炉の温度と拡散時間とで決tb、一般には第2図の不
純物分布図に示されるようにガウス分布、もしくはコン
プリメンタリ−エラー関数分布となることが知られてい
る。
Among these methods, the impurity-introduced substrate is injected and diffused in an electric furnace at a uniform constant temperature.The impurity distribution in the substrate is determined by in-phase diffusion. For example, when diffusing n-type impurities into a p-type substrate, it is determined by the total amount of impurities introduced by ion implantation, the temperature of the electric furnace, and the diffusion time. As shown in the impurity distribution diagram of FIG. 2, it is known that a Gaussian distribution or a complementary error function distribution occurs.

しかしながら、半導体素子の製造時には、拡散層中の不
純物濃度が一定の拡散層が望ましい場合が多い。例えば
、P形基板KN形拡散ウェルを形成してCMOSを製造
する場合を考える。この場合、N形拡散つェル中にPM
OSトランジスタが形成される。第2図に示したような
不純物分布を有するN形拡散ウェルでは、ウェル表面の
N形不純物濃度が高く、基板内はどN形不純物濃度が低
くなっている。そのため、N形拡散つェル中のPMO8
)ランジスタについて考えた場合、P形基板とN形拡散
ウェルとの界面からの空乏層が拡が9やすいから、P形
基板とPMO8) 、’ンジスタがパンチスルーしやす
いという欠点や、弐面濃度が高くなるためPMO8)ラ
ンジスタの閾値電圧が制御しにくい等の欠点がある。
However, when manufacturing semiconductor devices, it is often desirable to have a diffusion layer in which the impurity concentration in the diffusion layer is constant. For example, consider the case where a CMOS is manufactured by forming a KN type diffusion well on a P type substrate. In this case, PM in the N-type diffusion well
An OS transistor is formed. In an N-type diffusion well having an impurity distribution as shown in FIG. 2, the N-type impurity concentration on the well surface is high, and the N-type impurity concentration inside the substrate is low. Therefore, PMO8 in the N-type diffusion well
) When considering transistors, the depletion layer from the interface between the P-type substrate and the N-type diffusion well easily expands, so the P-type substrate and PMO8) have the disadvantage that the resistor easily punches through, and the concentration on the other side is Since the PMO8) transistor threshold voltage becomes high, there are drawbacks such as difficulty in controlling the threshold voltage of the transistor.

これらの欠点を克服する手段として、前記(2)の方法
が用いられる0この方法では前記(11の方法に比較し
て、均一濃度の拡散層を形成することが可能である。し
かしながら、エピタキシャル成長工程は、半導体素子製
造工程において、製造コストが高い工程であることが知
られている。また1例えば、CMOS工程を考えると、
素子の分離のため、エピタキシャル層を貫通させて基板
と同じ極性の拡散層を形成することも必要となる。この
ように、前記(2)の方法においてもいくつかの欠点が
ある。
As a means of overcoming these drawbacks, method (2) is used. This method makes it possible to form a diffusion layer with a uniform concentration compared to method (11). However, the epitaxial growth process It is known that manufacturing costs are high in the semiconductor device manufacturing process.For example, considering the CMOS process,
In order to separate the elements, it is also necessary to form a diffusion layer having the same polarity as the substrate by penetrating the epitaxial layer. As described above, the method (2) also has some drawbacks.

(発明の目的) 本発明は、前記の拡散層の形成方法の持つ欠点を克服し
、安価な製造コストで、簡単に均一な不純物分布を有す
る拡散層を形成する方法を提供することを目的とする〇 (発明の構成) 本発明による拡散層の形成方法では 1、半導体基板上に不純物を導入し、該不純物を導入し
た側の半導体基板面の温度を、該不純物の拡散が進行す
る温度に設定し、該不純物を導入しなかった側の半導体
基板面の温度を、該不純物の拡散が進行しない温度に設
定した状態で、該不純物を拡散させること、又は。
(Objective of the Invention) An object of the present invention is to overcome the drawbacks of the above-described method for forming a diffusion layer, and to provide a method for easily forming a diffusion layer having a uniform impurity distribution at a low manufacturing cost. Yes (Structure of the Invention) In the method for forming a diffusion layer according to the present invention, 1. an impurity is introduced onto a semiconductor substrate, and the temperature of the surface of the semiconductor substrate on the side where the impurity is introduced is set to a temperature at which diffusion of the impurity progresses. and diffusing the impurity while the temperature of the surface of the semiconductor substrate on the side where the impurity is not introduced is set to a temperature at which diffusion of the impurity does not proceed.

