JPS61170003A - Compound magnet and manufacture thereof - Google Patents

Compound magnet and manufacture thereof

Info

Publication number
JPS61170003A
JPS61170003A JP60010363A JP1036385A JPS61170003A JP S61170003 A JPS61170003 A JP S61170003A JP 60010363 A JP60010363 A JP 60010363A JP 1036385 A JP1036385 A JP 1036385A JP S61170003 A JPS61170003 A JP S61170003A
Authority
JP
Japan
Prior art keywords
coupling agent
weight
zircoaluminate
parts
ferromagnetic powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60010363A
Other languages
Japanese (ja)
Inventor
Shuichi Shiina
椎名 修一
Fumiharu Kokubu
国分 文陽
Chitoshi Hagi
萩 千敏
Shigeo Tanigawa
茂穂 谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP60010363A priority Critical patent/JPS61170003A/en
Publication of JPS61170003A publication Critical patent/JPS61170003A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/061Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder with a protective layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Polyamides (AREA)

Abstract

PURPOSE:To improve a magnetic characteristics, a mechanical intensity, a formability and a thermal resistance by adding a zircoaluminate system coupling agent. CONSTITUTION:This contains not only a ferromagnetic powder as a main component but also a zircoaluminate system coupling agent. The zircoaluminate system coupling agent is what two kinds of organic ligands are selectively bonded with a low molecular weight of zircoaluminate skelton, and an aluminium acylate part of this coupling agent is tightly bonded with a surface of the ferromagnetic powder, and a zirconium works as an effective and stable organic reaction group. Therefore, a compound magnet whose manufacturing manday and manufacturing cost are a little increased, and whose magnetic characteristics, mechanical intensity, formability and thermal resistance are improved is formed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は強磁性粉末と高分子化合物を主体とする複合磁
石およびその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a composite magnet mainly composed of ferromagnetic powder and a polymer compound, and a method for manufacturing the same.

従来技術 強磁性粉末にゴムあるいはプラスチック等の高分子化合
物を配合した複合磁石は、磁気センサー、小型モータ、
ガスケット、ブラウン管用センターリング、マグネツ1
−ロール等の種々の用途に使用されている。これは、複
合磁石の磁気特性が異方性焼結磁石よりも劣るものの、
射出成形等の一体成形技術の適用により仕上加工をほと
んど必要とせずに最終製品形状が得られること、及び軽
ωで複雑形状の製品が容易に得られることなどが理由に
挙げられる。
Conventional technology Composite magnets, which are made by blending ferromagnetic powder with polymeric compounds such as rubber or plastic, are used in magnetic sensors, small motors,
Gasket, center ring for cathode ray tube, magnet 1
-Used for various purposes such as rolls. This is because although the magnetic properties of composite magnets are inferior to anisotropic sintered magnets,
Reasons include the fact that by applying integral molding techniques such as injection molding, the final product shape can be obtained with almost no finishing processing required, and that products with light weight and complex shapes can be easily obtained.

また、複合磁石は焼結磁石よりも磁粉の充填密度が低い
ので、等方性焼結磁石と同等以上の磁気特性を得るため
に、異方性化工程を経て製造されることが多い。この異
方性化工程は、強磁性粉末と高分子化合物の混線物を磁
場中で射出成形することを含む。
Furthermore, since composite magnets have a lower packing density of magnetic powder than sintered magnets, they are often manufactured through an anisotropic process in order to obtain magnetic properties equivalent to or better than those of isotropic sintered magnets. This anisotropy step includes injection molding a mixture of ferromagnetic powder and a polymer compound in a magnetic field.

複合磁石の製造に際しては、主として磁気特性、力学的
性質、成形性、および熱安定性を改良するために、強磁
性粉末とゴムあるいはプラスチックの他にシラン系カッ
プリング剤あるいはチタネート系カップリング剤に代表
される有機金属化合物を添加することが行われ−Cいる
。例えば特公昭55−32206号公報には、フェライ
ト粉末の充填量を高めるために、フェライト粉末を有機
けい素化合物で表面処理することが開示されいる。また
特開昭59−10202号公報には、特定の可塑剤とア
ミノ基含有有機金属化合物を併用することにより顕著な
改質効果が得られることが開示されている。更に特開昭
59−93741号公報には、チタネート系カップリン
グ剤の使用が開示されている。
When manufacturing composite magnets, in addition to ferromagnetic powder and rubber or plastic, silane coupling agents or titanate coupling agents are used to improve magnetic properties, mechanical properties, formability, and thermal stability. Typical organometallic compounds are added to -C. For example, Japanese Patent Publication No. 55-32206 discloses surface-treating ferrite powder with an organosilicon compound in order to increase the amount of ferrite powder packed. Further, JP-A-59-10202 discloses that a remarkable modifying effect can be obtained by using a specific plasticizer and an amino group-containing organometallic compound in combination. Further, JP-A-59-93741 discloses the use of titanate coupling agents.

