JPS61169776A - Automatic measuring/selecting apparatus for semiconductor - Google Patents

Automatic measuring/selecting apparatus for semiconductor

Info

Publication number
JPS61169776A
JPS61169776A JP950485A JP950485A JPS61169776A JP S61169776 A JPS61169776 A JP S61169776A JP 950485 A JP950485 A JP 950485A JP 950485 A JP950485 A JP 950485A JP S61169776 A JPS61169776 A JP S61169776A
Authority
JP
Japan
Prior art keywords
electrode
point
measured
measurement
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP950485A
Other languages
Japanese (ja)
Inventor
Hideo Kano
鹿野 英男
Ryuichiro Sakai
酒井 隆一郎
Yoshifumi Kawasaki
川崎 良文
Tetsuo Ushiwatari
牛渡 徹夫
Tamotsu Kamoshita
鴨志田 保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Setsubi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Setsubi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Setsubi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Setsubi Engineering Co Ltd
Priority to JP950485A priority Critical patent/JPS61169776A/en
Publication of JPS61169776A publication Critical patent/JPS61169776A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To achieve a higher speed of an apparatus while enabling contact between an element to be measured and a measuring electrode with a sufficient strength and area by measuring the characteristic of the element being measured with a mobile electrode electrically linded to a socket with an extension lead and supported with an insulator and a fixed electrode to select it based on the results. CONSTITUTION:A mobile electrode 4 has a plurality of lower contactors 10 electrically linked to a socket 12 with an extension lead 14 and buried into an insulator 11. On the other hand, a fixed electrode 5 has an upper contactor 9 bent at the lower tip thereof held with an insulator 13. A conveying mechanism 1 is driven intermittently, then, an element 3 to be measured is striken into the mobile electrode 4 at the point (a) with a pusher 2 and the mobile electrode 4 bring in sliding contact with the fixed electrode 5 as moving holding the element 3 therein in contact therewith to measure the characteristic of the element 3 at the point (b). Further, the mobile electrode 4 moves to the point (c) to make an measurement with the element contacting the fixed electrode 6. At the point (d), based on the combination obtained by the measurement of the characteristic made twice, the element is stored, for example, into a box with a raking mechanism 7, defective products are raked out at the point (e) and those left at the point (f) are raked out to be sent to the sequent process.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は半導体素子の電気的特性の測定に係)、よ〕詳
細には、該素子を収納したままの状態で順次複数の緒特
性を測定し、測定結果に基づいて該素子を高能率で分類
選別し得る半導体自動測定選別装置に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to the measurement of the electrical characteristics of a semiconductor device, and more particularly, to the measurement of a plurality of electrical characteristics of a semiconductor device in a state in which the device is housed. The present invention also relates to an automatic semiconductor measuring and sorting device that can classify and sort devices with high efficiency based on measurement results.

〔発明の背景〕[Background of the invention]

従来の半導体素子測定は、被測定素子のリード端子に測
定電極が直接に接触する方式(以下、クランク式という
)により行われていた。
Conventional semiconductor device measurements have been performed using a method (hereinafter referred to as a crank method) in which a measurement electrode directly contacts a lead terminal of a device to be measured.

しかし、このクランプ式では、クランプ、接触、アンク
ランプ等の操作が必要であるため、高速化が図れない欠
点があった。また、十分な接触を得るためには強大な力
で接触する必要があるが、クランプ式ではリードが軟弱
であるために変形を招く恐れがあシ、そのために接触不
良を起こし易いという問題があった。更には、複数の特
性を測定する場合、複数の電極を通過する必要があって
掴み直しがその都度発生し、そのため接触信頼度の安定
化が図れず、またリードの変形を助長し易いなどの欠点
がめった。
However, this clamp type requires operations such as clamping, contacting, unclamping, etc., and therefore has the disadvantage that high speed cannot be achieved. In addition, in order to obtain sufficient contact, it is necessary to make contact with a strong force, but in the clamp type, the lead is soft and weak, which may lead to deformation, which can easily cause contact failure. Ta. Furthermore, when measuring multiple characteristics, the lead must pass through multiple electrodes and must be re-grasped each time, making it difficult to stabilize contact reliability and easily promoting deformation of the lead. There were many shortcomings.

