JPS5821185B2 - Decompression equilibrium swirl convection heating method - Google Patents

Decompression equilibrium swirl convection heating method

Info

Publication number
JPS5821185B2
JPS5821185B2 JP55178719A JP17871980A JPS5821185B2 JP S5821185 B2 JPS5821185 B2 JP S5821185B2 JP 55178719 A JP55178719 A JP 55178719A JP 17871980 A JP17871980 A JP 17871980A JP S5821185 B2 JPS5821185 B2 JP S5821185B2
Authority
JP
Japan
Prior art keywords
hollow chamber
rotating body
air
action
outside
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55178719A
Other languages
Japanese (ja)
Other versions
JPS57104053A (en
Inventor
久保山信義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP55178719A priority Critical patent/JPS5821185B2/en
Publication of JPS57104053A publication Critical patent/JPS57104053A/en
Publication of JPS5821185B2 publication Critical patent/JPS5821185B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Drying Of Solid Materials (AREA)

Description

【発明の詳細な説明】 この発明は、密閉された中空室内の温度を、回転体の回
転作用によって室内を減圧状態に保ちながら空気との摩
擦を促がして摩擦熱を発生させこの摩擦熱を有する気流
を旋回した層流状態に変換して中空室内で対流作用を生
じさせ、これによシ中空室内の温度分布を均一に保持で
きるようにした減圧平衡旋回対流加熱方法に関する。
DETAILED DESCRIPTION OF THE INVENTION This invention reduces the temperature in a sealed hollow chamber by promoting friction with the air while keeping the chamber in a reduced pressure state through the rotational action of a rotating body, thereby generating frictional heat. The present invention relates to a reduced-pressure equilibrium swirling convection heating method that converts an airflow having a swirling laminar flow into a swirling laminar flow state to generate convection within a hollow chamber, thereby maintaining a uniform temperature distribution within the hollow chamber.

また、この発明は、密閉された中空室内の被乾燥物を回
転体の回転作用に基づく減圧作用と、加熱作用と、旋回
する層流状態の対流作用との相乗効果によって有効に乾
燥できるようにした減圧平衡旋回対流加熱方法に関する
In addition, this invention makes it possible to effectively dry the material to be dried in a sealed hollow chamber through the synergistic effect of the depressurizing action based on the rotation action of a rotating body, the heating action, and the convection action of the swirling laminar flow state. This invention relates to a reduced pressure equilibrium swirling convection heating method.

従来、一般に中空室内を加熱する方法としては、たとえ
ば熱風を送給するか、あるいは加熱ヒータを用いるかな
どのように必らず熱源を必要としていた。
Conventionally, methods for heating the inside of a hollow chamber have always required a heat source, such as by supplying hot air or using a heater.

ことに、被乾燥物を収納した中空室に対しては、送風す
るための送風ポンプと必要な加熱空気を得るだめの石油
、ガスまたはヒータのような熱源とを必要とした。
In particular, the hollow chamber containing the material to be dried requires an air pump to blow air and a heat source such as oil, gas or a heater to obtain the necessary heated air.

したがって、乾燥を目的とする加熱手段には、送風のだ
めのエネルギーの外に熱エネルギーを得るための熱源を
必要としなければならないほど有効なエネルギーの利用
がなされず、エネルギーの浪費は避けられない不都合が
あった。
Therefore, the heating means for the purpose of drying requires a heat source other than the energy of the ventilation tank to obtain thermal energy, so that energy is not used effectively, and energy waste is an unavoidable disadvantage. was there.

この発明は、斜上の点に着目して成されたもので、密閉
された中空室に対して熱エネルギーを得るだめの特別な
熱源を用いることなく、送風のためのエネルギーを、回
転体の回転作用に基づく吸引減圧作用と、その減圧が平
衡された状態での回転体と空気との摩擦発熱作用とに変
換してエネルギーを無駄なく有効に利用すると共に、摩
擦熱を有する気流を旋回した層流状態となし、かつ対流
作用を生起させて高能率にして短時間な加熱逓増効果を
奏し得るようにした減圧平衡旋回対流加熱方法を提供す
ることにある。
This invention was made by focusing on the diagonal point, and the energy for blowing air can be transferred to the rotating body without using a special heat source to obtain thermal energy for the sealed hollow chamber. By converting the suction depressurization action based on the rotational action and the frictional heat generation action between the rotating body and the air when the depressurization is balanced, energy is used effectively without wastage, and the airflow with frictional heat is swirled. It is an object of the present invention to provide a reduced pressure equilibrium swirling convection heating method which achieves a laminar flow state and generates a convection action to achieve high efficiency and a short-time heating increasing effect.