発明の解決しようとする問題点 上述したシラン系あるいはチタネート系有機金態化合物
の何れを使用するかは、磁石に要求される緒特性に依存
する。一般的には、高い機械的強度および耐熱性が要求
される場合には、シラン系有機金属化合物が、一方機械
的強度はそれほど高くないが高流動性が要求される場合
には、チタネート系り機金属化合物が使用される。
Problems to be Solved by the Invention Which of the above-mentioned silane-based or titanate-based organometallic compounds to use depends on the properties required of the magnet. In general, silane-based organometallic compounds are used when high mechanical strength and heat resistance are required, while titanate-based compounds are used when high fluidity but not so high mechanical strength is required. Machine metal compounds are used.

しかしながら、チタネート系hm金属化合物は、価格的
には、シラン系有機金属化合物よりも有利でシラン系の
40%位ではあるが、成形体が脆弱になるという問題点
がある。そしてシラン系有機金属化合物は、チタネート
系のものより価格的に不利であるほか、表面改質処理後
に100〜150℃X1hの乾燥工程を必要とするため
製造工数・コストの上昇を招くという問題がある。
However, titanate-based hm metal compounds are more advantageous than silane-based organometallic compounds in terms of price and are about 40% cheaper than silane-based organometallic compounds, but they have the problem that the molded product becomes brittle. In addition, silane-based organometallic compounds are less expensive than titanate-based compounds, and require a drying process at 100 to 150°C for 1 hour after surface modification treatment, which increases manufacturing man-hours and costs. be.

本発明の目的は、上述した従来技術の問題点を解消し、
製造工数および製造コストの増加が少なくしかも磁気特
性、機械強度、成形性および耐熱性の向上した複合磁石
を提供することである。
The purpose of the present invention is to solve the problems of the prior art described above,
It is an object of the present invention to provide a composite magnet that has improved magnetic properties, mechanical strength, formability, and heat resistance, with a small increase in manufacturing man-hours and manufacturing costs.

本発明の他の目的は、安価でかつ磁気特性、機械的強度
、成形性および耐熱性に優れた複合磁石を安定した得る
ことのできる製造工程を提供することである。
Another object of the present invention is to provide a manufacturing process that can stably produce a composite magnet that is inexpensive and has excellent magnetic properties, mechanical strength, formability, and heat resistance.

問題点を解決するための手段 本発明の複合磁石は、主成分である強磁性粉末と樹脂と
ともに、ジルコアルミネート系カップリング剤を含有し
たことを特徴とするものである。
Means for Solving the Problems The composite magnet of the present invention is characterized in that it contains a zircoaluminate coupling agent along with ferromagnetic powder and resin as main components.

また本発明の複合磁石の製造方法は、強磁性粉末と樹脂
とジルコアルミネート系カップリング剤を含む混合物を
流動化し、磁場の存在下において。
Further, in the method for manufacturing a composite magnet of the present invention, a mixture containing a ferromagnetic powder, a resin, and a zircoaluminate coupling agent is fluidized in the presence of a magnetic field.

所定の形状の成形空間内に注入し、次いで冷却・固化す
ることを特徴とするものぐある。
It is characterized by being injected into a molding space of a predetermined shape, and then being cooled and solidified.

発明の構成 本発明者等は、複合磁石の表面添加剤について種々検討
した結果、ジルコアルミネート系カップリング剤を添加
することにより磁気特性、機械的強度、成形性および耐
熱性が向上することが判明した。しかもこのカップリン
グ剤の価格は、従来のシラン系カップリング剤のそれの
約20%位であり、価格的にも極めて有利である。
Structure of the Invention As a result of various studies on surface additives for composite magnets, the present inventors have found that magnetic properties, mechanical strength, formability, and heat resistance can be improved by adding a zircoaluminate coupling agent. found. Furthermore, the price of this coupling agent is approximately 20% of that of conventional silane coupling agents, making it extremely advantageous in terms of price.

すなわち、ジルコアルミネート系カップリング剤は、二
種類の有機配位子を低分子量のジルコアルミネート骨格
に選択的に結合して得られたもので、該カップリング剤
のアルミニウムアシレート部分が強磁性粉末表面に強固
に結合することおよびジルコニウムが有効かつ安定な有
機反応基として働くことにより、上述のような効果が得
られると考えられる。
In other words, the zircoaluminate coupling agent is obtained by selectively bonding two types of organic ligands to a low molecular weight zircoaluminate skeleton, and the aluminum acylate portion of the coupling agent is strongly It is thought that the above-mentioned effects are obtained by strongly bonding to the surface of the magnetic powder and by zirconium acting as an effective and stable organic reactive group.

