JP3105829B2 - Optical sensor for navigation - Google Patents

Optical sensor for navigation

Info

Publication number
JP3105829B2
JP3105829B2 JP09167374A JP16737497A JP3105829B2 JP 3105829 B2 JP3105829 B2 JP 3105829B2 JP 09167374 A JP09167374 A JP 09167374A JP 16737497 A JP16737497 A JP 16737497A JP 3105829 B2 JP3105829 B2 JP 3105829B2
Authority
JP
Japan
Prior art keywords
sensor
image
optical
spacecraft
star
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09167374A
Other languages
Japanese (ja)
Other versions
JPH1115950A (en
Inventor
忠彦 飯田
雅弘 小笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Aerospace Systems Ltd
Original Assignee
NEC Aerospace Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Aerospace Systems Ltd filed Critical NEC Aerospace Systems Ltd
Priority to JP09167374A priority Critical patent/JP3105829B2/en
Publication of JPH1115950A publication Critical patent/JPH1115950A/en
Application granted granted Critical
Publication of JP3105829B2 publication Critical patent/JP3105829B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Stereoscopic And Panoramic Photography (AREA)
  • Image Processing (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は航法用光学センサに
関し、特に数種類の光学センサ機能を併せ持つ航法用光
学センサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a navigation optical sensor, and more particularly, to a navigation optical sensor having several kinds of optical sensor functions.

【0002】[0002]

【従来の技術】最近の宇宙探査における開発はめざまし
く、地球を離れ他の天体への着陸を前提とした衛星や探
査機(以下、宇宙機と総称する)が実用化されている。
この場合、宇宙機を目的の天体に着陸させるためには、
各々の段階で目的に応じた数種類の光学センサが必要と
される。
2. Description of the Related Art Recent developments in space exploration have been remarkable, and satellites and exploration vehicles (hereinafter, collectively referred to as spacecrafts) which are premised on leaving the earth and landing on other celestial bodies have been put to practical use.
In this case, to land the spacecraft on the target celestial body,
Each stage requires several types of optical sensors depending on the purpose.

【0003】例えば、地球近傍のトランスファ軌道から
目的の天体迄のクルージング中は、スタートラッカが計
測した恒星の位置情報から宇宙機の姿勢を制御すること
が必要である。次に目標とする天体への着陸に際して
は、着陸センサが計測する天体表面の画像情報から着陸
に適した地形を選択することが必要となり、着陸後はパ
ノラマカメラにより撮像したパノラマ画像情報を取得
し、宇宙機に与えられたミッションを遂行することが要
求される。
For example, during cruising from a transfer orbit near the earth to a target celestial body, it is necessary to control the attitude of the spacecraft based on the position information of the star measured by the star tracker. Next, when landing on the target celestial body, it is necessary to select the terrain suitable for landing from the image information of the celestial body surface measured by the landing sensor, and after landing, obtain the panoramic image information captured by the panoramic camera It is required to fulfill the mission given to the spacecraft.

【0004】上述のように宇宙機が目的の天体まで宇宙
空間を航行し天体地表面に着陸するまでに3種類のセン
サ、すなわちスタートラッカ、着陸センサ、パノラマセ
ンサが各段階に応じて必要とされる。
As described above, three types of sensors, ie, a star tracker, a landing sensor, and a panorama sensor are required for each stage until the spacecraft travels in space to the target celestial body and lands on the surface of the celestial body. You.

【0005】一方、ロケットによる宇宙機の打ち上げは
ロケットの打ち上げ能力に起因する搭載機器の重量制限
があるため、この重量の制約が宇宙機のシステム設計に
大きな影響を与える。宇宙機はミッションを達成するた
めに必要とされる種々の機器を搭載するが、独立構造の
機器は打ち上げ環境や宇宙環境等に耐えるための過酷な
振動試験や熱真空試験に適合する必要があるので、強度
設計・熱設計が要求仕様を満たした機器構造が要求され
る。従って、機器が重たくなり宇宙機システムとしての
重量が増加することになる。重量の増加はロケットの打
ち上げ能力に抵触するため、常に宇宙機のシステム重量
の軽減が要求され、この要求は宇宙機に搭載される各々
の機器に対して重量の軽減が要求されることになる。
On the other hand, the launch of a spacecraft by a rocket has a limitation on the weight of on-board equipment due to the launch capability of the rocket, and this weight constraint greatly affects the system design of the spacecraft. Spacecrafts are equipped with various devices required to accomplish missions, but devices with independent structures must meet severe vibration tests and thermal vacuum tests to withstand launch environments and space environments. Therefore, an equipment structure that satisfies the required specifications in strength design and thermal design is required. Therefore, the equipment becomes heavier and the weight of the spacecraft system increases. Since the increase in weight conflicts with the launch capability of the rocket, it is always necessary to reduce the system weight of the spacecraft, and this requirement requires that the weight of each device mounted on the spacecraft be reduced. .

