JPS6116905B2 - - Google Patents
Info
- Publication number
- JPS6116905B2 JPS6116905B2 JP57232541A JP23254182A JPS6116905B2 JP S6116905 B2 JPS6116905 B2 JP S6116905B2 JP 57232541 A JP57232541 A JP 57232541A JP 23254182 A JP23254182 A JP 23254182A JP S6116905 B2 JPS6116905 B2 JP S6116905B2
- Authority
- JP
- Japan
- Prior art keywords
- hollow chamber
- heat
- reduced pressure
- friction heat
- equilibrium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 230000020169 heat generation Effects 0.000 claims description 19
- 239000000463 material Substances 0.000 claims description 14
- 238000005338 heat storage Methods 0.000 claims description 10
- 239000011232 storage material Substances 0.000 claims description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 7
- 238000001035 drying Methods 0.000 description 16
- 238000010438 heat treatment Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 230000006837 decompression Effects 0.000 description 3
- 240000000599 Lentinula edodes Species 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 235000001674 Agaricus brunnescens Nutrition 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 230000001766 physiological effect Effects 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24V—COLLECTION, PRODUCTION OR USE OF HEAT NOT OTHERWISE PROVIDED FOR
- F24V40/00—Production or use of heat resulting from internal friction of moving fluids or from friction between fluids and moving bodies
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
Description
【発明の詳細な説明】
この発明は、減圧平衡摩擦熱発生機構および熱
交換機構を有する減圧平衡摩擦熱発生装置に関す
る。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a reduced pressure equilibrium friction heat generation device having a reduced pressure equilibrium friction heat generation mechanism and a heat exchange mechanism.
減圧平衡加熱装置について本発明者は、既に特
開昭57−19582号、特開昭57−19583号、特開昭57
−55379号、特開昭57−55378号、特開昭57−
144869号、特開昭57−164276号、特開昭58−
45483号、特開昭58−182060号などにおいてその
基本技術及びその応用技術を提案した。 Regarding the reduced pressure equilibrium heating device, the present inventor has already published JP-A-57-19582, JP-A-57-19583, and JP-A-57-1958.
-55379, JP-A-57-55378, JP-A-57-
No. 144869, JP-A-57-164276, JP-A-58-
The basic technology and its applied technology were proposed in publications such as No. 45483 and Japanese Unexamined Patent Publication No. 182060/1983.
即ち、従来一般に中空室内の被乾燥物の乾燥に
は、熱源と加熱した気体を送風する送風装置とを
別個に要し、そのため有効なエネルギー利用がな
されていないという欠点を有した。そこで特別の
熱源を要しない減圧平衡摩擦熱発生機構を有する
中空室からなる乾燥装置及び乾燥方法すなわち、
密閉された中空室内の空気を、回転体の回転作用
により強制吸引して室外に排気させ、室内を減圧
して室内外の圧力差を略一定の平衡状態に保つと
共に、この平衡状態を維持しながら、前記回転体
の回転作用を継続させて空気との摩擦作用を促進
して摩擦熱を発生させ、この摩擦熱により中空室
内を加熱し熱源として利用する外に、さらに必要
に応じて中空室内に手動または自動操作で外気を
送給して中空室内の被乾燥物を乾燥する装置およ
び方法を提案した。他方、外気吸入作用と、排気
作用とを同一の熱交換機構内で互いに反対方向に
働かせ、排気過程の高温気体が有する熱量を、吸
入過程の低温気体が吸収して、ほぼ完全に近い熱
交換を行わせ熱損失を殆んど無くして中空室内の
温度降下を防止することを目的として熱交換機構
を有する減圧平衡摩擦熱発生装置としては、特開
昭58−182060号などを提案した。 That is, in the past, drying of materials to be dried in a hollow chamber generally required a separate heat source and a blower device for blowing heated gas, which had the disadvantage that energy was not utilized effectively. Therefore, a drying apparatus and a drying method consisting of a hollow chamber having a reduced pressure equilibrium frictional heat generation mechanism that does not require a special heat source, namely,
The air inside the sealed hollow chamber is forcibly sucked in and exhausted to the outside by the rotating action of the rotating body, and the pressure inside the room is reduced to keep the pressure difference between the inside and outside in a substantially constant equilibrium state, and this equilibrium state is maintained. However, the rotating action of the rotating body is continued to promote frictional action with the air to generate frictional heat, and this frictional heat heats the inside of the hollow chamber and is used as a heat source. We proposed a device and method for drying materials in a hollow chamber by supplying outside air manually or automatically. On the other hand, the outside air intake action and the exhaust action are made to work in opposite directions within the same heat exchange mechanism, and the amount of heat held by the high temperature gas in the exhaust process is absorbed by the low temperature gas in the intake process, resulting in almost complete heat exchange. Japanese Patent Laid-Open No. 182060/1983 has proposed a decompression equilibrium friction heat generating device having a heat exchange mechanism for the purpose of almost eliminating heat loss and preventing a drop in temperature within the hollow chamber.