2、半導体基板上に不純物を導入し、パルス状のレーザ
ー光、ランプ光、電子ビーム等のエネルギー束を用いて
、該不純物を導入した側の半導体基板面の温度を、該不
純物の拡散が進行する温度に等制約に設定し、該不純物
を導入しなかった側の半導体基板面の温度を該不純物の
拡散が進行しない温度に1等価的に設定した状態で該不
純物を拡散させることから構成される。
2. An impurity is introduced onto a semiconductor substrate, and the temperature of the semiconductor substrate surface on the side where the impurity is introduced is controlled by using energy flux such as pulsed laser light, lamp light, or electron beam, and the diffusion of the impurity progresses. The impurity is diffused while the temperature of the semiconductor substrate surface on the side where the impurity is not introduced is equivalently set to a temperature at which diffusion of the impurity does not proceed. Ru.

(本発明の原理) 本発明は、従来性なわれてきた、均一温度電気炉中での
拡散を行なわず、半導体基板中に温度勾配をつけた状態
、又は1等価的に半導体基板が温度勾配を有するような
状態で不純物の拡散を行なうことを特徴とする。インタ
ーナショナル・エレクトロン・デバイス・ミーティング
(Interna−1ional  Electron
 Device Meeting)テクニカルダイジェ
ストs  1981年、66頁に、リー等(J、 Y、
 M、 Lee、 Re H,Brown、 R,Do
 Btchells。
(Principle of the present invention) The present invention does not perform diffusion in a uniform-temperature electric furnace, as has conventionally been done, but instead creates a semiconductor substrate with a temperature gradient, or equivalently, a semiconductor substrate with a temperature gradient. It is characterized in that the impurity is diffused in such a state that . International Electron Device Meeting
Device Meeting) Technical Digests 1981, p. 66, Lee et al.
M, Lee, Re H, Brown, R, Do
Btchels.

J* Grinberg、 Go Re Nudd、 
and Pa As Nygaard)によるアルミニ
ウムの熱マイグレーシヨンを利用した配線技術について
の報告がある。これは1本発明の構成に類似して、半導
体基板に温度勾配をつけて処理するものである。しかし
、り一等の報告は、その物理現象が金属の熱マイグレー
シヨンに起因していること、半導体基板を貫通する配線
層を形成することt−特徴としている。一方、本発明は
固体甲の不純物の拡散現象を利用し、半導体素子の拡散
層を形成することを特徴としている。
J* Grinberg, Go Re Nudd,
and Pa As Nygaard) have reported on wiring technology using thermal migration of aluminum. This is similar to the configuration of the present invention, in which a semiconductor substrate is processed with a temperature gradient applied thereto. However, Ri et al.'s report states that the physical phenomenon is caused by thermal migration of metal, and that it is characterized by the formation of a wiring layer that penetrates the semiconductor substrate. On the other hand, the present invention is characterized in that a diffusion layer of a semiconductor element is formed by utilizing the diffusion phenomenon of impurities in a solid shell.

これらの点で1本発明はり一等の報告とは原理が異なっ
ている。
In these respects, the principle of the present invention differs from that reported by the author.

本発明は不純物を導入した側の半導体基板面を、不純物
の拡散が進行するような温度に設定し、不純物を導入し
なかった側の半導体基板面を、不純物の拡散が進行しな
いような温度に設定した状態。
In the present invention, the semiconductor substrate surface on the side into which impurities are introduced is set at a temperature that allows impurity diffusion to proceed, and the semiconductor substrate surface on the side where impurities are not introduced is set at a temperature at which impurity diffusion does not proceed. The set state.

つまシ、半導体基板内で前記のような温度勾配が生じる
状態において、または1等価的に、半導体基板内で前記
のような温度勾配が生じる状態において不純物の拡散を
行なう。第1図にその例を示す。第1図(、)は、P形
基板にN形不純物をイオン注入により導入した図で、本
発明による拡散層を形成する前の状態である。第1図(
blは、本発明によシ拡散層を形成した後の状Bを示し
、第1図(dは、本発明を実施するだめの一例となる半
導体基板の厚さ方向の温度分布を示している。半導体素
子の製造に利用している。リン、ヒ素、ボロン等の不純
物は温度が800℃程度ならば、買時間程度の拡散を行
なりてもほとんど不純物は移動しない。
In other words, the impurity is diffused in a state where the above-described temperature gradient occurs within the semiconductor substrate, or equivalently, in a state where the above-described temperature gradient occurs within the semiconductor substrate. An example is shown in FIG. FIG. 1(,) is a diagram in which N-type impurities are introduced into a P-type substrate by ion implantation, before the diffusion layer according to the present invention is formed. Figure 1 (
bl shows the state B after forming the diffusion layer according to the present invention, and FIG. It is used in the manufacture of semiconductor devices.If the temperature of impurities such as phosphorus, arsenic, and boron is about 800°C, almost no impurities will be moved even if diffusion is performed for about an hour.