また、この発明は、密閉された中空室に対して上述の回
転体による吸引減圧作用と、摩擦発熱作用と、旋回した
層流状態の対流作用との外に、外気の吸気作用を働かせ
て気化分の排除、乾燥作用の促進を向上するようにした
減圧平衡旋回対流加熱方法を提供するにある。
In addition to the suction depressurizing action by the rotating body, the frictional heat generation action, and the convection action of the swirling laminar flow state, the invention also provides for vaporization by applying the intake action of outside air to the sealed hollow chamber. An object of the present invention is to provide a reduced-pressure equilibrium swirl convection heating method that improves the elimination of moisture and the promotion of drying action.

以下に、この発明に係る減圧平衡旋回対流加熱方法の一
実施例を図面に示す装置に基づいて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the reduced pressure balanced swirl convection heating method according to the present invention will be described below based on the apparatus shown in the drawings.

まず、各図の構成に就いて符号と共に述べる。First, the structure of each figure will be described along with the symbols.

1は扉2,2を枢着して観音開き構造とした角筒状の密
閉された中空室で、上下左右の外周壁には断熱材3を被
着介在させて保温できるようになっている。
Reference numeral 1 denotes a rectangular cylindrical sealed hollow chamber with doors 2, 2 pivotally connected to form a double-opening structure, and heat insulating material 3 is interposed on the upper, lower, left and right outer circumferential walls to keep the room warm.

4は中空室1の天井中央に開口した吸引口で、回転体a
が回転自在に配設しである。
4 is a suction port opened in the center of the ceiling of hollow chamber 1, and
is arranged so that it can rotate freely.

そして、この回転体aは図示にあっては、電動機5によ
り回転されるプロペラファン、シロッコ77ンなどの回
転羽根6によって構成され所望の傾斜角度を有し、かつ
、中空室1内の空気を吸引排気するように回転方向が定
められている。
As shown in the figure, the rotating body a is composed of rotary blades 6 such as propeller fans or scirocco blades 77 rotated by an electric motor 5, has a desired inclination angle, and has a desired angle of inclination. The direction of rotation is determined for suction and exhaust.

そして、回転体aの回転領域には摩擦熱発生部Aが形成
される。
A frictional heat generating portion A is formed in the rotating region of the rotating body a.

7は旋回層流形成部で、前記中空室1の吸引口4より下
向きに拡開させた円錐状の案内板8と、この案内板8と
僅かに離れて下方に配設される中心孔9を穿った回転自
在の円錐状の回転板10とによって構成され、前記摩擦
熱発生部Aで得られた摩擦熱を有する気流を両板8,1
0との間で形成される間隙部gより遠心方向に旋回層流
を発生させることができるものである。
Reference numeral 7 denotes a swirling laminar flow forming section, which includes a conical guide plate 8 that expands downward from the suction port 4 of the hollow chamber 1, and a center hole 9 that is disposed below and slightly apart from the guide plate 8. The airflow having the frictional heat obtained in the frictional heat generating section A is transmitted to both the plates 8 and 1.
A swirling laminar flow can be generated in the centrifugal direction from the gap g formed between the 0 and 0.

なお、前記回転板10は、吸引口4に交叉して設けた支
杆11の中心に軸杆12の上端を固定してその下端を下
方に垂下突出させ、との軸杆12の下端にベアリング1
3を介して回転板10の中心孔9に交叉して設けた交叉
杆14の中心と回転自在に軸支すると共に前記案内板8
にはその局面四個処に一定方向に傾く斜板15を固着し
て間隙部gを通過する気流に回転体aの回転方向と同じ
方向の指向性を附与させ、さらに案内板8の上面四個処
に設けた羽根16が前記気流の指向性を受けて回転板1
0に回転体aと同一方向の回転作用を発生させ、この回
転作用により間隙部gを通過する気流を開口端g′より
遠心方向に旋回層流として吐出させることができる。
The rotary plate 10 has an upper end of a shaft rod 12 fixed at the center of a support rod 11 provided to intersect with the suction port 4, and a lower end of the shaft rod 12 projecting downward. 1
3, the guide plate 8
By fixing swash plates 15 tilting in a certain direction at four points of the curve, the airflow passing through the gap g is given directivity in the same direction as the rotating direction of the rotating body a, and the upper surface of the guide plate 8 is The four blades 16 receive the directionality of the airflow and move the rotating plate 1.
A rotating action is generated in the same direction as the rotating body a, and this rotating action allows the airflow passing through the gap g to be discharged from the opening end g' in the centrifugal direction as a swirling laminar flow.