さらに発明者は、減圧平衡摩擦熱発生機構およ
び熱交換機構を有する減圧平衡摩擦熱加熱装置を
用いて種々の被乾燥物を乾燥する過程で以下のこ
とを知見した。一般に被乾燥物例えばしいたけの
ようなきのこ類の乾燥においては極端な高温は要
せず、むしろ高温をかけると表面は変形したまま
内部水分は残留して不完全な乾燥となり、そのた
め自然乾燥が用いられることがあつたが、自然乾
燥では植物の生理作用により養分は逸失する欠点
を有する。ところで該減圧平衡摩擦熱発生装置は
効率が良いため直ちに高温を得やすく過熱しがち
で良質な乾燥物を得るためには回転体の回転をし
ばしば中断して過熱を防止したり冷却機構を別個
設けたりする必要があり、運転効率が低下する欠
点を有した。また被乾燥物を乾燥するにあたつて
は、乾燥過程で被乾燥物本体のみならず、室内に
排出される被乾燥物の含有水分、室内に排出され
た含有水分の水蒸気および室内気体をも加熱する
ことになる。ところで水は比熱が高いため、同一
温度に上昇するにあたつても加熱に要する熱量は
他の物質に比し大であるが、逆に同一温度まで加
熱したとき含有する熱量は大である。他方摩擦熱
発生機構の回転体を複数直列に設置した場合排気
側の回転体付近ほど高温となることも知見した。
しかるに、従来の減圧平衡摩擦熱発生機構および
熱交換機構を有する減圧平衡摩擦熱加熱装置で
は、被乾燥物から排出された水分を含有する室内
気体の有効な利用がなされず、該室内気体を一度
だけ室内導入気体と熱交換するだけで室外に排出
していたため、従来の方法あるいは装置では、運
転効率、乾燥効率が劣るという欠点を有した。こ
の発明はこれら知見にもとずくものである。すな
わち、この発明は中空室内の気体を、回転体の回
転作用により強制吸引して室外に排気させ、室内
を減圧して室内外の圧力差を略一定の平衡状態に
保つと共に、この平衡状態を維持しながら、前記
回転体の回転作用を継続させて気体との摩擦作用
を促進して摩擦熱を発生させ、この摩擦熱により
中空室内を加熱して、中空室内の処理物を減圧加
熱する減圧平衡摩擦熱発生機構と複数の通路を有
する中空室循環機構とを有し、中空室循環機構お
よび減圧平衡摩擦熱発生機構の排気側を一体に組
込むことで熱交換機構を形成するとともに、中空
室循環機構の複数の通路を選択的に気体が通過可
能としたうえで通路の一に蓄熱材を設置すること
を特徴とする減圧平衡摩擦熱発生装置を提供する
ことで上記欠点を除去し、運転効率がよく乾燥効
率の良い装置を提供することを目的とする。 Furthermore, the inventor discovered the following in the process of drying various materials to be dried using a vacuum equilibrium friction heat heating device having a vacuum equilibrium friction heat generation mechanism and a heat exchange mechanism. Generally, extreme high temperatures are not required for drying mushrooms such as shiitake mushrooms.In fact, if high temperatures are applied, the surface will remain deformed and internal moisture will remain, resulting in incomplete drying.For this reason, natural drying is used. However, natural drying has the disadvantage that nutrients are lost due to the physiological effects of the plants. By the way, the depressurized equilibrium friction heat generating device is highly efficient, so it is easy to obtain high temperatures quickly and tends to overheat.In order to obtain high quality dried products, the rotation of the rotating body must be frequently interrupted to prevent overheating, or a separate cooling mechanism must be provided. This has the drawback of reducing operating efficiency. In addition, when drying the material to be dried, not only the material to be dried but also the moisture contained in the material to be dried that is discharged into the room, the water vapor of the contained moisture that is discharged into the room, and the indoor gas are also removed during the drying process. It will heat up. By the way, since water has a high specific heat, the amount of heat required to heat it to the same temperature is greater than that of other substances, but conversely, the amount of heat it contains when heated to the same temperature is large. On the other hand, it was also found that when multiple rotating bodies of the friction heat generation mechanism are installed in series, the temperature becomes higher near the rotating bodies on the exhaust side.