〔発明の目的〕[Purpose of the invention]

本発明は、前述の従来技術の欠点を解消する九めになさ
れたものであって、特にパワー系半導体素子には大電流
を流す必要があることに鑑み、十分な強度と面積を有す
る測定電極で被測定素子に接触可能であること、装置の
高速化を図シ得ること、また測定電極を複数個にして複
数の特性を測定して、任意の特性を組合わせて該素子を
選別・分類できること、更には測定中の時間とラップし
て被測定素子の供給・排出・選別を行うことができるこ
と、等々を可能にする新規な半導体自動測定選別装置を
提供することを目的とするものである。
The present invention has been made to solve the above-mentioned drawbacks of the prior art, and in view of the fact that power semiconductor devices require large currents to flow, the present invention provides a measurement electrode with sufficient strength and area. It is possible to contact the device to be measured with the device, to increase the speed of the device, and to measure multiple characteristics using multiple measurement electrodes, and to select and classify the device by combining arbitrary characteristics. The purpose of the present invention is to provide a new semiconductor automatic measurement and sorting device that can perform the following functions, and furthermore, supply, discharge, and sort devices to be measured while wrapping the time during measurement. .

〔発明の概要〕[Summary of the invention]

かかる目的達成のため、本発明は、被測定素子を1旦ソ
ケットに収納し、このソケットの端子から延長リードを
介して強固な下部接触子に至るまで、相互に絶縁を保ち
ながら電気的に導くことに着目し、また上部接触子と下
部接触子はいずれも銅合金材であるが、その性質に硬度
差を持たせておくことによって接触損耗による部品交換
の頻度を管理することが可能であシ、更に移動電極の搬
送方式を工夫し、移動以外の時間を全て測定或いは被測
定素子の供給・排出・選別にあてられるように図ること
により可能であるとの知見に基づいて、ここに完成した
ものである。
To achieve this objective, the present invention first houses the device to be measured in a socket, and electrically conducts the device from the terminal of the socket via an extension lead to a strong lower contact while maintaining mutual insulation. In addition, although both the upper and lower contacts are made of copper alloy material, it is possible to control the frequency of parts replacement due to contact wear and tear by creating a difference in hardness in their properties. Furthermore, based on the knowledge that this is possible by devising the transportation method of the moving electrode so that all the time other than movement can be used for measurement or supplying, discharging, and sorting the elements to be measured, we have completed this work. This is what I did.

以下に本発明を図示の実施例に基づいて詳細に説明する
The present invention will be explained in detail below based on illustrated embodiments.

〔発明の実施例〕[Embodiments of the invention]

第1図及び第2図は本発明の一実施例に係る装置全体の
構成図であシ、第1図は平面図、第2図は正面図である
1 and 2 are block diagrams of the entire apparatus according to an embodiment of the present invention, with FIG. 1 being a plan view and FIG. 2 being a front view.

まず、上記図面を用いて装置の作用を概略説明する。搬
送機構1は移動・停止の繰9返しを行う間欠駆動をする
が、停止している時にa点で、ブツシャ2により被測定
素子3を移動電極4に叩き込む。その後、移動電極4は
被測定素子3を中に接触・保持したまt1ピッチ移動し
、6点に至り、この移動過程で固定電極5と摺動接触す
る。ここで停止中に被測定素子3の特性を測定し、測定
完了後更に0点へ移動し、2番目の固定電極6と再び同
様に接触し、測定を行う。その後lピッチ移動してd点
に到達し、d点では前記2回の特性測定により生じた特
性組合わせに基づき、該画素子を掻き出し機構7により
、例えば箱に収納する。
First, the operation of the apparatus will be briefly explained using the above drawings. The transport mechanism 1 is driven intermittently by moving and stopping nine times, and when it is stopped, the pusher 2 drives the element to be measured 3 onto the moving electrode 4 at point a. Thereafter, the movable electrode 4 moves by t1 pitches while contacting and holding the device to be measured 3 therein, reaches six points, and comes into sliding contact with the fixed electrode 5 during this movement process. Here, the characteristics of the device to be measured 3 are measured while the device is stopped, and after the measurement is completed, the device further moves to the 0 point, contacts the second fixed electrode 6 again in the same manner, and performs the measurement. Thereafter, the pixel element is moved by l pitch to reach point d, and at point d, the pixel element is stored in, for example, a box by the scraping mechanism 7 based on the characteristic combination generated by the two characteristic measurements.