17は中空室1の下部に一端17aを開口した外気送給
管で、中空室1の下面または下部側面に開口しである。
Reference numeral 17 denotes an outside air supply pipe having one end 17a opened at the lower part of the hollow chamber 1, and opening at the lower surface or lower side surface of the hollow chamber 1.

18は、この外気送給管1Tの中空室1側の中心個処に
(上方に向けて)開口した開口端17bを中心とした漏
斗状の拡開板で、尋人外気の室1内への導入作用を良好
にできるようにすると共に、との拡開板18内には必要
な個処に補助ヒータを設けて尋人外気を加熱することも
ある。
Reference numeral 18 denotes a funnel-shaped expansion plate centered on the opening end 17b that opens (upward) at the center of the hollow chamber 1 side of the outside air supply pipe 1T, and allows the outside air to flow into the chamber 1. In addition to improving the introduction effect, auxiliary heaters may be provided at necessary locations within the expansion plate 18 to heat the outside air.

また、外気送給管17内には除塵フィルター19を取外
自在に設けるのが好ましい。
Further, it is preferable that a dust removal filter 19 is removably provided in the outside air supply pipe 17.

20は、前記外気送給管11の調節パルプで、嫡子20
aによシ外気送給管17内を通る外気の流量を自在に調
節できるようになっている。
20 is the regulating pulp of the outside air supply pipe 11, which is the eldest child 20;
The flow rate of the outside air passing through the inside of the outside air supply pipe 17 can be freely adjusted by a.

なおこの調節バルブ20は、図示していないが作動圧の
条件を中空室1内の温度、室1内外の圧力差などによ勺
可変調節できる一般的な自動制御弁として用いることに
より、中空室1の温度または減圧状態に応じて自動的に
開閉させて外気を送給することができる。
Although not shown, this control valve 20 is used as a general automatic control valve that can variably adjust the operating pressure conditions depending on the temperature inside the hollow chamber 1, the pressure difference between the inside and outside of the chamber 1, etc. It can be automatically opened and closed depending on the temperature or reduced pressure state of 1 to supply outside air.

21は中空室1ののぞき窓、22は温度、圧力などの表
示板、23は電動機5の支持筒で、排気通路24を有し
、かつ支持筒23の開口端には消音筒25を備える。
21 is a viewing window for the hollow chamber 1; 22 is a display board for temperature, pressure, etc.; 23 is a support cylinder for the electric motor 5, which has an exhaust passage 24;

26は回転板10の下面数個処に設けた羽根である。26 are blades provided at several locations on the lower surface of the rotating plate 10.

なお、中空室1内には図示していないが被加熱物を載置
する棚、この棚を支える支持枠などを任意に備えるが、
いづれも通気効果に配慮した構成をもだせることは勿論
である。
Note that although not shown in the drawings, the hollow chamber 1 is optionally provided with a shelf for placing the object to be heated, a support frame for supporting this shelf, etc.
Of course, it is possible to create a configuration that takes into consideration the ventilation effect.

以上述べた構成において、電動機5に通電し、回転羽根
6を回転させれば、密閉された中空室1内の空気は回転
羽根6の吸引排気作用によって、次第に排気減圧され、
中空室1の内外の圧力差が次第に大きくなるが、成る圧
力差に達した時点で略々平衡状態を維持する。
In the configuration described above, when the electric motor 5 is energized and the rotary blade 6 is rotated, the air in the sealed hollow chamber 1 is gradually exhausted and depressurized by the suction and exhaust action of the rotary blade 6.
The pressure difference between the inside and outside of the hollow chamber 1 gradually increases, but when the pressure difference reaches this pressure difference, an approximately equilibrium state is maintained.