However, in the conventional reduced pressure equilibrium frictional heat heating device having a reduced pressure equilibrium frictional heat generation mechanism and a heat exchange mechanism, the indoor gas containing moisture discharged from the material to be dried is not effectively utilized. Conventional methods and devices have had the disadvantage of poor operating efficiency and drying efficiency, as they only exchange heat with the gas introduced into the room and then discharge it outdoors. This invention is based on these findings. That is, this invention forcibly suctions the gas inside the hollow chamber by the rotating action of the rotary body and exhausts it to the outside, reduces the pressure in the chamber, maintains the pressure difference between the inside and outside in a substantially constant equilibrium state, and maintains this equilibrium state. While maintaining the temperature, the rotating action of the rotating body is continued to promote the frictional action with the gas to generate frictional heat, and this frictional heat heats the inside of the hollow chamber to reduce pressure and heat the material to be processed inside the hollow chamber. It has an equilibrium friction heat generation mechanism and a hollow chamber circulation mechanism having a plurality of passages, and by integrating the exhaust side of the hollow chamber circulation mechanism and the decompression equilibrium friction heat generation mechanism, a heat exchange mechanism is formed. The above drawbacks are eliminated by providing a depressurized equilibrium friction heat generating device characterized by allowing gas to selectively pass through a plurality of passages of the circulation mechanism and installing a heat storage material in one of the passages, thereby eliminating the above drawbacks and improving operation. The purpose is to provide a device that is efficient and has good drying efficiency.
以下この発明の実施例の中央断面を表わす第1
図に従つて説明する。1は中空室であり、必要通
気箇所以外は密閉状態に形成してなる。2は中空
室1内部に設置する減圧平衡摩擦熱発生機構であ
り、この実施例では回転羽根を有する回転体3,
3′,3″及び回転体3,3′,3″を内設する略円
筒状の吸気筒4,4′,4″を上下に順次3段直列
に多段に積層してなる。回転体および吸気筒の数
は任意に選択可能である。回転体3,3′,3″は
モータ5で中空室1内の空気等気体を吸引排気方
向に回転可能である。回転体3の上部には、特開
昭58−172492号中等で、提案した従動回転機構を
設置してもよい。 The following is a first diagram showing a central cross section of an embodiment of the present invention.
This will be explained according to the diagram. Reference numeral 1 denotes a hollow chamber, which is formed in a sealed state except for necessary ventilation points. Reference numeral 2 denotes a depressurized equilibrium friction heat generation mechanism installed inside the hollow chamber 1, and in this embodiment, a rotating body 3 having rotating blades,
3', 3'' and rotating bodies 3, 3', 3'' are installed in substantially cylindrical suction cylinders 4, 4', 4'', stacked vertically in three stages in series.The rotating bodies and The number of suction cylinders can be selected arbitrarily. The rotary bodies 3, 3', 3'' can be rotated by a motor 5 in the direction of sucking and exhausting gas such as air in the hollow chamber 1. A driven rotation mechanism proposed in Japanese Patent Application Laid-Open No. 172492/1983 may be installed on the upper part of the rotating body 3.
