JPS61169400A - Artificial satellite - Google Patents
Artificial satelliteInfo
- Publication number
- JPS61169400A JPS61169400A JP60008994A JP899485A JPS61169400A JP S61169400 A JPS61169400 A JP S61169400A JP 60008994 A JP60008994 A JP 60008994A JP 899485 A JP899485 A JP 899485A JP S61169400 A JPS61169400 A JP S61169400A
- Authority
- JP
- Japan
- Prior art keywords
- despan
- satellite
- earth
- axis
- artificial satellite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
- Prostheses (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明はスピン安定型の人工衛星に係わり、特に観測部
機器もしくはアンテナを地球方向に指向させるためのデ
スパン(despun)機構を備えたスピン安定型の人
工衛星に関するものである。[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a spin-stabilized artificial satellite, and particularly to a spin-stabilized artificial satellite equipped with a despun mechanism for directing observation equipment or antennas toward the Earth. This is related to artificial satellites.
従来のスピン安定型の人工衛星においては1例えば地球
表面もしくは地球上空の映像データを取得するために、
人工衛星自体のスピンを利用し。In conventional spin-stabilized artificial satellites, for example, in order to obtain image data on the earth's surface or above the earth,
Using the spin of the satellite itself.
人工衛星に取付けたカメラを人工衛星と同じ角速度で、
人工衛星と同じ方向に回転させるものがある。The camera attached to the satellite has the same angular velocity as the satellite,
There is one that rotates in the same direction as the artificial satellite.
この種の人工衛星では1人工衛星のスピン回転の半分以
上の時間、地球がカメラの視野から外れていた。また、
このデータの取得方法(カメラの走査方法)は、直線的
であるから、2次元の面のデータを取得するために1人
工衛星が°自転を1回行う毎にカメラを少しずつ回転さ
せるか、もしくは反射鏡を固定して取付けた軸を少しず
つ回転させ、該反射鏡の受光側に固定したカメラでデー
タを取得する方法が用いられていた。For this type of satellite, the Earth is out of the camera's field of view for more than half of the satellite's spin rotation. Also,
This data acquisition method (camera scanning method) is linear, so in order to acquire data on a two-dimensional surface, the camera may be rotated little by little each time a satellite rotates once. Alternatively, a method has been used in which a shaft to which a reflecting mirror is fixed is rotated little by little, and data is acquired using a camera fixed to the light receiving side of the reflecting mirror.
地球の自転運動と同期して動く人工衛星(静止衛星)で
は、例えば、気象衛星ひまわりの場合、このデータの取
得には、約25分の時間を費す。For example, in the case of the meteorological satellite Himawari, which moves in synchronization with the earth's rotation (geostationary satellite), it takes about 25 minutes to acquire this data.
一方、地球と相対的に運動している地球周回衛星では、
地球表面もしくは地球上空の静止映像データを得るため
には、瞬時にデータの取得が可能な光学カメラにより、
フィルム面に像を焼付は撮影する方法が用いられている
。この場合には、撮影したフィルムを地球上空(高度1
00に+n以上)から回収しなければならず、無人衛星
においてはその回収は非常に困難であった。On the other hand, an earth-orbiting satellite that moves relative to the earth,
In order to obtain still image data on the earth's surface or above the earth, optical cameras that can instantly acquire data are used.
A method of photographing is used to print an image on the film surface. In this case, the photographed film is placed above the earth (altitude 1
00+n or more), and it was extremely difficult to do so from an unmanned satellite.
また、カメラをデスパン駆動部に取付ける方法では、カ
メラとデスパン駆動部の間の距離が短いと、デスパン駆
動部により、カメラの視野が遮られるので、カメラをデ
スパン駆動部より離して取り付ける方法が用いられる。In addition, with the method of attaching the camera to the despan drive, if the distance between the camera and the despan drive is short, the field of view of the camera will be blocked by the despan drive, so a method of mounting the camera away from the despan drive is used. It will be done.
この場合、人工衛星の運用初期のスピン運動開始時に、
スピン軸回りとその直角方向回りとの衛星の慣性モーメ
ントの比が1より小となり、スピン軸の方向が変化して
、姿勢不安定を生ずる可能性がある。In this case, when the satellite starts its spin motion at the beginning of its operation,
The ratio of the moment of inertia of the satellite around the spin axis and around the direction perpendicular to the spin axis becomes smaller than 1, and the direction of the spin axis changes, potentially causing attitude instability.