この略々一定の平衡状態における中空室1の内外の圧力
差は、回転羽根60回転吸引力の大きさと吸引口4と回
転羽根6の間隙の大きさなどによって定まるが、この平
衡状態は、回転羽根60回転作用が継続する限り維持さ
れる。
The pressure difference between the inside and outside of the hollow chamber 1 in this approximately constant equilibrium state is determined by the magnitude of the rotational suction force of the rotating blade 60 and the size of the gap between the suction port 4 and the rotating blade 6. This is maintained as long as the blade 60 rotation action continues.

この平衡状態では、回転羽根6の回転領域内にある摩擦
熱発生部Aにおいて空気の滞溜現象が生じ、回転羽根6
との摩擦作用が反覆継続するので摩擦熱が発生して次第
に温度か上昇する。
In this equilibrium state, air stagnation occurs in the frictional heat generating portion A within the rotation area of the rotating blade 6, and the rotating blade 6
As the frictional action continues to be repeated, frictional heat is generated and the temperature gradually rises.

この摩擦熱が中空室1内に伝播して室内を好みの温度に
加熱できる。
This frictional heat propagates into the hollow chamber 1, allowing the interior to be heated to a desired temperature.

ところで、中空室1にはその吸引口4に案内板8を円錐
状に固着し、これと平行して間隙部gを形成するように
円錐状の固転板10を設けて旋回層流形成部7を形成し
であるので、摩擦熱を有する気流はこの間隙部gを通っ
て層流状態となって下向し、同時に回転数10を回転さ
せるために旋回流となって遠心作用の下に中空室1の内
周壁に沿って急激な気流を発生させることとなる。
By the way, a guide plate 8 is fixed to the suction port 4 of the hollow chamber 1 in a conical shape, and a conical fixed plate 10 is provided in parallel with the guide plate 8 to form a gap g to form a swirling laminar flow forming section. 7, the airflow with frictional heat flows downward through this gap g in a laminar flow state, and at the same time turns into a swirling flow to rotate at a rotational speed of 10 under centrifugal action. A rapid airflow is generated along the inner circumferential wall of the hollow chamber 1.

また回転板10には、その中心に中心孔9を有するので
中空室1内の中心部分の気流は上昇して吸引せられる。
Furthermore, since the rotary plate 10 has a center hole 9 at its center, the airflow in the center of the hollow chamber 1 rises and is sucked.

このように中空室1内の空気圧が回転羽根6の回転によ
る減圧作用を受けた状態において、旋回層流形成部7の
働きによシ、外周よシ中心側に向って移行する気流の対
流作用が生起し、室1内の温度を所望の設定された温度
に急速に均一化できる。
When the air pressure in the hollow chamber 1 is reduced by the rotation of the rotary vanes 6, the swirling laminar flow forming section 7 causes a convection effect of the airflow moving from the outer periphery toward the center. occurs, and the temperature within the chamber 1 can be uniformized rapidly to a desired set temperature.

しだがって、中空室1内に被加熱物として例えば被乾燥
物を収容すれば、減圧および気流の旋回する対流作用に
より被乾燥物の含有水分の遊離性を高められかつ室温の
上昇による被乾燥物への加熱作用により、被乾燥物の遊
離性水分の発散を促がして高能率の乾燥作用を奏するこ
とができる。
Therefore, if an object to be dried, for example, is housed in the hollow chamber 1 as an object to be heated, the release of moisture contained in the object to be dried can be increased by the reduced pressure and the convection action of swirling air currents, and the moisture contained in the object to be dried can be increased. The heating action on the dried material promotes the release of free moisture from the material to be dried, thereby achieving a highly efficient drying action.

なお、加熱作用の過程で、外気送給管11より調節バル
ブ20を開いて外気を送給するときは、中空室1内の温
度は降下するが、外気の給入分だけ中空室1内の気化蒸
気分が回転羽根6によって外部に排出除去されるので、
乾燥作用をより促進できる。
In addition, when the regulating valve 20 is opened to supply outside air from the outside air supply pipe 11 in the process of heating, the temperature inside the hollow chamber 1 decreases, but the temperature inside the hollow chamber 1 decreases by the amount of outside air supplied. Since the vaporized steam is removed by the rotating blade 6,
The drying effect can be further promoted.

