JPS63201537A - Mechanical scanning type radiometer - Google Patents

Mechanical scanning type radiometer

Info

Publication number
JPS63201537A
JPS63201537A JP62034299A JP3429987A JPS63201537A JP S63201537 A JPS63201537 A JP S63201537A JP 62034299 A JP62034299 A JP 62034299A JP 3429987 A JP3429987 A JP 3429987A JP S63201537 A JPS63201537 A JP S63201537A
Authority
JP
Japan
Prior art keywords
scanning
tilt
mirror
scanning mirror
radiometer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62034299A
Other languages
Japanese (ja)
Other versions
JPH07119648B2 (en
Inventor
Jun Tanii
谷井 純
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP62034299A priority Critical patent/JPH07119648B2/en
Publication of JPS63201537A publication Critical patent/JPS63201537A/en
Publication of JPH07119648B2 publication Critical patent/JPH07119648B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PURPOSE:To eliminate the need to mount a special device for tilt distortion correction on terminal user equipment by correcting tilt distortion optically in a radiometer. CONSTITUTION:A scanning mirror 3 swings about a scanning shaft 3a and also tilts around a tilt shaft 3b. Incident light from a body to be picked up is reflected by the scanning mirror 3, incident on a reflection optical system 5, and guided to a correcting mirror 1 which is arranged on its optical axis and rotates around the tilt shaft. The correcting mirror 1 rotates in the opposite direction from the scanning mirror 3 by the same angle as its tilt angle to cancel and correct the tilt distortion of a scanning track and an image. The projection light from the correcting mirror 1 is guided to a detector array 4 through an image formation line correcting mirror 2.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、人工衛星あるいは航空機などの飛行体に搭載
され、走査鏡のチルト機能を有する機械走査式放射計の
改良に関し、特にチルト歪補正光学系を備えた機械走査
式放射計に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to an improvement of a mechanical scanning radiometer that is mounted on a flying object such as an artificial satellite or an aircraft and has a scanning mirror tilting function, and particularly relates to the improvement of a mechanical scanning radiometer that is mounted on a flying object such as an artificial satellite or an aircraft and has a tilting function of a scanning mirror. This invention relates to a mechanical scanning radiometer equipped with an optical system.

(従来の技術およびその問題点) 放射計は人工衛星あるいは航空機などに搭載され地表や
海面の観測に用いられる0例えば、海色の観測に用いら
れる場合は、非常に微細な海面の色情報信号を扱うので
、海面における鏡面反射光が入射するのを避けるために
、走査鏡を飛行方向に対して傾斜させるチルト機能を備
えている。このタイプの放射計の例としては、NIMB
US−7に搭載されているC Z CS (Coast
al 2oneColur 5canner )がある
。このようなチルト機能付放射計の走査鏡には走査軸の
他にチルト軸が設けられ、走査とチルトとか同時に行わ
れる。従って、走査軌跡と画像の両方に歪が生じる。そ
こで、これを解決するために次のように幾つかの方式が
行われている。方式Aは、第2図に示すように、走査は
走査鏡3を回転させて行い、チルトは走査鏡3を揺動さ
せて行う方式である。方式Bは、第3図に示すように、
走査とチルトの両方を走査鏡3を揺動させて行う方式で
ある。また、方式Cは、第4図に示すように、走査とチ
ルトの両方を放射計全体を回転させて行う方式である。
(Prior art and its problems) Radiometers are mounted on artificial satellites or aircraft and used to observe the earth's surface or sea surface. In order to avoid specular reflection from the sea surface, the scanner is equipped with a tilt function that tilts the scanning mirror relative to the direction of flight. An example of this type of radiometer is the NIMB
CZ CS (Coast
al2oneColur5canner). The scanning mirror of such a radiometer with a tilt function is provided with a tilt axis in addition to the scanning axis, and scanning and tilting are performed simultaneously. Therefore, distortion occurs in both the scanning trajectory and the image. In order to solve this problem, several methods have been used as described below. In method A, as shown in FIG. 2, scanning is performed by rotating the scanning mirror 3, and tilting is performed by swinging the scanning mirror 3. Method B, as shown in Figure 3,
This method performs both scanning and tilting by swinging the scanning mirror 3. Furthermore, as shown in FIG. 4, method C is a method in which both scanning and tilting are performed by rotating the entire radiometer.