気象衛星ひまわり等に関しては、廣済堂産報出版「スペ
ースサイエンスJ斎藤成文監修があり、慣性モーメント
比の不適正による不安定現象については、NATURE
、 vol 182 、 Sep、 20 、1958
゜pp760〜763におけるBracewellとG
arriottによる“ROTATION OF AR
TIFICIAL EARTI+SA置LITES”と
題した文献で論じられている。Regarding meteorological satellite Himawari, etc., there is a space science journal supervised by Shigefumi Saito of Kosaido Sanpo Publishing, and about unstable phenomena due to inappropriate moment of inertia ratio, NATURE
, vol 182, Sep, 20, 1958
Bracewell and G in pp760-763
“ROTATION OF AR” by arriott
It is discussed in the document titled ``TIFICIAL EARTI+SA SET LITES''.
本発明の目的は、上述の事柄にもとづき、地球表面もし
くは地球上空の二次元画像データを、短時間かつ同時に
取得できる人工衛星を提供することにある。An object of the present invention is to provide an artificial satellite capable of simultaneously acquiring two-dimensional image data on the earth's surface or the sky above the earth in a short time based on the above-mentioned matters.
本発明は上記の目的を達成するために、デスパン機構の
デスパン軸に、この軸と異なる軸回りに回動するジンバ
ル軸を設け、このジンバル軸に反射鏡を設け、この反射
鏡により反射された画像を受光する固体撮影素子をデス
パン機構に設けたものである。In order to achieve the above object, the present invention provides the despan axis of the despan mechanism with a gimbal axis that rotates around an axis different from this axis, and this gimbal axis is provided with a reflecting mirror, and the reflected light is reflected by this reflecting mirror. The despan mechanism is equipped with a solid-state photographic element that receives images.
このように構成したことにより、スピン回転している人
工衛星から地球上の2次元データを同時に取得し得ると
共に姿勢を安定に維持させることができる。With this configuration, it is possible to simultaneously obtain two-dimensional data on the earth from the spinning artificial satellite and maintain a stable attitude.
以下1本発明の一実施例を図面により説明する。 An embodiment of the present invention will be described below with reference to the drawings.
゛図面は本発明の人工衛星の一実施例を示すもので、こ
の図において、スピン安定型の人工衛星2は地球の回り
を周回、もしくは相対的に静止しながら運動している。The drawing shows an embodiment of the artificial satellite of the present invention, and in this drawing, a spin-stable artificial satellite 2 is orbiting around the earth or moving while being relatively stationary.
この人工衛星2にはデスパン駆動機構12が搭載されて
いる。このデスパン駆動機構12には、デスパン駆動軸
13とは異なる軸回りに回転可能なジンバル軸8が設け
られている。このジンバル軸8には反射鏡7が固定して
取付けられている。デスパン駆動機構12上にはジンバ
ル軸8とほぼ平行に固体撮像素子11が複数枚配列され
ている。This artificial satellite 2 is equipped with a despan drive mechanism 12. This despan drive mechanism 12 is provided with a gimbal shaft 8 that is rotatable around an axis different from the despan drive shaft 13. A reflecting mirror 7 is fixedly attached to this gimbal shaft 8. A plurality of solid-state image sensors 11 are arranged on the despan drive mechanism 12 substantially parallel to the gimbal axis 8 .
次に上述した本発明の実施例の動作を説明する。Next, the operation of the embodiment of the present invention described above will be explained.
スピン安定型の人工衛星2は人工衛星の姿勢安定のため
、毎分数ないし数百回転で自転している。The spin-stable artificial satellite 2 rotates at several to several hundred revolutions per minute in order to stabilize the satellite's attitude.
このため、地球表面もしくは地球上空を観測する機器を
地球方向に指向させるため、少なくとも観測機器を衛星
自体の回転と逆方向に、人工衛星の角速度とほぼ同じ速
さで回転させる必要があり。For this reason, in order to direct the equipment that observes the earth's surface or the sky above the earth towards the earth, it is necessary to rotate the observation equipment at least in the opposite direction to the rotation of the satellite itself, at approximately the same speed as the angular velocity of the artificial satellite.