次に0点では不良品を同様にして掻き出し、f点では前
記d点及び0点のいずれにおいても掻き出されなかった
素子を掻き出し、次工程へ送る。
Next, at point 0, defective products are scraped out in the same manner, and at point f, elements that were not scraped out at either point d or point 0 are scraped out and sent to the next process.

次に、被測定素子と測定電極(移動電極、固定電極)と
の関係について詳述する。第3図及び第4図は固定電極
と移動電極の関係を示す図である。
Next, the relationship between the device to be measured and the measurement electrodes (moving electrodes, fixed electrodes) will be described in detail. FIGS. 3 and 4 are diagrams showing the relationship between fixed electrodes and moving electrodes.

移動電極4は、第3回申)及び第4図に示すように、被
測定素子3を収容するためのソケット12と複数個の下
部接触子10とを有し、ソケット12と各下部接触子1
0は延長リード14によυ電気的に接続されて絶縁物1
1中に埋設され、搬送機構1上に装着されている。被測
定素子3はソケット12内に容易に嵌合、離脱できるた
めの適合形状のパッケージ内に収容され、該パッケージ
は第4図に示す如く、一定方向に差し込み可能なリード
端子構造を有し、かつ、上方が固定電極5の下部接触子
9に接触できるよう開放されたものが好ましい。
The moving electrode 4 has a socket 12 for accommodating the device to be measured 3 and a plurality of lower contacts 10, as shown in the third example) and FIG. 1
0 is electrically connected to the insulator 1 by the extension lead 14
1 and mounted on the transport mechanism 1. The device to be measured 3 is housed in a package having an adapted shape so that it can be easily fitted into and removed from the socket 12, and the package has a lead terminal structure that can be inserted in a certain direction as shown in FIG. Moreover, it is preferable that the upper part is open so that the lower contactor 9 of the fixed electrode 5 can be contacted.

一方、固定端子5は下部先端が折シ曲けられた形状の上
部接触子9を絶縁物13で保持した構成を有している。
On the other hand, the fixed terminal 5 has a structure in which an upper contact 9 having a bent lower tip is held by an insulator 13.

なお、固定電極5は第5図に示すような変形も可能であ
る。すなわち、上部接触子9は1図示の如き形状を有し
、その一端は絶縁物15に固定的に保持され、他端は絶
縁物16にルーズに保持されておシ、下部接触子10が
近づいて接触すると、上部接触子9は絶縁物16を介し
て左方に僅かに移動する。この構成によれば、よプ長い
距離で上部接触子9が下部接触子lOに接触できるとい
う利点がある。
Note that the fixed electrode 5 can also be modified as shown in FIG. That is, the upper contactor 9 has a shape as shown in FIG. When the upper contactor 9 makes contact with the upper contactor 9, the upper contactor 9 moves slightly to the left through the insulator 16. This configuration has the advantage that the upper contact 9 can contact the lower contact 10 over a longer distance.

移動電極4の搬送機構1は種々の搬送方式によることが
できる。例えば、第6図に示すように往復動可能なテー
ブル17上に移動電極4を複数個装着し、素子の供給・
排出を水平方向(a)又は鉛直方向(b)に行う往復動
式、第7図に示すように回転円板1Bを用いて、アキシ
ャル方向(a)又はラジア層方向(b)に素子の供給・
排出を行う円板方式、また第8図に示すようにエンドレ
スチェーン又はベルト19上に移動電極4を装着し、ア
キシャル方向(a)又はラジアル方向(b)に素子の供
給・排出を行うチェーン方式などである。
The transport mechanism 1 for the moving electrode 4 can be implemented using various transport methods. For example, as shown in FIG. 6, a plurality of movable electrodes 4 are mounted on a reciprocating table 17, and the elements are supplied and
Reciprocating type that discharges in the horizontal direction (a) or vertical direction (b), as shown in Figure 7, uses a rotating disk 1B to supply elements in the axial direction (a) or radial layer direction (b)・
There is a disk method for discharging, and a chain method for supplying and discharging elements in the axial direction (a) or radial direction (b) by mounting the movable electrode 4 on an endless chain or belt 19 as shown in Fig. 8. etc.