そこで、第1図(C)のように基板中に温度勾配をつけ
、形成したい拡散層の深さまで不純物が拡散するのに必
要な時間よシ十分長く拡散を行なえば、拡散が進行する
温度領域内の不純物は濃度勾配がなくなるまで拡散する
@その結果拡散時間に依存せず、第1図(clの温度分
布で一義的に決まる第1図(b)のような深さに、拡散
層を自己整合的に形成することが可能である。
Therefore, as shown in Figure 1 (C), if a temperature gradient is created in the substrate and the impurity is diffused for a long enough time to diffuse to the depth of the desired diffusion layer, then the temperature range in which the diffusion will proceed can be improved. The impurities in the layer diffuse until the concentration gradient disappears.@As a result, the diffusion layer is not dependent on the diffusion time, and the diffusion layer is It is possible to form it in a self-aligned manner.

(実施例) 以下1本発明の実施例について述べる。第1図1c)の
様な温度勾配を静的に実現するには、半導体基板の片面
全ランプやヒーター等で加熱し、半導体基板のもう一方
の片面を冷却すれば容易に実現できる。
(Example) An example of the present invention will be described below. Static temperature gradients such as those shown in FIG. 1c) can be easily achieved by heating one side of the semiconductor substrate with a lamp or heater, etc., and cooling the other side of the semiconductor substrate.

また、等価的に第1図(clの様な温度勾配を実現する
方法としては、例えば、パルス状のレーザー光、ランプ
光、電子ビーム等のエネルギー束を使うこともできる。
Furthermore, as a method for equivalently achieving a temperature gradient as shown in FIG.

パルス状のレーザー光、ランプ光、電子ビーム等のエネ
ルギー強度、照射のくり□返し周波数を調整して、半導
体基板の片面に照射すれば、等価的に第1図(c)の温
度勾配を半導体基板につくることができる。
By adjusting the energy intensity of pulsed laser light, lamp light, electron beam, etc. and the repetition frequency of irradiation and irradiating one side of the semiconductor substrate, the temperature gradient shown in Figure 1(c) can be equivalently achieved by adjusting the energy intensity of pulsed laser light, lamp light, electron beam, etc. It can be made on a substrate.

本発明によれば、安価な製造コストで、拡散時間に依存
せず、半導体基板内の温度分布で一義的に決まる深さを
有する拡散層を形成することが可能となる。その結果1
例えばCMOSプロセスにおける拡散ウェルの深さを浅
くできる、ラッチアップ耐圧を増加させられる等の効果
を得ることができる。
According to the present invention, it is possible to form a diffusion layer having a depth that is uniquely determined by the temperature distribution within the semiconductor substrate, without depending on the diffusion time, at low manufacturing cost. Result 1
For example, the depth of a diffusion well in a CMOS process can be made shallow, the latch-up breakdown voltage can be increased, and other effects can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の原理を示す図で、第1図(alは、
本発明による拡散層の形成前の状態を示す不純物分布図
、第1図(b)は本発明によゆ拡散層を形成した後の状
態を示す不純物分布図、第1図(e)は、本発明を実施
するだめの一例となる半導体基板の厚さ方向の温度分布
を示す図である。 第2図は従来方法によシ形成した拡散層の不純物分布を
示す図である〇 寥  1  図 (bl 不話セ↑刀1【2J口からの9917条さ 〔μm〕(
c)
FIG. 1 is a diagram showing the principle of the present invention.
FIG. 1(b) is an impurity distribution diagram showing the state before the formation of the diffusion layer according to the present invention, FIG. 1(e) is an impurity distribution diagram showing the state after forming the diffusion layer according to the present invention, FIG. 3 is a diagram showing a temperature distribution in the thickness direction of a semiconductor substrate, which is an example of a device for implementing the present invention. Figure 2 is a diagram showing the impurity distribution of the diffusion layer formed by the conventional method.
c)

Claims (1)