これをデスパン駆動機構12が行う。地球と人工衛星が
相対的に運動する地球周回衛星においては、地球上のあ
る観測範囲を一定時間保持けるために、ジンバル軸8を
回動し、所期の点を保持するにの場合、地球上空もしく
は地球表面の映像データ10は反射!!7で反射され、
デスパン駆動機構12上に設けた複数個の個体撮影素子
11に導かれる。固体撮像素子11上に結像したデータ
はメモリ(図示せず)に蓄わえられた後、電波を用いて
順次地上へ転送される。This is performed by the despan drive mechanism 12. In an earth-orbiting satellite in which the earth and the satellite move relative to each other, in order to maintain a certain observation range on the earth for a certain period of time, the gimbal axis 8 is rotated to hold the desired point. Image data 10 of the sky or the earth's surface is a reflection! ! reflected at 7,
The light is guided to a plurality of solid-state photographing elements 11 provided on the despan drive mechanism 12. The data imaged on the solid-state image sensor 11 is stored in a memory (not shown) and then sequentially transferred to the ground using radio waves.
この実施例によれば、固体撮像素子11面上に、地球表
面もしくは地球上空の映像データを短時間かつ2次元面
上のすべてのデータを同時に測定できる効果がある。さ
らに、デスパン駆動機構およびジンバル軸の回動機構を
作動させることにより、地球と人工衛星とが相対的に運
動していても、地球上の観測範囲を一定時間保持できる
効果がある。According to this embodiment, it is possible to simultaneously measure all the data on the two-dimensional surface of the earth's surface or the sky above the earth on the solid-state image sensor 11 in a short period of time. Furthermore, by operating the despan drive mechanism and the rotation mechanism of the gimbal axis, the observation range on the earth can be maintained for a certain period of time even if the earth and the satellite are moving relative to each other.
また、デスパン駆動機構上に反射鏡を取り付けると、人
工衛星全体のスピン軸回りの慣性モーメントは、カメラ
を人工衛星の重心に近づけることが可能になるため、反
射te!7のない場合より小さくなり1人工衛星の運用
初期のスピン開始時における姿勢不安定を防止できる効
果がある。In addition, by attaching a reflector on the despan drive mechanism, the moment of inertia of the entire satellite around the spin axis can be adjusted to allow the camera to be brought closer to the center of gravity of the satellite, so that the reflected te! 7, which is smaller than the case without 7, and has the effect of preventing attitude instability at the start of spin at the initial stage of operation of a satellite.
また、他の実施例では1反射鏡7の材質を比強度の大で
ある金属1例えば−Ti−6Aρ−4v合金で構成すれ
ば、人工衛星打とげ時の衝撃に耐えることができるとと
もに、スピン軸回りの慣性モーメントの増加を防ぐこと
も可能となり、また、ジンバル駆動機構の小型軽量化が
できる効果がある。In another embodiment, if the material of the reflecting mirror 1 is made of a metal 1 having a high specific strength, such as a -Ti-6Aρ-4v alloy, it can withstand the impact when the satellite is launched, and also It is also possible to prevent an increase in the moment of inertia around the axis, and it also has the effect of making the gimbal drive mechanism smaller and lighter.
以上述べたように1本発明によれば、スピン安定型人工
衛星において、衛星軌道のいかんに拘わらず、デスパン
駆動機構およびジンバル軸駆動機構により、地球表面も
しくは地球上空のm測範囲を一定時間固定でき、固体撮
像素子を用いて同時観測できる効果がある。さらに1反
射鏡を用いることにより、人工衛星運用初期の不安定運
動を防止する効果がある。As described above, according to the present invention, in a spin-stabilized artificial satellite, the m-measurement range on the earth's surface or in the sky above the earth is fixed for a certain period of time by the despan drive mechanism and the gimbal axis drive mechanism, regardless of the satellite orbit. This has the effect of allowing simultaneous observation using a solid-state image sensor. Furthermore, the use of one reflecting mirror has the effect of preventing unstable motion during the initial stage of satellite operation.