【0006】従来の宇宙機は3種類の光学センサを独立
構造の機器として搭載していた。光学センサはその基本
構造は類似しているが、それぞれの目的に最適な機能と
して独立にあるため多様な機能を合わせもったセンサは
なく、ミッション要求を満たすためには上述の通り3種
類の光学センサを搭載することになり、その結果宇宙機
全体の重量増となる。
A conventional spacecraft has three types of optical sensors mounted thereon as devices having independent structures. Optical sensors are similar in basic structure, but there are no sensors with various functions because they are independent as optimal functions for each purpose. To meet mission requirements, three types of optical sensors are used as described above. As a result, the weight of the entire spacecraft increases.

【0007】[0007]

【発明が解決しようとする課題】上述した従来の航法用
光学センサは、ミッション遂行に必要な各々のセンサが
独立した構造の機器であるため宇宙機システムの重量増
加をもたらすという欠点を有している。
The above-described conventional navigation optical sensor has a disadvantage that the weight of the spacecraft system is increased because each sensor required for performing a mission is a device having an independent structure. I have.

【0008】本発明の目的は、ミッション遂行に必要な
各種の光学センサ機能を一体化させ宇宙機システムの重
量を軽減させる航法用光学センサを提供することにあ
る。
It is an object of the present invention to provide a navigation optical sensor that integrates various optical sensor functions necessary for performing a mission and reduces the weight of a spacecraft system.

【0009】[0009]

【課題を解決するための手段】 本発明の航法用光学セ
ンサは、恒星位置の観測により宇宙機の姿勢を検出する
第1のセンサと; 前記宇宙機が天体着陸時に天体表面の画像を取得する第
2のセンサと; 前記宇宙機が前記天体着陸後に全景画像を取得する第3
のセンサと; 前記第1のセンサ、前記第2のセンサ、前記第3のセン
サの各々が取得する光学像を回転ミラーの位置により選
択する回転ミラー機構部と;前記光学像を検出する電荷結合デバイスおよびこの電荷
結合デバイスにより得た画像の輝度、視野範囲、解像度
の変更を行なう補正処理部を有する光学処理手段と ; を備えたことを特徴としている。
Means for Solving the Problems A navigation optical sensor according to the present invention comprises: a first sensor for detecting the attitude of a spacecraft by observing a stellar position; and the spacecraft acquires an image of a celestial body surface when the astronaut lands. A second sensor, wherein the spacecraft acquires a panoramic image after the celestial body landing.
A rotating mirror mechanism for selecting an optical image acquired by each of the first sensor, the second sensor, and the third sensor based on a position of a rotating mirror; and charge coupling for detecting the optical image Device and this charge
Brightness, field of view, and resolution of the image obtained by the coupling device
And an optical processing means having a correction processing unit for performing the change .