すなわち、回転体3の上部に対向かつ適宜離れ
た位置に従動フアン7を軸支し、対向する回転体
3の回転に従動して回転可能な機構である。この
ような機構を設置した場合、中空室1内の気体を
拡散飛翔させ中空室1内で強制的な気流の発生を
可能とし、乾燥作用を促がしかつ温度上昇に寄与
することが可能となる。回転体3,3′,3″の各
回転領域には摩擦熱発生部A,A′,A″が形成さ
れる。8は中空室循環機構であり、中空室1の上
部と下部とを連絡し下部にはモータ12で回転可
能な循環フアン13を有する。中空室循環機構8
はその途中で摩擦熱発生機構2の排気側を一体に
組込むことで熱交換機構11を形成する。中空室
循環機構8はまた途中で2つの通路9,9′に分
かれ、弁10の作用により通路の選択が可能であ
る一方の通路9内には比熱の大きい物質、この実
施例においては水を用いた蓄熱材11を設置す
る。この実施例では、細い合成樹脂製パイプを積
層し、パイプ内に貯水することでおこなう。15
は中空室内に設置するしいたけ、木材等の処理物
たる被乾燥物である。16は外気導入管であり、
中空室1内にバルブ17を介して必要量に応じた
室外の気体の供給が可能である。外気導入管16
はこの実施例では中空室外と連絡する途中で減圧
平衡摩擦熱発生機構2の排気側を通過することで
特開昭58−182060号などで開示されるいわゆる熱
交換機構14′を有する。 In other words, it is a mechanism in which a driven fan 7 is pivotally supported at a position facing and appropriately separated from the upper part of the rotating body 3, and is rotatable as a result of the rotation of the opposing rotating body 3. When such a mechanism is installed, it is possible to diffuse the gas in the hollow chamber 1 and generate a forced airflow within the hollow chamber 1, which promotes the drying effect and contributes to a rise in temperature. Become. Frictional heat generating portions A, A', A'' are formed in each rotating region of the rotating bodies 3, 3', 3''. Reference numeral 8 denotes a hollow chamber circulation mechanism, which connects the upper and lower parts of the hollow chamber 1 and has a circulation fan 13 rotatable by a motor 12 at the lower part. Hollow chamber circulation mechanism 8
A heat exchange mechanism 11 is formed by integrally incorporating the exhaust side of the friction heat generation mechanism 2 in the middle. The hollow chamber circulation mechanism 8 is also divided into two passages 9 and 9' in the middle, and the passage can be selected by the action of a valve 10.In one passage 9, a substance with a large specific heat, water in this embodiment, is carried. The used heat storage material 11 is installed. In this embodiment, thin synthetic resin pipes are stacked and water is stored in the pipes. 15
is the processed material to be dried, such as shiitake mushrooms and wood, placed in the hollow chamber. 16 is an outside air introduction pipe;
It is possible to supply outdoor gas into the hollow chamber 1 via a valve 17 according to the required amount. Outside air introduction pipe 16
In this embodiment, a so-called heat exchange mechanism 14' disclosed in JP-A-58-182060 is provided by passing through the exhaust side of the decompression equilibrium friction heat generation mechanism 2 on the way to communicate with the outside of the hollow chamber.