【特許請求の範囲】 1、半導体基板上に不純物を導入し、該不純物を導入し
た側の半導体基板面の温度を、該不純物の拡散が進行す
る温度に設定し、該不純物を導入しなかった側の半導体
基板面の温度を、該不純物の拡散が進行しない温度に設
定した状態で、該不純物を拡散させることを特徴とする
拡散層の形成方法。 2、半導体基板上に不純物を導入し、パルス状のレーザ
ー光、ランプ光、電子ビーム等のエネルギー束を用いて
、該不純物を導入した側の半導体基板面の温度を、該不
純物の拡散が進行する温度に等価的に設定し、該不純物
を導入しなかった側の半導体基板面の温度を、該不純物
の拡散が進行しない温度に、等価的に設定した状態で、
該不純物を拡散させることを特徴とする拡散層の形成方
法。
[Claims] 1. An impurity is introduced onto a semiconductor substrate, the temperature of the surface of the semiconductor substrate on the side where the impurity is introduced is set to a temperature at which diffusion of the impurity progresses, and the impurity is not introduced. A method for forming a diffusion layer, comprising diffusing the impurity while the temperature of the surface of the semiconductor substrate on the side is set to a temperature at which diffusion of the impurity does not proceed. 2. An impurity is introduced onto a semiconductor substrate, and the temperature of the semiconductor substrate surface on the side where the impurity is introduced is controlled by using energy flux such as pulsed laser light, lamp light, or electron beam, and the diffusion of the impurity progresses. The temperature of the semiconductor substrate surface on the side where the impurity is not introduced is equivalently set to a temperature at which diffusion of the impurity does not proceed.
A method for forming a diffusion layer, which comprises diffusing the impurity.
JP1012685A 1985-01-23 1985-01-23 Formation of diffusion layer Pending JPS61170025A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1012685A JPS61170025A (en) 1985-01-23 1985-01-23 Formation of diffusion layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1012685A JPS61170025A (en) 1985-01-23 1985-01-23 Formation of diffusion layer

Publications (1)

Publication Number Publication Date
JPS61170025A true JPS61170025A (en) 1986-07-31

Family

ID=11741592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1012685A Pending JPS61170025A (en) 1985-01-23 1985-01-23 Formation of diffusion layer

Country Status (1)

Country Link
JP (1) JPS61170025A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003514377A (en) * 1999-11-01 2003-04-15 ジェテック インコーポレーテッド Rapid heat treatment method for substrates
JP2019079894A (en) * 2017-10-24 2019-05-23 住友重機械工業株式会社 Heat treatment apparatus and heat treatment method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003514377A (en) * 1999-11-01 2003-04-15 ジェテック インコーポレーテッド Rapid heat treatment method for substrates
JP2019079894A (en) * 2017-10-24 2019-05-23 住友重機械工業株式会社 Heat treatment apparatus and heat treatment method

Similar Documents

Publication Publication Date Title
US4505759A (en) Method for making a conductive silicon substrate by heat treatment of oxygenated and lightly doped silicon single crystals
US4063967A (en) Method of producing a doped zone of one conductivity type in a semiconductor body utilizing an ion-implanted polycrystalline dopant source
US3607449A (en) Method of forming a junction by ion implantation
JPS62501320A (en) Semiconductor with shallow hyper-doped region and its processing method using implanted impurities
JPH0511415B2 (en)
IE51992B1 (en) Method for manufacturing a semiconductor device
US3615875A (en) Method for fabricating semiconductor devices by ion implantation
KR100766254B1 (en) Method for forming of junction for solar cell
US4004950A (en) Method for improving the doping of a semiconductor material
JPS5810822A (en) Method of producing semiconductor device
GB1415500A (en) Semiconductor devices
US3773566A (en) Method for fabricating semiconductor device having semiconductor circuit element in isolated semiconductor region
US4351674A (en) Method of producing a semiconductor device
US3660171A (en) Method for producing semiconductor device utilizing ion implantation
JPS61170025A (en) Formation of diffusion layer
US4415372A (en) Method of making transistors by ion implantations, electron beam irradiation and thermal annealing
JPS6250971B2 (en)
JPS6317227B2 (en)
JPH0244717A (en) Manufacture of semiconductor device
JPS60239030A (en) Annealing method of compound semiconductor
JPS5837979B2 (en) Method for forming impurity doped regions in semiconductor substrates
JPH02144973A (en) Manufacture of thermal diffusion layer and manufacture of variable-capacity diode using the manufacturing method
JPS6122623A (en) Manufacture of semiconductor element
SU563704A1 (en) Method of manufacturing the semi-conductors
JPS60154609A (en) Manufacture of semiconductor device