【0010】恒星位置の観測により宇宙機の姿勢を検出
する恒星センサと;前記宇宙機が天体着陸時に天体表面
の画像を取得する着陸センサと;前記宇宙機が前記天体
着陸後に全景画像を取得するパノラマセンサと;前記恒
星センサ、前記着陸センサおよび前記パノラマセンサか
らの光学像のいずれかの位置に回転ミラーの向きを設定
する回転ミラー部と;前記回転ミラーで反射された光学
像を集光し結像させるレンズ系と;前記光学像を検出す
る電荷結合デバイスおよびこの電荷結合デバイスにより
得た画像の輝度、視野範囲、解像度の変更を行なう補正
処理部を有する光学処理手段と;を備えたことを特徴と
している。
A star sensor for detecting the attitude of the spacecraft by observing a star position; a landing sensor for acquiring an image of the surface of the celestial body when the spacecraft lands; a spacecraft acquiring a panoramic image after the celestial body lands. A panoramic sensor; a rotating mirror unit for setting a direction of a rotating mirror at any position of the optical images from the star sensor, the landing sensor, and the panoramic sensor; and condensing the optical image reflected by the rotating mirror. A lens system for forming an image; and an optical processing means having a charge-coupled device for detecting the optical image and a correction processing unit for changing the brightness, the field of view, and the resolution of an image obtained by the charge-coupled device. It is characterized by.

【0011】前記補正処理部が、前記恒星のマップデー
タおよび前記天体表面の地形データを記憶し、前記恒星
センサおよび前記着陸センサが取得した画像データと比
較照合する機能を備えたことを特徴としている。
The correction processing section has a function of storing the map data of the star and the topographical data of the surface of the celestial body, and comparing and comparing the map data with the image data acquired by the star sensor and the landing sensor. .

【0012】[0012]

【発明の実施の形態】次に、本発明の実施の形態につい
て図面を参照して説明する。
Next, embodiments of the present invention will be described with reference to the drawings.

【0013】図1は本発明の航法用光学センサの一つの
実施の形態を示す外観図である。
FIG. 1 is an external view showing an embodiment of a navigation optical sensor according to the present invention.

【0014】図1に示す本実施の形態は、光学像の検出
と補正を行なう光学センサ1と、光学像の集光を行なう
レンズ系9と、光学像を回転させる回転ミラー部10
と、恒星の観測を行なうバッフル8と、着陸面の撮像を
行なう着陸面撮像部6と、対象物のパノラマ撮像を行な
うパノラマ撮像部7とから構成されている。
The embodiment shown in FIG. 1 has an optical sensor 1 for detecting and correcting an optical image, a lens system 9 for condensing the optical image, and a rotating mirror unit 10 for rotating the optical image.
And a baffle 8 for observing stars, a landing surface imaging unit 6 for imaging the landing surface, and a panorama imaging unit 7 for performing panoramic imaging of the target object.

【0015】光学センサ1は光学像を検出する2次元C
CD4と、フィルタ等により光学像の補正を行なう補正
装置3とを有している。回転ミラー部10は360度回
転可能な回転ミラー2と、回転機構(図示せず)とを有
している。
The optical sensor 1 has a two-dimensional C for detecting an optical image.
It has a CD 4 and a correction device 3 for correcting an optical image with a filter or the like. The rotating mirror unit 10 has a rotating mirror 2 that can rotate 360 degrees and a rotating mechanism (not shown).

【0016】図2は図1の構成を示す縦断面図である。FIG. 2 is a longitudinal sectional view showing the configuration of FIG.

【0017】図3は図1の構成を示す側面図である。FIG. 3 is a side view showing the configuration of FIG.

【0018】なお、図2、図3において図1に示す構成
要素に対応するものは同一の参照数字または符号を付
し、その説明を省略する。
In FIGS. 2 and 3, components corresponding to those shown in FIG. 1 are denoted by the same reference numerals or symbols, and description thereof is omitted.

【0019】次に、図1、図2および図3を参照して本
実施の形態の動作をより詳細に説明する。
Next, the operation of the present embodiment will be described in more detail with reference to FIGS. 1, 2 and 3.