さらに中空室1内の温度を予じめ所望の温度に設定して
おき、この設定温度と外気送給管17の調節バルブ20
の開閉操作を関連させて置くことにより、外気は外気送
給管7を通って中空室1内に間歇的に導入されて、所望
の設定された温度条件の下に自動運転操作を行なわせる
ことができる。
Further, the temperature inside the hollow chamber 1 is set in advance to a desired temperature, and this set temperature and the control valve 20 of the outside air supply pipe 17 are
By linking the opening and closing operations of , outside air is intermittently introduced into the hollow chamber 1 through the outside air supply pipe 7, and automatic operation is performed under desired set temperature conditions. I can do it.

以上、この発明についての実施例を説明したがことに旋
回層流形成部7は上述の構成に同等限定されるものでな
く、下側の円錐状の回転板10を固定し、上側の円錐状
の案内板8を回転させるようにしてもよく、さらに上下
の板8,10を固定しておき、その間隙部g内に回転で
きる他の部材を介装させて旋回層流を得るようにしても
よい。
Although the embodiments of the present invention have been described above, the swirling laminar flow forming section 7 is not limited to the above-mentioned configuration, and the lower conical rotary plate 10 is fixed, and the upper conical The guide plate 8 may be rotated, or the upper and lower plates 8 and 10 may be fixed, and another rotatable member may be interposed in the gap g to obtain swirling laminar flow. Good too.

この旋回層流は、中空室1内の減圧度が大きい程、その
力は強く、減圧度が低下するに従って漸次と弱まること
が分っている。
It is known that the force of this swirling laminar flow is stronger as the degree of vacuum in the hollow chamber 1 increases, and gradually weakens as the degree of vacuum decreases.

また、中空室1は図示では立方体形状であるがこの形状
は同等特定されるものでなく円筒構造であっても良いこ
とは勿論である。
Further, although the hollow chamber 1 is shown to have a cubic shape, this shape is not necessarily specified and it goes without saying that it may have a cylindrical structure.

なお、図示のように立方体形状の場合はその四周の四隅
部に屈曲面を形成して旋回層流の流れ抵抗を逓減させる
こともある。
In the case of a cubic shape as shown in the figure, curved surfaces may be formed at the four corners of the four circumferences to gradually reduce the flow resistance of the swirling laminar flow.

この発明は斜上のように、回転体の回転作用によって密
閉された中空室内の室気を吸引排気し、中空室を減圧状
態に保ち、しかも室内外の圧力差を略々一定の平衡状態
において回転体の回転作用を継続させて回転体と空気と
の摩擦作用によって摩擦熱を発生させると共にこの摩擦
熱を有する気体を旋回した層流状態にして中空室内を下
降させかつ対流させるようにした方法に係るものである
から、発熱のだめの手段に従来のようなヒータとか燃料
などのような直接的な熱源を全く必要としないで所謂省
エネルギーに役立つと共に中空室内の温度分布を短時間
に均一にできるという特徴を有する。
This invention, as shown in the diagonal above, suctions and exhausts the air inside a sealed hollow chamber by the rotational action of a rotating body, maintains the hollow chamber in a reduced pressure state, and maintains the pressure difference between the inside and outside in a substantially constant equilibrium state. A method in which the rotating action of the rotating body is continued to generate frictional heat due to the frictional action between the rotating body and the air, and the gas having this frictional heat is made into a swirling laminar flow state and is caused to descend and convect within the hollow chamber. Since it is related to heat generation, there is no need for a direct heat source such as a conventional heater or fuel as a means of dissipating heat, and it is useful for so-called energy saving, and the temperature distribution within the hollow chamber can be made uniform in a short time. It has the following characteristics.

また、摩擦熱は、平衡状態における排気用の回転体すな
わち回転羽根と空気との摩擦作用によって得られるので
減圧作用と発熱作用とが回転体の回転作用のみによって
相乗的にしかも有効に働きさらにこの摩擦熱を有する気
流を旋回した層流状態として対流現象を強制的に生起で
きるので加熱時間を著るしく短縮して、ことに乾燥機に
広く利用できる利点を有する。
Furthermore, since frictional heat is obtained by the frictional action between the exhaust rotating body, that is, the rotary vane, and the air in an equilibrium state, the decompression effect and heat generation effect work synergistically and effectively only by the rotating action of the rotating body. Since the convection phenomenon can be forcibly generated by turning the airflow containing frictional heat into a swirling laminar flow state, the heating time can be significantly shortened, and it has the advantage that it can be widely used, especially in dryers.