そこでモータ5に通電し、回転羽根を有する回
転体3,3′,3″を回転すると、密閉した中空室
1内の空気等の気体は回転体3,3′,3″の吸引
排気作用によつて次第に矢印B方向に排気されて
減圧され、中空室1の室内外の圧力差は次第に大
きくなるが或る圧力差に達した時点で略平衡状態
に達し、この平衡状態を維持する。この平衡状態
における中空室1の内外の圧力差は、回転体3,
3′,3″の回転吸引力の大きさと、吸気筒4,
4′,4″の径と回転体3,3′,3″との間隙の大
きさなどによつて定まるが、この平衡状態は、回
転体3,3′,3″の回転作用が継続する限り維持
される。 Therefore, when the motor 5 is energized and the rotating bodies 3, 3', 3'' having rotating blades are rotated, the gas such as air in the sealed hollow chamber 1 is sucked and exhausted by the rotating bodies 3, 3', 3''. Therefore, the air is gradually evacuated in the direction of arrow B, and the pressure is reduced, and the pressure difference between the interior and exterior of the hollow chamber 1 gradually increases, but when a certain pressure difference is reached, a substantially equilibrium state is reached, and this equilibrium state is maintained. In this equilibrium state, the pressure difference between the inside and outside of the hollow chamber 1 is as follows:
3′, 3″ rotation suction force and intake cylinder 4,
This equilibrium state is determined by the diameter of 4', 4'' and the size of the gap between the rotating bodies 3, 3', 3'', and the rotational action of the rotating bodies 3, 3', 3'' continues. will be maintained for as long as possible.
この平衡状態では回転体3の回転領域内にある
摩擦熱発生部において空気の滞留現象が生じ回転
体3,3′3″との摩擦作用が反覆継続するので摩
擦熱が発生して次第に温度が上昇する。この摩擦
熱が中空体1内に伝わり室内を所望の温度に加熱
する。回転体3,3′,3″各付近の温度は排気側
に最も近い回転体3″付近が最も高温となり順次
回転体3′付近回転体3付近と温度は低くなる。 In this equilibrium state, air stagnates in the frictional heat generating part in the rotation area of the rotating body 3, and the frictional action with the rotating bodies 3, 3'3'' continues to repeat, so frictional heat is generated and the temperature gradually increases. This frictional heat is transmitted into the hollow body 1 and heats the interior to the desired temperature.The temperature near each of the rotating bodies 3, 3', and 3'' is highest near the rotating body 3'', which is closest to the exhaust side. The temperature sequentially becomes lower near the rotating body 3' and near the rotating body 3.
中空室内の空気等気体は中空室循環機構8によ
り矢印C方向に循環するが途中で摩擦熱発生機構
2の排気側と一体に熱交換機構14を形成してい
るため排気熱と熱交換した気体が中空室1内に導
入される。この場合、蓄熱材11のない通路9′
を使用する。熱交換する、中空室循環機構8内の
気体は水分を多く含有しており、乾燥した同一気
体に比し比熱が大であるため、熱交換時の熱量の
吸収量が大となるにもかかわらず中空室1内の気
体の温度の急激な変化をさけることが可能とな
る。 Gas such as air in the hollow chamber is circulated in the direction of arrow C by the hollow chamber circulation mechanism 8, but since a heat exchange mechanism 14 is formed integrally with the exhaust side of the friction heat generation mechanism 2, the gas exchanges heat with exhaust heat. is introduced into the hollow chamber 1. In this case, the passage 9' without the heat storage material 11
use. The gas in the hollow chamber circulation mechanism 8 that exchanges heat contains a lot of water and has a higher specific heat than the same dry gas, so even though the amount of heat absorbed during heat exchange is large. First, it becomes possible to avoid sudden changes in the temperature of the gas within the hollow chamber 1.