ジルコアルミネート系カップリング剤の添加効果を表面
処理機構の点から説明すると、次の通りである。
The effect of adding a zircoaluminate coupling agent will be explained from the viewpoint of surface treatment mechanism as follows.

ジルコアルミネート系カップリング剤は、側鎖水酸基が
強磁性粉末表面と結合し、かつ水素結合と共有結合が組
合された形態をとり、しかも強磁性粉末表面と不可逆的
に結合する。従って強磁性体粉末と樹脂を主体とする混
合物の中にジルコアルミネート系カップリング剤を添加
づると、強磁性粉末同志の相互作用が大幅に低下して、
強磁性粉末の均一分散と混合物の粘度低下をもたらし、
上述した効果を得るこができる。このような効果を得る
ためのジルコアルミネート系カップリング剤の添加鍮と
しては強磁性粉末100重量部当り0.5重量部以上、
為重量部以下で十分である。
The zircoaluminate coupling agent has a side chain hydroxyl group bonded to the surface of the ferromagnetic powder, has a combination of hydrogen bonds and covalent bonds, and is irreversibly bonded to the surface of the ferromagnetic powder. Therefore, when a zircoaluminate coupling agent is added to a mixture mainly composed of ferromagnetic powder and resin, the interaction between the ferromagnetic powders is significantly reduced.
Produces uniform dispersion of ferromagnetic powder and reduced viscosity of the mixture,
The above-mentioned effects can be obtained. In order to obtain such an effect, the amount of brass added to the zircoaluminate coupling agent is 0.5 parts by weight or more per 100 parts by weight of ferromagnetic powder.
Therefore, less than 1 part by weight is sufficient.

次にジルコアルミネート系カップリング剤は、溶媒の種
類によってアルコール系とグリコール系とに大別されて
いるが、価格および溶媒の除去容易さの点ではアルコー
ル系が優れており、複合磁石の用途にはアルコール系が
適している。
Next, zircoaluminate coupling agents are broadly classified into alcohol-based and glycol-based based on the type of solvent, but alcohol-based coupling agents are superior in terms of price and ease of solvent removal, and are used in composite magnets. Alcohol is suitable for this.

またジルコアルミネート系カップリング剤は、アルコー
ル系およびグリコール系ともに、官能基の種類(アミノ
基、カルボキシル基、脂肪酸、メタクリルオキシ基、メ
タカプタン基、メタクリルオキシ基/脂肪酸等)によっ
て物性が異なるが、使用する樹脂に応じて選択すればよ
い。例えば、ポリアミド樹脂やポリカーボネート樹脂に
対してはアミノ基を含有するものが、アクリル樹脂に対
してはカルボキシル基を有するものが、ポリエチレンに
対しては脂肪酸あるいはメタクリルオキシ基を有するも
のが好ましい。
In addition, zircoaluminate coupling agents, both alcohol and glycol, have different physical properties depending on the type of functional group (amino group, carboxyl group, fatty acid, methacryloxy group, methcaptan group, methacryloxy group/fatty acid, etc.). It may be selected depending on the resin used. For example, polyamide resins and polycarbonate resins preferably contain amino groups, acrylic resins preferably contain carboxyl groups, and polyethylene preferably contain fatty acid or methacryloxy groups.