【0020】宇宙機が地球から離脱し目標天体迄の飛行
中は、回転ミラー部10の回転ミラー2をバッフル8に
よる恒星観測方向5の位置に回転機構により回転させる
ことで、スタートラッカとしてのセンサ機能が行なわれ
る。ここでスタートラッカとは、航行中の宇宙機の姿勢
を検出するため例えばカノープス等の明るい恒星からの
光学像をバッフル8を通して受け、この恒星像が回転ミ
ラー2に反射されレンズ系9を通して2次元CCD4に
結像し、この結合像の位置と予め恒星の座標データが記
憶されている恒星マップと比較照合し、宇宙機の姿勢検
出を行なうものである。補正装置3はこうした比較照合
を行なうとともに画像の明るさの調整、視野範囲、解像
度変更および歪み補正処理を行なう。宇宙機はこのスタ
ートラッカの機能により、恒星の位置情報から適切な姿
勢を確保することができる。
During the flight of the spacecraft from the earth to the target celestial body, the rotating mirror 2 of the rotating mirror unit 10 is rotated by the rotating mechanism to the position of the star observation direction 5 by the baffle 8 to provide a sensor as a star tracker. The function is performed. Here, the star tracker is a device that receives an optical image from a bright star such as a canopus through a baffle 8 in order to detect the attitude of a spacecraft in flight through a baffle 8. An image is formed on the CCD 4, the position of the combined image is compared with a star map in which star coordinate data is stored in advance, and the attitude of the spacecraft is detected. The correction device 3 performs such comparison and collation, as well as adjusting the brightness of the image, changing the field of view, changing the resolution, and performing distortion correction. The spacecraft can secure an appropriate attitude from the position information of the star by the function of the star tracker.

【0021】宇宙機が目標天体に接近し目標天体の軌道
上から天体表面に着陸する段階になると、回転ミラー2
を着陸面撮像部6の着陸面方向12の位置に回転機構に
より回転させることで、着陸センサとしてのセンサ機能
を行なう。着陸面の画像は着陸面撮像部6を通して受
け、この着陸面像が回転ミラー2に反射され、レンズ系
9を通して2次元CCD4に結像する。この結合像によ
る地表面の画像情報から予め天体地表面のデータが記憶
されている地表面マップと比較照合し、着陸に適した平
らな場所を識別することができる。補正装置3はこうし
た比較照合を行なうとともに画像の明るさの調整、視野
範囲、解像度変更および歪み補正処理を行なう。なお、
地表面の画像情報は地表面マップと比較することなく直
ちに地球の基地局へ送信され基地局で判断される場合も
ある。
When the spacecraft approaches the target celestial body and lands on the surface of the celestial body from the orbit of the target celestial body, the rotating mirror 2
Is rotated by the rotation mechanism to a position in the landing surface direction 12 of the landing surface imaging unit 6 to perform a sensor function as a landing sensor. The image of the landing surface is received through the landing surface imaging unit 6, and the image of the landing surface is reflected by the rotating mirror 2 and forms an image on the two-dimensional CCD 4 through the lens system 9. From the image information on the ground surface based on the combined image, a flat place suitable for landing can be identified by comparing and comparing it with a ground surface map in which data on the celestial ground surface is stored in advance. The correction device 3 performs such comparison and collation, as well as adjusting the brightness of the image, changing the field of view, changing the resolution, and performing distortion correction. In addition,
The image information of the ground surface may be immediately transmitted to the base station on the earth without being compared with the ground surface map, and the base station may determine the image information.

【0022】次に着陸後のミッション運用段階になる
と、回転ミラー2をパノラマ画像部7のパノラマ方向1
1の位置に回転機構により回転させることで、パノラマ
センサとしてのセンサ機能を行なう。パノラマ画像はパ
ノラマ画像部7を通して受け、このパノラマ画像が回転
ミラー2に反射され、レンズ系9を通して2次元CCD
4に結像する。この結像によるパノラマ画像情報からミ
ッションの実行状態および実験結果等の視覚情報を得
る。
Next, at the mission operation stage after landing, the rotating mirror 2 is moved to the panorama direction 1 of the panorama image section 7.
The sensor function as a panorama sensor is performed by rotating to a position 1 by a rotation mechanism. The panoramic image is received through a panoramic image section 7, and the panoramic image is reflected by the rotating mirror 2 and passed through a lens system 9 to a two-dimensional CCD.
4 is imaged. From the panoramic image information obtained by the image formation, visual information such as a mission execution state and an experiment result is obtained.