このような構成の移動電極4と固定電極5との接触によ
り被測蝋素子3の特性を測定するに際しては、まず、第
3図(Jl)K示す両電極4,5の接触直前の状態から
、搬送機構1上に装着された移動電極4が更に左方(同
図中矢印方向)に移動することにより、移動電極4の下
部接触子11が上部接触子9に接触する。下部接触子1
1は延長リード14によりソケラト12と電気的に結合
され、更にパッケージ内の被測定素子3とも電気的に接
続されているので、この状態で特性を測定することがで
きる。
When measuring the characteristics of the wax element 3 to be measured by contact between the movable electrode 4 and the fixed electrode 5 having such a configuration, first, start from the state immediately before the contact between the electrodes 4 and 5 as shown in FIG. As the movable electrode 4 mounted on the transport mechanism 1 further moves to the left (in the direction of the arrow in the figure), the lower contact 11 of the movable electrode 4 comes into contact with the upper contact 9. Lower contact 1
1 is electrically coupled to the socket 12 by the extension lead 14 and further electrically connected to the device to be measured 3 inside the package, so that the characteristics can be measured in this state.

この方式の第一の特長としては、素子と移動電離間、移
動電極と固定電極間の全てが摺動接触であるため、接触
の信頼度が高い点である。すなわち、素子を移動%極に
叩き込む際には、素子リード表面の汚れ、酸化膜等が除
去される。また、最初の移動電極において導通テスト(
接触抵抗のチェック)を行えばリードクランプ部の接触
状態がそのまま維持されるので、従来のクランプ式のよ
うにクランプ電極で測定ステーションを変える毎にクラ
ンプし直して接触抵抗が変動するという危険性がない。
The first feature of this method is that the reliability of contact is high because sliding contact is made between the element and the moving ionization, and between the moving electrode and the fixed electrode. That is, when the element is driven into the moving electrode, dirt, oxide film, etc. on the surface of the element lead are removed. Also, a continuity test (
If you check the contact resistance (contact resistance check), the contact state of the lead clamp section will be maintained, so there is no risk of the contact resistance fluctuating due to re-clamping the clamp electrode every time you change the measurement station, as in the conventional clamp method. do not have.

また第二の特長は装置の高速化が図れる点である。すな
わち、固定電極の複雑な動きがないこと、移動以外の時
間を全て測定に当てることができること、測定時間中に
別ステーションにおいて被測定素子のi−ディング・ア
ンローディングが同時にできること、測定ステーション
を増すことによ)タクトタイムを増すことなく多種特性
の測定に対応できること等々のためである。
The second feature is that the device can be operated at high speed. In other words, there is no complicated movement of the fixed electrode, the entire time other than movement can be devoted to measurement, the i-ding and unloading of the device under test can be done simultaneously at different stations during measurement time, and the number of measurement stations can be increased. This is because it is possible to measure a wide variety of characteristics without increasing takt time (particularly).

更に第三の特長としては多種分類が容易にできる点であ
る。これは、アンローディング(掻き出し)ステーショ
ンを増すことにより、測定結果に基づき任意に選別内容
を分類できることによる。
Furthermore, the third feature is that various types of classification can be easily performed. This is because by increasing the number of unloading (scraping) stations, it is possible to arbitrarily classify the sorted contents based on the measurement results.