本発明の複合磁石の主要成分の一つである強磁性粉末と
しでは、3a−フェライト、3r−フェライト等のハー
ドフエライ1〜粉末、アルニコ系磁石粉末、Fe −C
r−GO系合金粉末、希土類コバルト磁石粉末、希土類
・鉄・ホウ素系磁石粉末等の公知の強磁性粉末の少くと
も一種類を使用することができる。他の主要成分の一つ
である樹脂としては、飽和ポリエステル、ポリフェニレ
ンオキサイド、ポリカーボネート、ポリアセタール、ポ
リアミド、フッ素樹脂、ポリプロピレン、ポリエチレン
、メタクリル樹脂、ABS樹脂、As樹脂、ポリスチレ
ン、ポリごニルアセタール、エチレン共重合体、塩化ビ
ニル樹脂、塩化ビニリデン樹脂、ポリフェニレンサルフ
ァイド、ポリエーテルサルホン、ポリサルホン、ポリエ
ーテルエーテルケトン、ポリエチレンテレフタレート、
ポリブチレンテレフタレート、ボリアリレート、芳香族
ポリアミド、ポリウレタン等の熱可塑性樹脂およびフェ
ノール樹脂、ユリア樹脂、メラミン樹脂、フラン樹脂、
アルキド樹脂、不飽和ポリエステル、ジアリルフタレー
ト樹脂、エポキシ樹脂、ケイ素樹脂等の熱硬化性樹脂お
よび塩化ポリエチレン、スチレン・ブタジェンゴム、シ
スポリブタジェン、りOロブレンゴム、ブチルゴム、ニ
トリルゴム、エチレンプロピレンゴム、ハイパロン、ア
クリルゴム、シリコーンゴム、ふっ素ゴム、多硫化ゴム
等のゴムを有利に用いることができる。これらは単独若
しくは混合して使用できる。
The ferromagnetic powder that is one of the main components of the composite magnet of the present invention includes hard ferrite powder such as 3a-ferrite and 3r-ferrite, alnico magnet powder, Fe-C
At least one kind of known ferromagnetic powder such as r-GO alloy powder, rare earth cobalt magnet powder, rare earth/iron/boron magnet powder can be used. Other resins that are one of the main components include saturated polyester, polyphenylene oxide, polycarbonate, polyacetal, polyamide, fluororesin, polypropylene, polyethylene, methacrylic resin, ABS resin, As resin, polystyrene, polygonyl acetal, and ethylene. Polymer, vinyl chloride resin, vinylidene chloride resin, polyphenylene sulfide, polyether sulfone, polysulfone, polyether ether ketone, polyethylene terephthalate,
Thermoplastic resins such as polybutylene terephthalate, polyarylate, aromatic polyamide, polyurethane, and phenolic resins, urea resins, melamine resins, furan resins,
Thermosetting resins such as alkyd resins, unsaturated polyesters, diallyl phthalate resins, epoxy resins, and silicone resins, and chlorinated polyethylene, styrene/butadiene rubber, cis-polybutadiene, RI-O-lobrene rubber, butyl rubber, nitrile rubber, ethylene propylene rubber, Hypalon, Rubbers such as acrylic rubber, silicone rubber, fluororubber, and polysulfide rubber can be advantageously used. These can be used alone or in combination.

上述した強磁性粉末および樹脂の配合量は、磁石に要求
されている磁気特性や成形性を考慮して定めればよいが
、一般的には強磁6等粉末:樹脂の重量比が50〜95
 : 5G〜5となるようにするとよい。これは強磁性
粉末の配合量が50重量部未満であると、後述の異方化
処理を行なっても等方性焼結磁石と同等の磁気特性が得
られず、その配合量が95重量部を越えると成形が極め
て困難となるからである。
The blending amounts of the above-mentioned ferromagnetic powder and resin may be determined by considering the magnetic properties and moldability required of the magnet, but generally the weight ratio of ferromagnetic 6 grade powder:resin is 50 to 50. 95
: It is best to set it to 5G to 5. This is because if the blended amount of ferromagnetic powder is less than 50 parts by weight, magnetic properties equivalent to those of an isotropic sintered magnet cannot be obtained even if the anisotropic treatment described below is performed, and the blended amount is less than 95 parts by weight. This is because molding becomes extremely difficult if it exceeds this range.

さらに上記以外に低分子量のエチレンアクリレート若し
くはエチレンアクリル三およびステアリン酸カルシウム
、シリコンオイル、トリクレジルホスフェート、エチレ
ンビス脂肪酸アミド、メリット酸エステル、ポリエチレ
ンワックス、エステルワックス、部分ケン化エステルワ
ックス、抗酸化剤等の添加物を少量(数重量部)加えて
もよい。
Furthermore, in addition to the above, low molecular weight ethylene acrylate or ethylene triacrylate and calcium stearate, silicone oil, tricresyl phosphate, ethylene bis fatty acid amide, mellitic acid ester, polyethylene wax, ester wax, partially saponified ester wax, antioxidants, etc. A small amount (several parts by weight) of additives may be added.

本発明によれば、上記各原料を用いて次のようにして異
方性を有する複合磁石を製造することができる。
According to the present invention, a composite magnet having anisotropy can be manufactured using the above raw materials in the following manner.

まず強磁性粉末をジルコアルミネート系カップリング剤
で表面処理する。表面処理は、例えば、強磁性粉末を公
知の混合機に投入し攪拌しながら、ジルコアルミネート
系カップリング剤の溶液を噴霧添加し、しかる後十分に
攪拌し、そして乾燥することにより行なえばよい。
First, the surface of the ferromagnetic powder is treated with a zircoaluminate coupling agent. The surface treatment may be carried out, for example, by putting the ferromagnetic powder into a known mixer, spraying and adding a solution of a zircoaluminate coupling agent while stirring, stirring thoroughly, and drying. .

次にこの強磁6等粉末と樹脂とを必要に応じ添加物を加
え、混合し、ついで加熱混練後ベレタイジングしてペレ
ット状のコンパウンドを得る。
Next, this ferromagnetic 6 grade powder and resin are mixed with additives as required, and then heated and kneaded and pelletized to obtain a pellet-like compound.