中空室内の過熱状態となつたときは中空室循環
機構8を通過する気体は、蓄熱材11を有する通
路9に弁10を切換えることで導入する。水は比
熱が高いため熱量の吸収の割合には他の材質に比
し温度の上昇は防止可能である。更に温度が上昇
する場合は、摩擦熱発生機構2の運転を停止し、
蓄熱材に蓄熱した熱を中空室循環機構8により中
空室1内に導入する。中空室1内の温度が低下し
たときは、摩擦熱発生機構2の運転を再開して中
空室1内を加熱する。以下中空室1内の温度に応
じて、通路9,9′の切換え、摩擦熱発生機構の
運転および運転停止をおこなう。また、中空室1
が過湿状態となる場合は外気導入管16から外気
を導入することで減湿をおこなう。この実施例で
は外気導入管16は熱交換機構14′を有するの
で導入する外気は予熱され、排気熱の有用化が図
れる。したがつてこの発明は、被乾燥物の含有水
分を一種の蓄熱材として利用するため急激な温度
変化は防止可能であり乾燥に適した円滑な加熱を
連続して行なうことが可能となり、運転効率、乾
燥効率は向上する。 When the hollow chamber becomes overheated, the gas passing through the hollow chamber circulation mechanism 8 is introduced into the passage 9 having the heat storage material 11 by switching the valve 10. Since water has a high specific heat, it is possible to prevent a rise in temperature compared to other materials in terms of the rate of absorption of heat. If the temperature rises further, stop the operation of the friction heat generation mechanism 2,
The heat stored in the heat storage material is introduced into the hollow chamber 1 by the hollow chamber circulation mechanism 8. When the temperature inside the hollow chamber 1 drops, the operation of the frictional heat generating mechanism 2 is restarted to heat the inside of the hollow chamber 1. Thereafter, depending on the temperature inside the hollow chamber 1, the passages 9 and 9' are switched, and the friction heat generating mechanism is operated and stopped. Also, hollow chamber 1
If the air becomes overhumid, outside air is introduced from the outside air introduction pipe 16 to reduce humidity. In this embodiment, since the outside air introduction pipe 16 has a heat exchange mechanism 14', the outside air to be introduced is preheated, and exhaust heat can be utilized. Therefore, this invention uses the moisture contained in the material to be dried as a kind of heat storage material, so it is possible to prevent sudden temperature changes, and it is possible to continuously perform smooth heating suitable for drying, which improves operational efficiency. , the drying efficiency is improved.
第1図はこの発明の一実施例の中央断面図であ
る。
1……中空室、2……摩擦熱発生機構、3,
3′,3″……回転体、4,4′,4″……吸気筒、
5……モータ、6……従動回転機構、7……従動
フアン、8……中空室循環機構、9,9′……通
路、10……弁、11……蓄熱材、12……モー
タ、13……循環フアン、14,14′……熱交
換機構、15……処理物、16……外気導入管、
17……バルブ。
FIG. 1 is a central sectional view of an embodiment of the present invention. 1...Hollow chamber, 2...Friction heat generation mechanism, 3,
3', 3''...rotating body, 4, 4', 4''...intake cylinder,
5... Motor, 6... Driven rotation mechanism, 7... Driven fan, 8... Hollow chamber circulation mechanism, 9, 9'... Passage, 10... Valve, 11... Heat storage material, 12... Motor, 13...Circulation fan, 14, 14'...Heat exchange mechanism, 15...Processed material, 16...Outside air introduction pipe,
17...Valve.
Claims (1)
強制吸引して室外に排気させ、室内を減圧して室
内外に圧力差を略一定の平衡状態に保つと共に、
この平衡状態を維持しながら、前記回転体の回転
作用を継続させて気体との摩擦作用を促進して摩
擦熱を発生させ、この摩擦熱により中空室内を加
熱して、中空室内の処理物を減圧加熱する減圧平
衡摩擦熱発生機構と複数の通路を有する中空室循
環機構とを有し、中空室循環機構および減圧平衡
摩擦熱発生機構の排気側を一体に組込むことで熱
交換機構を形成するとともに、中空室循環機構の
複数の通路を選択的に気体が通過可能としたうえ
で通路内の一に蓄熱材を設置することを特徴とす
る減圧平衡摩擦熱発生装置。 2 減圧平衡摩擦熱発生機構が、多段回転体から
なる特許請求の範囲第1項記載の減圧平衡摩擦熱
発生装置。 3 多段回転体が中空室内にある特許請求の範囲
第2項記載の減圧平衡摩擦熱発生装置。 4 蓄熱材が比熱の高い材質である特許請求の範
囲第1項または第2項または第3項記載の減圧平
衡摩擦熱発生装置。 5 蓄熱材が水である特許請求の範囲第1項また
は第2項または第3項記載の減圧平衡摩擦熱発生
装置。[Scope of Claims] 1. The gas in the hollow chamber is forcibly suctioned by the rotational action of a rotating body and exhausted to the outside, and the pressure inside the chamber is reduced to keep the pressure difference between the inside and outside in a substantially constant equilibrium state,