これらいずれの方式でも入射光を電気信号に変換する光
電変換手段が備えである。一般に走査幅を拡げ、画像信
号のS/N比を高め、多バンドを実現する目的で光電変
換手段として複数個の検出器で構成され受光面積の広い
検出器アレイが用いられるが、その場合走査幅が広がっ
ただけチルド歪が著しくなる。方式A、方式Bではこれ
を改善することができない、また、放射計を搭載した人
工衛星や航空機上でこの歪を補正しようとすれば、補正
装置を追加した分電量、消費電力ともに増加し、補正を
地上で行えば、例えば漁船のようなユーザの受信処理装
置が大型化するという問題が生じる。また、方式Cによ
れば、チルト歪は改善されるが、この方式では放射計全
体を回転させるから駆動機構が大型になること、放射計
を人工衛星に搭載した場合は放射計全体が回転すること
によって人工衛星の姿勢制御系に対する外乱トルクが増
大すること、および赤外線検出器を冷却するための放射
冷却器の視野設計に制約が加わることなどの問題がある
All of these systems are equipped with photoelectric conversion means for converting incident light into an electrical signal. Generally, in order to widen the scanning width, increase the S/N ratio of the image signal, and realize multiple bands, a detector array consisting of multiple detectors and having a wide light receiving area is used as a photoelectric conversion means. The wider the width, the more significant the chilled distortion becomes. Methods A and B cannot improve this, and if you try to correct this distortion on an artificial satellite or aircraft equipped with a radiometer, the amount of electricity distributed and power consumption will increase due to the addition of the correction device. If the correction is performed on the ground, a problem arises in that the reception processing device of a user such as a fishing boat becomes larger. Also, according to method C, tilt distortion is improved, but in this method, the entire radiometer is rotated, so the drive mechanism becomes large, and when the radiometer is mounted on an artificial satellite, the entire radiometer rotates. This results in problems such as an increase in disturbance torque for the satellite's attitude control system and restrictions on the field-of-view design of the radiation cooler for cooling the infrared detector.

本発明の目的は、放射計の内部でチルト歪の補正を行い
、従って周辺機器や端末機器に上記のような負担を与え
ないi械走査式放射計を提供することにある。
An object of the present invention is to provide an i-machine scanning radiometer that corrects tilt distortion within the radiometer and therefore does not impose the above-mentioned burden on peripheral equipment and terminal equipment.

(問題点を解決するための手段) 本発明の機械走査式放射計は、走査運動を行いながら被
撮像体からの光線を反射する走査鏡と、この走査鏡を駆
動して前記走査運動をさせる駆動制御装置と、前記走査
鏡にチルト運動をさせるチルト手段と、前記走査鏡の反
射光を入光して電気信号に変換する光電変換手段とを有
する機械走査式放射計において、前記光電変換手段に入
射する前記入射光の光軸上に配置され前記走査鏡からの
反射光を入光し出射するチルト歪補正手段と、このチル
ト歪補正手段を前記走査鏡のチルトと反対方向へチルト
歪を打消す角度だけ傾斜させるチルト歪補正手段駆動制
御装置と、前記チルト歪補正手段からの出射光を入光し
出射する結像ライン補正手段と、この結像ライン補正手
段の位置を変えて出射光を前記光電変換手段へ導く結像
ライン補正手段駆動制御装置とを設けたことを特徴とす
る。
(Means for Solving the Problems) The mechanical scanning radiometer of the present invention includes a scanning mirror that reflects light from an object to be imaged while performing a scanning motion, and a scanning mirror that is driven to perform the scanning motion. A mechanical scanning radiometer comprising a drive control device, a tilting means for tilting the scanning mirror, and a photoelectric conversion means for receiving reflected light from the scanning mirror and converting it into an electrical signal, the photoelectric conversion means a tilt distortion correction means disposed on the optical axis of the incident light that enters and outputs the reflected light from the scanning mirror; and a tilt distortion correction means that corrects tilt distortion in a direction opposite to the tilt of the scanning mirror. a tilt distortion correction means drive control device that tilts by an angle to cancel; an imaging line correction means that receives and outputs the light emitted from the tilt distortion correction means; and an imaging line correction means that changes the position of the imaging line correction means to adjust the output light and an imaging line correction means drive control device that guides the image forming line to the photoelectric conversion means.