このコンパウンドを、周囲に配向用磁気回路を備えた成
形空間内に注入し、磁場を加えかつ加熱しながら成形し
ついで冷却固化後金型から成形体を取出す。異方性化を
十分に行なうためには、2000Qe以上の磁場中で成
形を行なうことが好ましい。このようにして得た成形体
はさらに加工する必要なく異方性方向と同方向に着磁し
て異方性複合磁石とすることができるが、必要に応じて
外径を所定の寸法に加工しでもよい。
This compound is injected into a molding space equipped with a magnetic circuit for orientation around the periphery, molded while applying a magnetic field and heated, and after being cooled and solidified, the molded body is taken out from the mold. In order to achieve sufficient anisotropy, it is preferable to perform molding in a magnetic field of 2000 Qe or higher. The molded body obtained in this way can be magnetized in the same direction as the anisotropy direction without the need for further processing to form an anisotropic composite magnet, but if necessary, the outer diameter can be processed to a predetermined size. It's okay.

またこの複合磁石をマグネットロールやモータ用ロータ
磁石に使用する場合は、金型内にシャフトを予め挿入し
てから混線物を注入する、いわゆるインサート成形を行
なってもよい。
In addition, when this composite magnet is used for a magnet roll or a rotor magnet for a motor, so-called insert molding may be performed in which the shaft is inserted into a mold in advance and then the crosstalk is injected.

発明の実施例および比較例 以下実施例および比較例により本発明を具体的に説明す
るが、これにより本発明が限定されるものではない。
EXAMPLES AND COMPARATIVE EXAMPLES The present invention will now be explained in detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto.

実施例1 平均粒径1.30μmの3rフエライト粉末(モル比5
,50 、Si 02 0,18wt%、Ca O00
32w℃%含有) 15kQをヘンシェルミキサーに投
入後攪拌しながら、ジルコ7ルミネート 剤(品番AIAVEDON  CHEMICAL!Ii
) 75.4kaを同体積のエタノール水溶液(水:エ
タノールを1:9の体積比で混合)にて希釈した後噴霧
添加し、添加終了後さらに10分間ヘンシェルミキサー
で攪拌した。次いで80℃で30分間乾燥してジルコア
ルミネートで表面処理した3rフエライト粉末を得た。
Example 1 3r ferrite powder with an average particle size of 1.30 μm (mole ratio 5
,50, Si02 0.18wt%, CaO00
After adding 15kQ (containing 32w℃%) to the Henschel mixer, add Zirco 7 luminate agent (product number AIAVEDON CHEMICAL!Ii) while stirring.
) 75.4 ka was diluted with the same volume of an aqueous ethanol solution (water:ethanol mixed at a volume ratio of 1:9) and added by spraying, and after the addition was completed, the mixture was further stirred for 10 minutes using a Henschel mixer. The powder was then dried at 80° C. for 30 minutes to obtain 3r ferrite powder whose surface was treated with zircoaluminate.

次に該磁粉14.5klJと32メツシユアンダーのナ
イロン12粉末(宇部興産製P−3014U ) 2.
360に!IIをヘンシェルミキサーで混合したのち、
2軸押用機により230℃で混練して約3mmのペレッ
トを得た。これを本出願人の出願に係る特願昭59−2
2)4り0号(昭和59年11月21日出願)に記載し
た磁気回路を備えた射出成形機にて射出温度80℃の条
件で射出成形して外径40φ、内径35φ、高さ9.6
a+mの100極異方性リング磁石を得た。これを所定
の条件で着磁したのち、表面磁束密度(BO)を測定し
た。さらにこれを脱磁後、オートグラフ(島津製作所製
、I S − 2000)によりクロスヘッド速度0.
5ms+/sinの条件で圧縮試験を行い圧壊強度を測
定した。
Next, 14.5klJ of magnetic powder and nylon 12 powder with 32 mesh under (P-3014U manufactured by Ube Industries) 2.
To 360! After mixing II with a Henschel mixer,
The mixture was kneaded at 230° C. using a twin-screw extruder to obtain pellets of about 3 mm. This is the patent application filed in 1983-2 by the present applicant.
2) Injection molded at an injection temperature of 80°C using an injection molding machine equipped with a magnetic circuit described in No. 4ri No. 0 (filed on November 21, 1980), with an outer diameter of 40φ, an inner diameter of 35φ, and a height of 9. .6
A 100-pole anisotropic ring magnet of a+m was obtained. After this was magnetized under predetermined conditions, the surface magnetic flux density (BO) was measured. Further, after demagnetizing this, the crosshead speed was set to 0.
A compression test was conducted under the conditions of 5ms+/sin to measure the crushing strength.