本方式は上記特長の他、測定電極毎の掴み替えかないた
めに素子の変形が少ない、固定電極にクランプメカが入
らないので電極摩耗時の交換調整が容易である等の特長
もある。
In addition to the above-mentioned features, this method also has other features such as less deformation of the element because it does not require re-gripping each measurement electrode, and easy replacement adjustment when the electrode wears out because no clamping mechanism is involved in the fixed electrode.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように、本発明によれば、十分な強度と面
積を有する電極で相互に接触可能なため、1d頼度の高
い接触状態をつくシ出すことが実現でき、被測定素子が
固定電極の下を横方向のみの移動により接触・開放を繰
シ返すだけの単純動作のため、装置の高速化を図ること
ができ、また固定電極と移動電極を互いに複数個設置す
ることにより、複数の特性を測定することが可能になシ
、測定結果を装置最終部まで記憶して任意に組合わせ分
類ができ、更には測定時間ラップとして被測定素子の供
給・排出・選別が可能である、等々の効果がある。
As described in detail above, according to the present invention, since electrodes having sufficient strength and area can be brought into contact with each other, it is possible to achieve a highly reliable contact state of 1 d, and the device to be measured is fixed. The simple operation of repeatedly contacting and releasing by moving only in the lateral direction under the electrode makes it possible to increase the speed of the device. It is possible to measure the characteristics of the device, the measurement results can be stored up to the final part of the device, and arbitrary combinations and classifications can be performed.Furthermore, it is possible to supply, discharge, and sort the elements to be measured as measurement time wraps. There are other effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明の一実施例に係る半導体自動
測定選別装置全体の構成図であシ、第1図は平面図、第
2図は正面図、第3図乃至第5図は電極全体の構成例を
示す図であって、第3図は正面図、第4図は第3図中の
A矢視図、第5図は電極の変形例を示す側面図、第6図
乃至第8図は各々搬送機構の変形例を示す斜視図である
。 1・・・搬送機構、2・・・ブツシャ、3・・・被測定
素子、4・・・移動電極、5.6・・・固定電極、7・
・・掻き出し機構、8・・・収納箱、9・・・上部接触
子、10・・・下部接触子、11,13,15.16・
・・絶縁物、12・・・ソケット、14・・・鶏長リー
ド、17・・・テーブル、18・・・lff1&円板、
19・・・エンドレスチェーン(ベルト)。
1 and 2 are block diagrams of the entire semiconductor automatic measurement and sorting device according to an embodiment of the present invention, in which FIG. 1 is a plan view, FIG. 2 is a front view, and FIGS. 3 to 5. 3 is a front view, FIG. 4 is a view taken along arrow A in FIG. 3, FIG. 5 is a side view showing a modified example of the electrode, and FIG. 8 to 8 are perspective views showing modified examples of the transport mechanism. DESCRIPTION OF SYMBOLS 1...Transportation mechanism, 2...Button, 3...Device to be measured, 4...Moving electrode, 5.6...Fixed electrode, 7.
... Scraping mechanism, 8... Storage box, 9... Upper contact, 10... Lower contact, 11, 13, 15. 16.
... Insulator, 12 ... Socket, 14 ... Chicken length lead, 17 ... Table, 18 ... lff1 & disc,
19... Endless chain (belt).

Claims (1)

【特許請求の範囲】 1、被測定素子を収容し接触保持するソケットと、延長
リードにより該ソケットと電気的に結合され、かつ絶縁
物により支持された搬送可能な移動電極と、測定器へ電
気信号を導くための固定電極とからなり、被測定素子の
特性の測定結果に基づいて該素子を選別するための機構
を有することを特徴とする半導体自動測定選別装置。 2、前記移動電極の搬送機構は往復動式、回転円板方式
又は回転チェーン方式のいずれかによるものである特許
請求の範囲第1項記載の半導体自動測定選別装置。 3、被測定素子の形状は、一定方向に差し込むリード端
子構造を有する各種パッケージに適合可能な形状である
特許請求の範囲第1項記載の半導体自動測定選別装置。
[Claims] 1. A socket that accommodates and maintains contact with the device to be measured, a movable electrode that is electrically coupled to the socket via an extension lead and supported by an insulator, and that is electrically connected to the measuring device. 1. A semiconductor automatic measurement and selection device comprising a fixed electrode for guiding a signal, and a mechanism for selecting a device to be measured based on measurement results of characteristics of the device. 2. The semiconductor automatic measurement and sorting device according to claim 1, wherein the transport mechanism for the moving electrode is one of a reciprocating type, a rotating disk type, or a rotating chain type. 3. The semiconductor automatic measurement and sorting device according to claim 1, wherein the shape of the device to be measured is a shape that can be adapted to various packages having a lead terminal structure that is inserted in a certain direction.
JP950485A 1985-01-22 1985-01-22 Automatic measuring/selecting apparatus for semiconductor Pending JPS61169776A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP950485A JPS61169776A (en) 1985-01-22 1985-01-22 Automatic measuring/selecting apparatus for semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP950485A JPS61169776A (en) 1985-01-22 1985-01-22 Automatic measuring/selecting apparatus for semiconductor