したがって、たとえば椎茸19葉煙草などの農水産物を
始め、衣類、化学薬品の乾燥など、その応用範囲は、き
わめて広〈実施できる効果を有する。
Therefore, its application range is extremely wide, including drying agricultural and marine products such as shiitake mushrooms and 19-leaf cigarettes, clothing, and chemicals.

【図面の簡単な説明】[Brief explanation of the drawing]

図は、この発明に係る減圧平衡旋回対流加熱方法の一実
施例を示す具体的装置であって、第1図は一部切欠正面
図、第2図は同上の旋回層流形成部の拡大側面図、第3
図は同上の拡大下面図、第4図は第2図の一部切欠側面
図である。 1・・・・・・中空室、4・・・・・・吸引口、7・・
・・・・旋回層流形成部、17・・・・・・外気送給管
、20・・・・・・調節バルブ、a・・・・・・回転体
で、回転羽根6を有する電動機5で構成される。
The figures show a specific device showing an embodiment of the depressurized equilibrium swirling convection heating method according to the present invention, in which FIG. 1 is a partially cutaway front view, and FIG. 2 is an enlarged side view of the same swirling laminar flow forming section. Figure, 3rd
The figure is an enlarged bottom view of the same as the above, and FIG. 4 is a partially cutaway side view of FIG. 2. 1...Hollow chamber, 4...Suction port, 7...
... swirling laminar flow forming section, 17 ... outside air supply pipe, 20 ... control valve, a ... rotating body, electric motor 5 having rotating blades 6 Consists of.

Claims (1)

【特許請求の範囲】 1 密閉された中空室内の空気を、回転体の回転作用に
より強制吸引して室内に排気させ、室内を減圧して室内
外の圧力差を略々一定の平衡状態に保つと共にこの平衡
状態を維持しながら前記回転体の回転作用を継続させて
、空気との摩擦作用を促進して摩擦熱を発生させ、さら
にこの摩擦熱を有する気流を前記回転体を中心として旋
回する層流状態に保って強制的に中空室の内周壁に沿っ
て下降させ、これにより中空室内で対流作用を生起でき
るようにした減圧平衡旋回対流加熱方法。 2 密閉された中空室内の空気を、回転体の回転作用に
より強制吸引して室外に排気させ、室内を減圧して室内
外の圧力差を略々一定の平衡状態に保つと共にこの平衡
状態を維持しながら前記回転体の回転作用を継続させて
、空気との摩擦作用を促進して摩擦熱を発生させ、さら
にこの摩擦熱を有する気流を前記回転体を中心として旋
回する層流状態に保って強制的に中空室の内周壁に沿っ
て下降させ、これにより中空室内で対流作用を生起でき
るようにし、さらに中空室の所望個所より外気を直接ま
たは必要な温度に加熱して導入するようにした減圧平衡
旋回対流加熱方法。 3 密閉された中空室内の空気を、回転体の回転作用に
より強制吸引して室外に排気させ、室内を減圧して室内
外の圧力差を略々一定の平衡状態に保つと共にこの平衡
状態を維持しながら前記回転体の回転作用を継続させて
、空気との摩擦作用を促進して摩擦熱を発生させ、さら
にこの摩擦熱を有する気流を前記回転体を中心として旋
回する層流状態に保って強制的に中空室の内周壁に沿っ
て下降させ、これにより中空室内で対流作用を生起でき
るようにし、さらに中空室内の設定温度に関連して中空
室の外気送給管に設けた調節パルプを開閉操作させて外
気を間歇的に導入して中空室内の温度をたえず設定され
た温度に保持できるようにした減圧平衡旋回対流加熱方
法。
[Scope of Claims] 1. The air in the sealed hollow chamber is forcibly sucked in by the rotation of a rotating body and exhausted into the room, thereby reducing the pressure in the room and keeping the pressure difference between the inside and outside in a substantially constant equilibrium state. While maintaining this equilibrium state, the rotation of the rotating body is continued to promote friction with the air to generate frictional heat, and furthermore, the airflow having this frictional heat is swirled around the rotating body. A reduced-pressure equilibrium swirl convection heating method that maintains a laminar flow and forces the flow to descend along the inner circumferential wall of a hollow chamber, thereby generating convection within the hollow chamber. 2 The air in the sealed hollow chamber is forcibly sucked in and exhausted to the outside by the rotating action of the rotating body, and the pressure inside the room is reduced to keep the pressure difference between the inside and outside in a substantially constant equilibrium state, and this equilibrium state is maintained. At the same time, the rotating action of the rotating body is continued to promote frictional action with the air to generate frictional heat, and furthermore, the airflow having this frictional heat is kept in a laminar flow state swirling around the rotating body. The air is forced to descend along the inner circumferential wall of the hollow chamber, thereby creating convection within the hollow chamber, and outside air is introduced directly or heated to the required temperature from a desired location in the hollow chamber. Reduced pressure equilibrium swirl convection heating method. 3 The air inside the sealed hollow chamber is forcibly sucked in by the rotating action of the rotating body and exhausted to the outside, reducing the pressure in the room and keeping the pressure difference between the inside and outside in a substantially constant equilibrium state, and maintaining this equilibrium state. At the same time, the rotating action of the rotating body is continued to promote frictional action with the air to generate frictional heat, and furthermore, the airflow having this frictional heat is kept in a laminar flow state swirling around the rotating body. It is forced to descend along the inner circumferential wall of the hollow chamber, thereby allowing a convection effect to occur within the hollow chamber, and furthermore, the regulating pulp provided in the outside air supply pipe of the hollow chamber is adjusted in relation to the set temperature inside the hollow chamber. A reduced pressure equilibrium swirl convection heating method that allows the temperature inside a hollow chamber to be constantly maintained at a set temperature by intermittently introducing outside air by opening and closing operations.
JP55178719A 1980-12-19 1980-12-19 Decompression equilibrium swirl convection heating method Expired JPS5821185B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55178719A JPS5821185B2 (en) 1980-12-19 1980-12-19 Decompression equilibrium swirl convection heating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55178719A JPS5821185B2 (en) 1980-12-19 1980-12-19 Decompression equilibrium swirl convection heating method