実施例2〜6 ジルコアルミネート系カップリング剤の添加量を1.0
〜4.0重量部(la粉100重量部当り)とした以外
は実施例1と同様の条件で成形体を製作し、BOおよび
圧壊強度を測定した。
Examples 2 to 6 The amount of zircoaluminate coupling agent added was 1.0
A molded body was produced under the same conditions as in Example 1 except that the amount was 4.0 parts by weight (per 100 parts by weight of LA powder), and the BO and crushing strength were measured.

比較例1 3rフエライト粉末をジルコアルミネート系カップリン
グ剤で処理しないで用いた以外は実施例1と同様の条件
で成形体を製作し、BOおよび圧壊強度を測定した。
Comparative Example 1 A molded body was produced under the same conditions as in Example 1, except that 3r ferrite powder was used without being treated with a zircoaluminate coupling agent, and its BO and crushing strength were measured.

比較例2 ジルコアルミネート系カップリング剤の添加量を4.3
重ω部(磁粉100重量部当り)とした以外は実施例1
と同様の条件ぐコンパウンドを製造したのち、射出成形
を行なったが、キャビティ内にコンパウンドが十分に充
填できず、成形が不可能であった。
Comparative Example 2 The amount of zircoaluminate coupling agent added was 4.3
Example 1 except that the heavy ω part (per 100 parts by weight of magnetic powder) was used.
After manufacturing a compound under the same conditions as above, injection molding was performed, but the compound could not be sufficiently filled into the cavity and molding was impossible.

比較例3 ジルコアルミネート系カップリング剤の代わりにシラン
カップリング剤(信越化学製KBM− 603)を使用
した以外は実施例1と同様の条件で成形体を製作し、B
Oおよび圧壊強度を測定した。
Comparative Example 3 A molded body was produced under the same conditions as in Example 1 except that a silane coupling agent (KBM-603 manufactured by Shin-Etsu Chemical Co., Ltd.) was used instead of the zircoaluminate coupling agent.
O and crushing strength were measured.

比較例4 ジルコアルミネート系カップリング剤の代わりにチタネ
ート系カップリング剤(味の素製、KR−388)を使
用し、希釈溶液としてイソプロピルアルコールを使用し
た以外は実施例1と同様の条件で成形体を製作し、BO
および圧壊強度を測定した。
Comparative Example 4 A molded article was produced under the same conditions as Example 1, except that a titanate coupling agent (manufactured by Ajinomoto Co., Ltd., KR-388) was used instead of the zircoaluminate coupling agent, and isopropyl alcohol was used as the diluted solution. and BO
and the crushing strength was measured.

実施例7 平均粒径1.05μmの3aフエライト粉末(モル比5
.34 、Si 02  0,13wt%、AQ.20
3 0、os wt%添加)100重量部を実施例1の
方法により 0.7重量部のジルコアルミネート系カッ
プリング剤(品番A)で処理した。該磁粉29.2kg
とナイロン6粉末(宇部興産製1011− F B )
 25,6kaとEEA粉末(日本ユニカー製PES−
 210>  2.09に9をヘンシェルミキサーにて
十分に混合後、2軸押用機で混練してペレットを製造し
た。以下、実施例1と同様の条件で成形体を製造し、B
Oと圧壊強度を測定した。
Example 7 3a ferrite powder with an average particle size of 1.05 μm (molar ratio 5
.. 34, Si02 0.13wt%, AQ. 20
30, os wt% addition) was treated with 0.7 parts by weight of a zircoaluminate coupling agent (product number A) by the method of Example 1. 29.2 kg of magnetic powder
and nylon 6 powder (manufactured by Ube Industries, Ltd. 1011-FB)
25,6ka and EEA powder (PES- manufactured by Nippon Unicar)
210> 2.09 and 9 were thoroughly mixed in a Henschel mixer, and then kneaded in a twin-screw extruder to produce pellets. Hereinafter, a molded body was manufactured under the same conditions as in Example 1, and B
O and crushing strength were measured.

実施例8 実施例1で用いた3rフェライト粉末100重量部を実
施例1と同様の方法により0.6重量部のジルコアルミ
ネート系カップリング剤で表面処理した。次に該磁粉8
.37k(JとPPS粉末(フィリップス石油製v1 
)  1.25kgトEEA粉末(日本一にカー製MS
−870)  0.38 hgとを用いてコンパウンド
を製造した。以後、実施例1と同様の方法で成形体を製
作し、そのBO1圧壊強度を測定し左。
Example 8 100 parts by weight of the 3r ferrite powder used in Example 1 was surface treated with 0.6 parts by weight of a zircoaluminate coupling agent in the same manner as in Example 1. Next, the magnetic powder 8
.. 37k (J and PPS powder (Philips Petroleum v1)
) 1.25kg EEA powder (MS made by Kerr in Japan)
-870) 0.38 hg. Thereafter, a molded body was produced in the same manner as in Example 1, and its BO1 crushing strength was measured.