While maintaining this equilibrium state, the rotating action of the rotating body is continued to promote frictional action with the gas to generate frictional heat, and this frictional heat heats the inside of the hollow chamber to cool the processing material inside the hollow chamber. It has a reduced pressure equilibrium friction heat generation mechanism that heats under reduced pressure and a hollow chamber circulation mechanism having a plurality of passages, and forms a heat exchange mechanism by integrating the exhaust side of the hollow chamber circulation mechanism and the reduced pressure equilibrium friction heat generation mechanism. Further, a reduced pressure equilibrium friction heat generation device is characterized in that gas is selectively allowed to pass through a plurality of passages of the hollow chamber circulation mechanism, and a heat storage material is installed in one of the passages. 2. The reduced pressure balanced friction heat generation device according to claim 1, wherein the reduced pressure balanced friction heat generation mechanism comprises a multi-stage rotating body. 3. The reduced-pressure equilibrium friction heat generating device according to claim 2, wherein the multi-stage rotating body is in the hollow chamber. 4. The reduced pressure equilibrium friction heat generating device according to claim 1, 2, or 3, wherein the heat storage material is a material with high specific heat. 5. The reduced pressure equilibrium friction heat generating device according to claim 1, 2 or 3, wherein the heat storage material is water.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57232541A JPS59122855A (en) | 1982-12-27 | 1982-12-27 | Pressure reduced and balanced frictional heat generating device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57232541A JPS59122855A (en) | 1982-12-27 | 1982-12-27 | Pressure reduced and balanced frictional heat generating device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59122855A JPS59122855A (en) | 1984-07-16 |
JPS6116905B2 true JPS6116905B2 (en) | 1986-05-02 |
Family
ID=16940940
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57232541A Granted JPS59122855A (en) | 1982-12-27 | 1982-12-27 | Pressure reduced and balanced frictional heat generating device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59122855A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6127478A (en) * | 1984-07-17 | 1986-02-06 | 株式会社山益製作所 | Closing drying method |
-
1982
- 1982-12-27 JP JP57232541A patent/JPS59122855A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS59122855A (en) | 1984-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR890003896B1 (en) | Heating process and its apparatus in reducing air pressure within a balanced level | |
JPS6116905B2 (en) | ||
JPS6022264B2 (en) | Vacuum drying equipment | |
JPS6116906B2 (en) | ||
CA1210287A (en) | Heating process and its apparatus in reducing air pressure within a chamber at a balanced level | |
CN220334213U (en) | Dehumidification mechanism of powder vacuum feeder | |
RU2027127C1 (en) | Timber material drying method | |
RU20956U1 (en) | DRYING CHAMBER | |
CN206959240U (en) | A kind of ventilation dewetting mechanism of heat pump dryer | |
JPS59122856A (en) | Pressure reduced and balanced frictional heat generating device | |
JPS61107052A (en) | Pressure reduction heater | |
JPS5821185B2 (en) | Decompression equilibrium swirl convection heating method | |
JPS6135464B2 (en) | ||
JPS5930875Y2 (en) | ventilation dryer | |
JPS6224056B2 (en) | ||
JPH0222868B2 (en) | ||
JPS5941729A (en) | Dehumidifier | |
JPH0454875B2 (en) | ||
JPH0222866B2 (en) | ||
JPS599198Y2 (en) | cooling tower | |
JPS6022265B2 (en) | Reduced pressure equilibrium swirl convection heating drying method and its equipment | |
JPS5847623B2 (en) | Rotary heating mechanism mounting device in reduced pressure equilibrium heating device | |
JPS5928309Y2 (en) | Partition plate structure for diffusion and introduction of outside air in vacuum equilibrium heating drying equipment | |
JPS60253784A (en) | Drier using heat pump | |
JPS62106279A (en) | Constant-temperature decompression drying method and device thereof |