Publications (1)

Publication Number Publication Date
JPS61169776A true JPS61169776A (en) 1986-07-31

Family

ID=11722071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP950485A Pending JPS61169776A (en) 1985-01-22 1985-01-22 Automatic measuring/selecting apparatus for semiconductor

Country Status (1)

Country Link
JP (1) JPS61169776A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001264374A (en) * 2000-03-21 2001-09-26 Matsushita Electric Ind Co Ltd Electronic-component inspection machine
JP2007298498A (en) * 2006-04-27 2007-11-15 Kuan-Chieh Su Method for reducing flaw when testing smd type passive element and test system
JP2012237645A (en) * 2011-05-11 2012-12-06 Sharp Corp Semiconductor inspection device
JP2016004015A (en) * 2014-06-19 2016-01-12 富士電機株式会社 Semiconductor testing device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4822592U (en) * 1971-07-21 1973-03-14

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4822592U (en) * 1971-07-21 1973-03-14

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001264374A (en) * 2000-03-21 2001-09-26 Matsushita Electric Ind Co Ltd Electronic-component inspection machine
JP2007298498A (en) * 2006-04-27 2007-11-15 Kuan-Chieh Su Method for reducing flaw when testing smd type passive element and test system
JP2012237645A (en) * 2011-05-11 2012-12-06 Sharp Corp Semiconductor inspection device
JP2016004015A (en) * 2014-06-19 2016-01-12 富士電機株式会社 Semiconductor testing device

Similar Documents

Publication Publication Date Title
KR102297838B1 (en) Method for continuously inspecting electric properties of electronic chip component
US5969752A (en) Multi-function viewer/tester for miniature electric components
JPS61169776A (en) Automatic measuring/selecting apparatus for semiconductor
US4255851A (en) Method and apparatus for indelibly marking articles during a manufacturing process
US4253280A (en) Method of labelling directional characteristics of an article having two opposite major surfaces
US6621261B2 (en) Work inspection apparatus
US7922877B2 (en) Method and apparatus for plating a semiconductor package
JP2002168909A (en) Ic handler, and method of cleaning contactor
US6059846A (en) Bonding wire height inspection device
JPH0363215B2 (en)
JPH08334546A (en) Testing apparatus for semiconductor device
JP3894638B2 (en) Electronic component automatic measuring and sorting device using the same electronic component conveying jig
US3575291A (en) Methods of and apparatus for testing electrical components
JPS61207046A (en) Autohandler for selection of tape carrier semiconductor device
KR0177214B1 (en) Gasket tester of li/mno2 battery
JPS61152034A (en) Wafer prober
SU999127A1 (en) Method and apparatus for sorting semiconductor devices
KR100255558B1 (en) Bond pad structure of semiconductor chip
JPH07218584A (en) Semiconductor device testing apparatus
JPS6117141B2 (en)
JP3094947B2 (en) Sorting jig
JPH0980116A (en) Socket for semiconductor chip
JPH02298422A (en) Contact solder alloy film removing jig for measurement of semiconductor device
JPS6222448A (en) Wafer to which ic is formed
KR19980020299A (en) Probe tip on wafer test device for reduced contact resistance