突\比較例5〜6 未処理の磁粉を用いた以外はそれぞれ実施例7〜8と同
様の条件でコンパウンドを製造し、各コンパウンドを用
いて同様の条件で成形体を製作し、そのBO圧壊強度を
測定した。
Comparative Examples 5 and 6 Compounds were produced under the same conditions as in Examples 7 and 8, except that untreated magnetic powder was used, and molded bodies were produced using each compound under the same conditions, and the BO crushing was performed. The strength was measured.

(鑵T−余白) 第1表 *射出成形性・・・O:良好  Δ:成形可能X:成形
不可 (J<7−1e+) 第2表 なお実施例1〜6および比較例1〜4において製造した
各フンバウンドについて、それぞれ熱天秤(理学電機製
81118 )により熱重量減量を測定した結果を第1
表に示す。第1表の値は、大気中で加熱速度10℃/1
n、の場合の200℃に・おける重量損失率(下式に使
う)を示J0 11F!失す(?1−)=(損失率1/初11[1) 
X  100第1表に示すようにジルコアルミネート系
カップリング剤を2.0重量部以下添加することにより
BO1圧壊強度、成形性が向上づることがわかる。
(T-margin) Table 1 * Injection moldability...O: Good Δ: Can be molded The thermogravimetric loss of each of the produced Funbounds was measured using a thermobalance (Rigaku Denki 81118).
Shown in the table. The values in Table 1 are based on the heating rate of 10°C/1 in air.
Indicates the weight loss rate (used in the formula below) at 200°C for J0 11F! Lose (?1-) = (loss rate 1/first 11 [1)
As shown in Table 1 of X100, it can be seen that the addition of 2.0 parts by weight or less of a zircoaluminate coupling agent improves the BO1 crushing strength and formability.

さらに2.0〜3.0重量部の添加量においても未処理
に比較し−UBoはやや低下するものの、圧壊強度が高
い傾向を示しでいる。また実施例1と比較例3.4との
比較から、ジルコアルミネート系カップリング剤はシラ
ン系カップリング剤と同等以上の効果を示すことがわか
る。さらに熱安定性についても重量損失の比較から向上
する傾向にあることがわかる。
Furthermore, even when the amount added is 2.0 to 3.0 parts by weight, the -UBo value is slightly lower than that of the untreated sample, but the crushing strength tends to be high. Further, from a comparison between Example 1 and Comparative Examples 3.4, it can be seen that the zircoaluminate coupling agent exhibits an effect equal to or greater than that of the silane coupling agent. Furthermore, it can be seen from the comparison of weight loss that there is a tendency for thermal stability to improve.

次に第2表に示すように2種類以上の樹脂を用いた場合
にもジルコアルミネート系カップリング剤の添加が有効
であることがわかる。
Next, as shown in Table 2, it can be seen that addition of a zircoaluminate coupling agent is effective even when two or more types of resins are used.

発明の効果 以上に記述の如く、本発明によれば、ジルコアルミネー
ト系カップリング剤を使用することにより磁気特性、力
学的性質、成形性、熱安定性に優れた複合磁石を安価に
製造できる。
As described above, according to the present invention, by using a zircoaluminate coupling agent, a composite magnet with excellent magnetic properties, mechanical properties, formability, and thermal stability can be manufactured at low cost. .

Claims (1)