(実施例) 第1図に本発明の一実施例を示す0本実施例では、光電
変換手段に検出器アレ・イ4を、チルト歪補正手段とし
てチルト軸回り補正ミラー1を、結像ライン補正手段と
して結像ライン補正ミラー2をそれぞれ用いた。tた、
走査鏡3とチルト軸回り補正ミラー1との間に走査鏡3
からの反射光を集光してチルト軸回り補正ミラー1へ導
くための反射光学系5を置いた。走査鏡3はその駆動制
御装置(図示していない。)に駆動されて走査軸3aを
中心に揺動するとともに、チルト手段(図示していない
。)に駆動されてチルト軸3bを中心にチルトする。矢
印が示すように、被撮像体からの入射光は走査鏡3で反
射して反射光学系5へ入射し、その光軸上に配置された
チルト軸回り補正ミラー1へ導かれる。チルト軸回り補
正ミラー1はその駆動制御装置(図示していない、)に
よって走査鏡3と逆方向にそのチルト角と同じ角度だけ
回転することにより、走査軌跡と画像のチルト歪を打消
し補正する。このチルト軸回り補正ミラー1が傾斜した
だけ結像ライン(光軸)も傾斜するから、結像ライン補
正手段駆動制御装置(図示していない、)は結像ライン
補正ミラー2の位置と角度を変えてチルト軸回り補正ミ
ラー1からの出射光を検出器アレイ4へ導く。
(Embodiment) FIG. 1 shows an embodiment of the present invention. In this embodiment, a detector array 4 is used as a photoelectric conversion means, a tilt axis correction mirror 1 is used as a tilt distortion correction means, and an imaging line An imaging line correction mirror 2 was used as a correction means. It was,
A scanning mirror 3 is installed between the scanning mirror 3 and the tilt axis correction mirror 1.
A reflective optical system 5 is provided to collect the reflected light from the mirror and guide it to the tilt axis correction mirror 1. The scanning mirror 3 is driven by its drive control device (not shown) to swing around the scanning axis 3a, and is also driven by a tilting means (not shown) to tilt around the tilt axis 3b. do. As indicated by the arrow, the incident light from the object to be imaged is reflected by the scanning mirror 3, enters the reflective optical system 5, and is guided to the tilt axis correction mirror 1 arranged on the optical axis. The tilt axis correction mirror 1 is rotated in the opposite direction to the scanning mirror 3 by the same angle as its tilt angle by its drive control device (not shown), thereby canceling out and correcting the tilt distortion of the scanning locus and image. . Since the imaging line (optical axis) also tilts as much as the tilt axis correction mirror 1 tilts, the imaging line correction means drive control device (not shown) adjusts the position and angle of the imaging line correction mirror 2. Then, the light emitted from the tilt axis correction mirror 1 is guided to the detector array 4.

なお、チルト歪補正手段と結像ライン補正手段とを走査
鏡3と反射光学系5の間に配置することもできるが、そ
の場合補正手段の口径が大きくなり従ってそれらの駆動
装置も大きくしなければならないから得策ではない。
Note that the tilt distortion correction means and the imaging line correction means can be arranged between the scanning mirror 3 and the reflection optical system 5, but in that case, the aperture of the correction means becomes large and therefore the drive device for them must also be made large. It's not a good idea because it won't work.

(発明の効果) このように、本発明の゛装置は放射計の内部で光学的に
チルト歪を補正するから、放射計を搭載した飛行体また
は端末ユーザの機器に従来のようにチルト歪を補正する
ための特別な装置を装備する必要がない、チルト歪が特
に大きく表われる検出器アレイを用いた場合、本発明の
効果は顕著である。
(Effects of the Invention) As described above, since the device of the present invention optically corrects tilt distortion inside the radiometer, it is possible to correct tilt distortion in an aircraft equipped with a radiometer or in equipment of a terminal user, unlike conventional methods. The effects of the present invention are significant when using a detector array in which tilt distortion is particularly large, and there is no need to equip a special device for correction.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の構成を示す斜視図である。 第2図ないし第4図はそれぞれ従来の機械走査式放射計
の方式A、B、Cを示す図面であり、各図(a)は構成
を示す斜視図、各国(b)は走査軌跡を示す概念図、各
図(c)は像の回転を示す概念図である。 1・・・チルト軸回り補正ミラー、2・・・結像ライン
補正ミラー、3・・・走査鏡、3a・・・走査軸、3b
・・・チルト軸、4・・・検出器アレイ、5・・・反射
光学系。
FIG. 1 is a perspective view showing the configuration of an embodiment of the present invention. Figures 2 to 4 are drawings showing conventional mechanical scanning radiometer methods A, B, and C, respectively, with each figure (a) being a perspective view showing the configuration, and each country (b) showing the scanning locus. Conceptual diagram, each figure (c) is a conceptual diagram showing rotation of an image. DESCRIPTION OF SYMBOLS 1... Tilt axis correction mirror, 2... Imaging line correction mirror, 3... Scanning mirror, 3a... Scanning axis, 3b
...Tilt axis, 4...Detector array, 5...Reflection optical system.