Publications (2)

Publication Number Publication Date
JPS57104053A JPS57104053A (en) 1982-06-28
JPS5821185B2 true JPS5821185B2 (en) 1983-04-27

Family

ID=16053362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55178719A Expired JPS5821185B2 (en) 1980-12-19 1980-12-19 Decompression equilibrium swirl convection heating method

Country Status (1)

Country Link
JP (1) JPS5821185B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58224270A (en) * 1982-06-23 1983-12-26 Nobuyoshi Kuboyama Method of pressure reduced equilibrium heating and apparatus thereof

Also Published As

Publication number Publication date
JPS57104053A (en) 1982-06-28

Similar Documents

Publication Publication Date Title
KR870001831B1 (en) Heat generation apparatus and its process utilizing air circulation and convection
JPS5952342B2 (en) Reduced pressure equilibrium heating method
JPS6022264B2 (en) Vacuum drying equipment
JPS5821185B2 (en) Decompression equilibrium swirl convection heating method
KR890003896B1 (en) Heating process and its apparatus in reducing air pressure within a balanced level
US2831267A (en) Drying apparatus
JPS5947821B2 (en) Pressurized equilibrium heating method
JPS6022265B2 (en) Reduced pressure equilibrium swirl convection heating drying method and its equipment
JPS5928309Y2 (en) Partition plate structure for diffusion and introduction of outside air in vacuum equilibrium heating drying equipment
JPS5952753B2 (en) Reduced pressure equilibrium heating drying method and device
JPS5847621B2 (en) Decompression equilibrium forced swirl convection heating method and its device
JPS5952756B2 (en) Device for removing condensation of vaporized moisture in vacuum equilibrium heating dryer
JPS5913592Y2 (en) multipurpose storage
JPS6033235B2 (en) Reduced pressure equilibrium forced rotation convection heating drying method and its equipment
JPS605870B2 (en) Outside air diffusion introduction device in reduced pressure equilibrium heating drying equipment
JPS5847623B2 (en) Rotary heating mechanism mounting device in reduced pressure equilibrium heating device
JPH0222868B2 (en)
JPS59122857A (en) Pressure reduced and balanced frictional heat generating device
JPH0217796B2 (en)
RU2108522C1 (en) Method of wood drying and plant for its realization
JPS6035011Y2 (en) Damper device in reduced pressure equilibrium friction heat generation mechanism
JPS5930875Y2 (en) ventilation dryer
RU2109462C1 (en) Macaroni product drying cabinet
JPS5847622B2 (en) Air flow generation mechanism in reduced pressure equilibrium heating device
JPS5847620B2 (en) water heater