【特許請求の範囲】 1、強磁性粉末と高分子化合物とジルコアルミネート系
カップリング剤を含有したことを特徴とする複合磁石。 2、強磁性粉末50〜95重量部と高分子化合物50〜
5重量部と強磁性粉末1重量部当り0.04重量部以下
のジルコアルミネート系カップリング剤を含む特許請求
の範囲第1項記載の複合磁石。 3、強磁性粉末100重量部当り4重量部以下のジルコ
アルミネート系カップリング剤で表面処理した強磁性粉
末を含む特許請求の範囲第2項記載の複合磁石。 4、強磁性粉末と熱可塑性樹脂とジルコアルミネート系
カップリング剤を含む混合物を流動化し、磁場の存在下
において、所定の形状の空間内に注入し、次いで冷却・
固化することを特徴とする複合磁石の製造方法。 5、強磁性粉末50〜95重量部と熱可塑性樹脂50〜
5重量部と4重量部以下のジルコアルミネート系カップ
リング剤からなる混合物を用いる特許請求の範囲第4項
記載の複合磁石の製造方法。
[Claims] 1. A composite magnet characterized by containing a ferromagnetic powder, a polymer compound, and a zircoaluminate coupling agent. 2. 50 to 95 parts by weight of ferromagnetic powder and 50 to 95 parts by weight of polymer compound
The composite magnet according to claim 1, comprising 5 parts by weight of a zircoaluminate coupling agent and 0.04 parts by weight or less per part by weight of ferromagnetic powder. 3. The composite magnet according to claim 2, which contains ferromagnetic powder surface-treated with 4 parts by weight or less of a zircoaluminate coupling agent per 100 parts by weight of ferromagnetic powder. 4. A mixture containing ferromagnetic powder, thermoplastic resin, and zircoaluminate coupling agent is fluidized, injected into a space of a predetermined shape in the presence of a magnetic field, and then cooled and
A method for manufacturing a composite magnet characterized by solidification. 5. 50 to 95 parts by weight of ferromagnetic powder and 50 to 95 parts by weight of thermoplastic resin
5. The method for producing a composite magnet according to claim 4, which uses a mixture of 5 parts by weight and 4 parts by weight or less of a zircoaluminate coupling agent.
JP60010363A 1985-01-23 1985-01-23 Compound magnet and manufacture thereof Pending JPS61170003A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60010363A JPS61170003A (en) 1985-01-23 1985-01-23 Compound magnet and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60010363A JPS61170003A (en) 1985-01-23 1985-01-23 Compound magnet and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS61170003A true JPS61170003A (en) 1986-07-31

Family

ID=11748075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60010363A Pending JPS61170003A (en) 1985-01-23 1985-01-23 Compound magnet and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS61170003A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62123702A (en) * 1985-11-25 1987-06-05 Sumitomo Metal Mining Co Ltd Resin magnet composition
JPS63220504A (en) * 1987-03-10 1988-09-13 Toyama Pref Gov Resin-bonded type magnetic-substance composition and manufacture of molded form thereof
JPS6430103A (en) * 1987-07-24 1989-02-01 Toshiba Chem Corp Conductive paste
JP2012189101A (en) * 2011-03-09 2012-10-04 Ntn Corp Rolling bearing with filter
KR20150055058A (en) * 2012-10-19 2015-05-20 도요 고무 고교 가부시키가이샤 Sensor and manufacturing method for same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62123702A (en) * 1985-11-25 1987-06-05 Sumitomo Metal Mining Co Ltd Resin magnet composition
JPS63220504A (en) * 1987-03-10 1988-09-13 Toyama Pref Gov Resin-bonded type magnetic-substance composition and manufacture of molded form thereof
JPS6430103A (en) * 1987-07-24 1989-02-01 Toshiba Chem Corp Conductive paste
JP2012189101A (en) * 2011-03-09 2012-10-04 Ntn Corp Rolling bearing with filter
KR20150055058A (en) * 2012-10-19 2015-05-20 도요 고무 고교 가부시키가이샤 Sensor and manufacturing method for same

Similar Documents

Publication Publication Date Title
US5932134A (en) Polymer-based composition for producting magnetic and magnetizable molded articles
WO2018081528A1 (en) Magnetic feed material and its use in producing bonded permanent magnets by additive manufacturing
JPS58171802A (en) Ferromagnetic resin compound
CN100487830C (en) Injection molding ferrite permanent magnet material formula
CN102775755A (en) Polyaryl ether nitrile (PEN) and carbonyl iron powder (Fe(CO)5) composite magnetic material and preparation method thereof
CN109294220A (en) A kind of injection molding magnetic material-nylon composite materials and preparation method thereof
CN114806157B (en) Neodymium-iron-boron magnetic composite material and preparation method thereof
JPH0614485B2 (en) Surface-modified magnetic powder and bonded magnet composition containing the same
EP0111331B1 (en) Plastic magnets impregnated with a dye-coated metallic magnet powder
JPS61170003A (en) Compound magnet and manufacture thereof
CN1085704C (en) Thermoplastic moulding materials based on polyethylene terephthalate for use in injection moulding of parts
JPS6286803A (en) Manufacture of compound magnet
US5429899A (en) Magnetic materials
JPS5889645A (en) Thermoplastic polyester composition
JPH0341965B2 (en)
JPS6343964A (en) Inorganic powder having modified surface a resin composition containing the same
JPS63182803A (en) Magnet roll and manufacture thereof
JPS60106861A (en) Inorganic powder modified with organic phosphate compound
KR102154588B1 (en) A magnet of Nd-Fe-B system comprising organic binder
JPS63186763A (en) Polyamide resin composition
JPS58168300A (en) Electromagnetic shielded molded part
JPH0493002A (en) Manufacture of bond magnet molding material
JPH0230564B2 (en) PURASUCHITSUKUMAGUNETSUTOSOSEIBUTSU
JP3410033B2 (en) Resin composition
JPS6041202A (en) Plastic magnet composition