【0023】上述の航法用光学センサの使用フェーズ毎
に、補正装置3は撮像対象の明るさの調整、撮像視野範
囲、解像度変更等の調整を行なうが、調整後の取得した
画像データは地球の地上局または地球周回軌道上の基地
局へ送信されるため、宇宙機に搭載された送信部(図示
せず)に送出されることになる。
In each use phase of the above-mentioned navigation optical sensor, the correction device 3 adjusts the brightness of the object to be imaged, changes the field of view of the image pickup, changes the resolution, and the like. Since the signal is transmitted to a ground station or a base station in orbit around the earth, the signal is transmitted to a transmitting unit (not shown) mounted on the spacecraft.

【0024】[0024]

【発明の効果】以上説明したように、本発明の航法用光
学センサはミッション遂行に必要な各種のセンサ機能を
一体化したので、小型・軽量の航法用光学センサが得ら
れるという効果を有している。
As described above, the navigation optical sensor of the present invention integrates various sensor functions necessary for performing a mission, so that a small and lightweight navigation optical sensor can be obtained. ing.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の航法用光学センサの一つの実施の形態
を示す外観図である。
FIG. 1 is an external view showing an embodiment of a navigation optical sensor according to the present invention.

【図2】図1の構成を示す縦断面図である。FIG. 2 is a longitudinal sectional view showing the configuration of FIG.

【図3】図1の構成を示す側面図である。FIG. 3 is a side view showing the configuration of FIG. 1;

【符号の説明】[Explanation of symbols]

1 光学センサ 2 回転ミラー 3 補正装置 4 2次元CCD 5 恒星観測方向 6 着陸面撮像部 7 パノラマ撮像部 8 バッフル 9 レンズ系 10 回転ミラー部 11 パノラマ方向 12 着陸面方向 Reference Signs List 1 optical sensor 2 rotating mirror 3 correction device 4 two-dimensional CCD 5 stellar observation direction 6 landing surface imaging unit 7 panoramic imaging unit 8 baffle 9 lens system 10 rotating mirror unit 11 panoramic direction 12 landing surface direction

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−237038(JP,A) 特開 昭57−132494(JP,A) (58)調査した分野(Int.Cl.7,DB名) G06T 1/00 G01B 21/00 G03B 37/00 H04N 5/335 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-4-237038 (JP, A) JP-A-57-132494 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G06T 1/00 G01B 21/00 G03B 37/00 H04N 5/335

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 恒星位置の観測により宇宙機の姿勢を検
出する第1のセンサと; 前記宇宙機が天体着陸時に天体表面の画像を取得する第
2のセンサと; 前記宇宙機が前記天体着陸後に全景画像を取得する第3
のセンサと; 前記第1のセンサ、前記第2のセンサ、前記第3のセン
サの各々が取得する光学像を回転ミラーの位置により選
択する回転ミラー機構部と;前記光学像を検出する電荷結合デバイスおよびこの電荷
結合デバイスにより得た画像の輝度、視野範囲、解像度
の変更を行なう補正処理部を有する光学処理手段と ; を備えたことを特徴とする航法用光学センサ。
A first sensor for detecting an attitude of the spacecraft by observing a stellar position; a second sensor for acquiring an image of the surface of the celestial body when the spacecraft lands on the astronomical object; 3rd acquisition of panoramic image later
A rotating mirror mechanism for selecting an optical image acquired by each of the first sensor, the second sensor, and the third sensor based on a position of a rotating mirror; and charge coupling for detecting the optical image Device and this charge
Brightness, field of view, and resolution of the image obtained by the coupling device
An optical processing means having a correction processing unit for changing the value .
【請求項2】 恒星位置の観測により宇宙機の姿勢を検
出する恒星センサと;前記宇宙機が天体着陸時に天体表
面の画像を取得する着陸センサと;前記宇宙機が前記天
体着陸後に全景画像を取得するパノラマセンサと;前記
恒星センサ、前記着陸センサおよび前記パノラマセンサ
からの光学像のいずれかの位置に回転ミラーの向きを設
定する回転ミラー部と;前記回転ミラーで反射された光
学像を集光し結像させるレンズ系と;前記光学像を検出
する電荷結合デバイスおよびこの電荷結合デバイスによ
り得た画像の輝度、視野範囲、解像度の変更を行なう補
正処理部を有する光学処理手段と;を備えたことを特徴
とする航法用光学センサ。
2. A star sensor for detecting an attitude of the spacecraft by observing a star position; a landing sensor for acquiring an image of the surface of the celestial body when the spacecraft lands; and a panoramic image obtained by the spacecraft after the celestial body lands. A panoramic sensor to be acquired; a rotating mirror unit for setting a direction of the rotating mirror at any position of the optical images from the star sensor, the landing sensor, and the panoramic sensor; and an optical image reflected by the rotating mirror. A lens system for illuminating and forming an image; and an optical processing means having a charge-coupled device for detecting the optical image and a correction processing unit for changing the brightness, the visual field range, and the resolution of an image obtained by the charge-coupled device. An optical sensor for navigation.
【請求項3】 前記補正処理部が、前記恒星のマップデ
ータおよび前記天体表面の地形データを記憶し、前記恒
星センサおよび前記着陸センサが取得した画像データと
比較照合する機能を備えたことを特徴とする請求項2記
載の航法用光学センサ。
3. The correction processing unit has a function of storing map data of the star and topographical data of the surface of the celestial body, and comparing and comparing the map data with image data acquired by the star sensor and the landing sensor. The optical sensor for navigation according to claim 2, wherein
JP09167374A 1997-06-24 1997-06-24 Optical sensor for navigation Expired - Fee Related JP3105829B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09167374A JP3105829B2 (en) 1997-06-24 1997-06-24 Optical sensor for navigation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09167374A JP3105829B2 (en) 1997-06-24 1997-06-24 Optical sensor for navigation