図面は本発明のスピン安定型の人工衛星の一例を示す縦
断面図である。
2・・・人工衛星本体、7・・・反射鏡、8・・・ジン
バル軸、11・・・固体撮像素子、12・・・デスパン
駆動機構、13・・・デスパン軸。The drawing is a longitudinal sectional view showing an example of a spin-stabilized artificial satellite of the present invention. 2... Satellite main body, 7... Reflector, 8... Gimbal axis, 11... Solid-state image sensor, 12... Despan drive mechanism, 13... Despan axis.
Claims (1)
ためのデスパン機構を搭載したスピン安定型の人工衛星
において、前記デスパン機構のデスパン軸に、この軸と
異なる軸回りに回動可能なジンバル軸を設け、このジン
バル軸に反射鏡を設け、この反射鏡により反射された画
像を受光する固体撮像子をデスパン機構に設けたことを
特徴とする人工衛星。 2、特許請求の範囲第1項記載の人工衛星において、反
射鏡の材質を比強度(引張強さと比重の比)がガラスよ
りも大である金属としたことを特徴とする人工衛星。[Scope of Claims] 1. In a spin-stabilized artificial satellite equipped with a despan mechanism for directing an observation device or an antenna toward the earth, the despan axis of the despan mechanism rotates about an axis different from this axis. An artificial satellite characterized in that a gimbal axis is provided, a reflecting mirror is provided on the gimbal axis, and a despan mechanism is provided with a solid-state image sensor that receives an image reflected by the reflecting mirror. 2. The artificial satellite according to claim 1, wherein the material of the reflecting mirror is a metal whose specific strength (ratio of tensile strength to specific gravity) is higher than that of glass.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60008994A JPS61169400A (en) | 1985-01-23 | 1985-01-23 | Artificial satellite |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60008994A JPS61169400A (en) | 1985-01-23 | 1985-01-23 | Artificial satellite |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61169400A true JPS61169400A (en) | 1986-07-31 |
Family
ID=11708234
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60008994A Pending JPS61169400A (en) | 1985-01-23 | 1985-01-23 | Artificial satellite |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61169400A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05180696A (en) * | 1991-12-26 | 1993-07-23 | Nec Corp | Interferometer |
-
1985
- 1985-01-23 JP JP60008994A patent/JPS61169400A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05180696A (en) * | 1991-12-26 | 1993-07-23 | Nec Corp | Interferometer |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5107434A (en) | Three-axis spacecraft attitude control using polar star sensor | |
US7961386B2 (en) | Low orbit missile-shaped satellite for electro-optical earth surveillance and other missions | |
US3428812A (en) | Optical spin compensator | |
JPH0719100U (en) | Image navigation support device for camera-mounted satellite | |
US6082677A (en) | Satellite orbiting toward west in the equatorial plane and meteorological satellite system using the satellite | |
US3676581A (en) | Optical scanning spacecraft system | |
EP0510269A1 (en) | Improved line scanner | |
JPS61169400A (en) | Artificial satellite | |
US5225885A (en) | Apparatus for determining the attitude of a celestial body orbiting spacecraft or satellite relative to the celestial body | |
JP2000515982A (en) | Image capture method using oversampled push-bloom scanning | |
US4740680A (en) | Star sensor arrangement for a rotating satellite having two fields of view | |
JP7329483B2 (en) | observation satellite | |
EP1635485B1 (en) | Optical transmission method between an on-board spacecraft terminal and a distant terminal, and spacecraft adapted for said method | |
US3506218A (en) | Resolution calibration satellite for tracking camera | |
JP3105829B2 (en) | Optical sensor for navigation | |
JPH04237038A (en) | Image pickup action correction system | |
Davies | Lunar Exploration by Photography From a Space Vehicle | |
Lund et al. | The Lunar Orbiter Photography Mission | |
Butler | Meteorological satellite data systems | |
JPS63201537A (en) | Mechanical scanning type radiometer | |
Bell et al. | Inertially Referenced Instrument Pointing Platform With Momentum Compensated Articulation | |
JPH026005B2 (en) | ||
Lucke | Hardware image motion compensation for a scanning, space-borne sensor | |
Summers | Techniques of space photography | |
JP2022023368A (en) | Space object management system, ground facility, space object management device and monitor satellite |