Claims (1)

【特許請求の範囲】[Claims] 走査運動を行いながら被撮像体からの光線を反射する走
査鏡と、この走査鏡を駆動して前記走査運動をさせる駆
動制御装置と、前記走査鏡にチルト運動をさせるチルト
手段と、前記走査鏡の反射光を入光して電気信号に変換
する光電変換手段とを有する機械走査式放射計において
、前記光電変換手段に入射する前記入射光の光軸上に配
置され前記走査鏡からの反射光を入光し出射するチルト
歪補正手段と、このチルト歪補正手段を前記走査鏡のチ
ルトと反対方向へチルト歪を打消す角度だけ傾斜させる
チルト歪補正手段駆動制御装置と、前記チルト歪補正手
段からの出射光を入光し出射する結像ライン補正手段と
、この結像ライン補正手段の位置を変えて出射光を前記
光電変換手段へ導く結像ライン補正手段駆動制御装置と
を設けたことを特徴とする機械走査式放射計。
a scanning mirror that reflects light from an object to be imaged while performing a scanning motion; a drive control device that drives the scanning mirror to perform the scanning motion; a tilting device that causes the scanning mirror to perform a tilting motion; and a photoelectric conversion means for converting the reflected light from the scanning mirror into an electric signal, the mechanical scanning radiometer is arranged on the optical axis of the incident light that enters the photoelectric conversion means, and the reflected light from the scanning mirror is arranged on the optical axis of the incident light that enters the photoelectric conversion means. a tilt distortion correction means for inputting and outputting light, a tilt distortion correction means drive control device for tilting the tilt distortion correction means in a direction opposite to the tilt of the scanning mirror by an angle that cancels the tilt distortion, and the tilt distortion correction means and an imaging line correction means drive control device that changes the position of the imaging line correction means and guides the output light to the photoelectric conversion means. A mechanical scanning radiometer featuring:
JP62034299A 1987-02-17 1987-02-17 Mechanical scanning radiometer Expired - Lifetime JPH07119648B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62034299A JPH07119648B2 (en) 1987-02-17 1987-02-17 Mechanical scanning radiometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62034299A JPH07119648B2 (en) 1987-02-17 1987-02-17 Mechanical scanning radiometer

Publications (2)

Publication Number Publication Date
JPS63201537A true JPS63201537A (en) 1988-08-19
JPH07119648B2 JPH07119648B2 (en) 1995-12-20

Family

ID=12410279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62034299A Expired - Lifetime JPH07119648B2 (en) 1987-02-17 1987-02-17 Mechanical scanning radiometer

Country Status (1)

Country Link
JP (1) JPH07119648B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015068395A1 (en) * 2013-11-08 2017-03-09 国立大学法人東京工業大学 Sensing device and sensing method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101068129B1 (en) * 2009-11-06 2011-09-28 국방과학연구소 Tilt mirror mechanism, ir detecting system having the same and control method of tilt mirror mechanism

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015068395A1 (en) * 2013-11-08 2017-03-09 国立大学法人東京工業大学 Sensing device and sensing method

Also Published As

Publication number Publication date
JPH07119648B2 (en) 1995-12-20

Similar Documents

Publication Publication Date Title
US5262630A (en) Seeker, particularly for target seeking missiles
US4527055A (en) Apparatus for selectively viewing either of two scenes of interest
US4123134A (en) Dual field image scanner
US5936771A (en) Compact flir optical configuration
EP0079684B1 (en) An optical scanning apparatus
JPH08190161A (en) Focal-plane-array imaging device for satellite
BRPI0710852A2 (en) low orbit optical imaging satellite, is Earth surface imaging method
JP4326946B2 (en) Scanning sensor system with multiple rotating telescope subassemblies
US6129307A (en) Stabilized optical gimbal assembly
US3793518A (en) Optical scanning system with a crossed scanning pattern
US4791297A (en) Yaw sensing conical scanner horizon sensor
GB1567320A (en) Scanners
JPS63201537A (en) Mechanical scanning type radiometer
US4912321A (en) Radiation scanning system with pupil control
US4636044A (en) Optical system for viewing a scene
JPS6095512A (en) Scan mirror apparatus
EP0126826A1 (en) Radiation detector
KR100522078B1 (en) Gimbaled scanning system and method
US4156142A (en) Optical-mechanical scanner mirror for an infrared viewing system
US3156823A (en) Horizon sensor with reflective optics
JPS62102115A (en) Star detector assembling structure of artificial satellite
RU2622233C1 (en) Aerial camera
EP1335176B1 (en) Compact flir optical configuration
US8605349B2 (en) Large area surveillance scanning optical system
JPS6247523A (en) Rotary polyhedron type two-axis scanning mirror