Publications (2)

Publication Number Publication Date
JPH1115950A JPH1115950A (en) 1999-01-22
JP3105829B2 true JP3105829B2 (en) 2000-11-06

Family

ID=15848538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09167374A Expired - Fee Related JP3105829B2 (en) 1997-06-24 1997-06-24 Optical sensor for navigation

Country Status (1)

Country Link
JP (1) JP3105829B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100943003B1 (en) * 2008-04-21 2010-02-18 (주)이오니아이엔티 Panorama camera and method for processing image taken a photograph by the same

Also Published As

Publication number Publication date
JPH1115950A (en) 1999-01-22

Similar Documents

Publication Publication Date Title
US5107434A (en) Three-axis spacecraft attitude control using polar star sensor
US6130705A (en) Autonomous electro-optical framing camera system with constant ground resolution, unmanned airborne vehicle therefor, and methods of use
US6227496B1 (en) Attitude determination system for artificial satellite
EP3684694B1 (en) Offload adjustment for satellite image diversity
EP0738947B1 (en) An attitude control and navigation system for high resolution imaging
US7216036B2 (en) Integrated inertial stellar attitude sensor
JP4302625B2 (en) Air reconnaissance system
US20180262271A1 (en) Celestial navigation using laser communication system
US8240611B2 (en) Retro-geo spinning satellite utilizing time delay integration (TDI) for geosynchronous surveillance
US20030185549A1 (en) Dual band framing reconnaissance camera
JPH08190161A (en) Focal-plane-array imaging device for satellite
JPH0719100U (en) Image navigation support device for camera-mounted satellite
Eisenman et al. The advancing state-of-the-art in second generation star trackers
US20020121574A1 (en) Method and sensor for capturing rate and position and stabilization of a satellite using at least one focal plane
CA2346462A1 (en) A combined earth-star sensor system and a method for determining the orbit and attitude of space vehicles
Eisenman et al. New generation of autonomous star trackers
US5721431A (en) Satellite attitude sensor using thermal imaging
CN113091732B (en) Fixed star capturing method and system for satellite performance index on-orbit evaluation
US5225885A (en) Apparatus for determining the attitude of a celestial body orbiting spacecraft or satellite relative to the celestial body
JP3105829B2 (en) Optical sensor for navigation
EP1111402A1 (en) Star tracker with CCDs for high radiation environments
JP4271264B2 (en) Image capture method using oversampled push bloom scanning
Meller et al. Digital CMOS cameras for attitude determination
US5864131A (en) System and method for accurate geolocation of images
Strojnik et al. Push-broom reconnaissance camera with time expansion for a (Martian) landing-site certification

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000808

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080901

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080901

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080901

Year of fee payment: 8

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080901

Year of fee payment: 8

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080901

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080901

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees