JPS59122855A - Pressure reduced and balanced frictional heat generating device - Google Patents

Pressure reduced and balanced frictional heat generating device

Info

Publication number
JPS59122855A
JPS59122855A JP57232541A JP23254182A JPS59122855A JP S59122855 A JPS59122855 A JP S59122855A JP 57232541 A JP57232541 A JP 57232541A JP 23254182 A JP23254182 A JP 23254182A JP S59122855 A JPS59122855 A JP S59122855A
Authority
JP
Japan
Prior art keywords
hollow chamber
heat
reduced pressure
heat generating
equilibrium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57232541A
Other languages
Japanese (ja)
Other versions
JPS6116905B2 (en
Inventor
Nobuyoshi Kuboyama
久保山 信義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP57232541A priority Critical patent/JPS59122855A/en
Publication of JPS59122855A publication Critical patent/JPS59122855A/en
Publication of JPS6116905B2 publication Critical patent/JPS6116905B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24VCOLLECTION, PRODUCTION OR USE OF HEAT NOT OTHERWISE PROVIDED FOR
    • F24V40/00Production or use of heat resulting from internal friction of moving fluids or from friction between fluids and moving bodies

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

PURPOSE:To improve the operating and drying efficiencies of the titled device by a method wherein a pressure reduced and balanced frictional heat generating mechanism is provided within a hollow chamber, a hollow chamber circulation mechanism is divided into two passages and a heat storage material is arranged in one of the passages. CONSTITUTION:The pressure reduced and balanced frictional heat generating mechanism 2 comprising rotary members 3, 3' and 3'' each provided with rotary vanes and substantially circular air intake cylinders 4, 4' and 4'' in which the rotary members 3, 3' and 3'' are arranged therein is provided within the hollow chamber 1. Further, the hollow chamber circulation mechanism 8 for making the upper part and the lower part of the hollow chamber is divided into two passages 9 and 9' which can be selected by a valve 10 and the heat storage material 11 is arranged in the passage 9. With the above structure, it is possible to utilize water contained in a drying substance as a kind of heat storage material to thereby prevent a rapid temperature change and to perform continuously a smooth heating operation suitable for drying, to thereby improve the operating and drying efficiencies of the device.

Description

【発明の詳細な説明】 この発明は、減圧平衡摩擦熱発生機構および熱交換機構
を有する減圧平衡摩擦熱発生装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a reduced pressure equilibrium friction heat generation device having a reduced pressure equilibrium friction heat generation mechanism and a heat exchange mechanism.

減圧平衡加熱装置について本発明者は、既に特願昭55
−94630号、特願昭55−94631号、特願昭5
5−132066号、特願昭55−132065号、特
願昭!56−29953号又は%願昭56−14244
0号、或いは特願昭57−64941号などにおいてそ
の基本技術及びその応用技術を提案した。
Regarding the reduced pressure equilibrium heating device, the present inventor has already filed a patent application in 1983.
-94630, patent application No. 1983-94631, patent application No. 1973
No. 5-132066, Special Application No. 132065-1980, Special Application No. 1987! No. 56-29953 or % Application No. 56-14244
The basic technology and its applied technology were proposed in No. 0 or Japanese Patent Application No. 57-64941.

′ 即ち、従来−穀圧中空室内の被乾燥物の乾燥罠は、
熱源と加熱した気体を送風する送風装置とを別個に要し
、そのため有効なエネルギー利用がなされていないとい
う欠点を有したへそζ1特別の熱源を要しない減圧平衡
摩擦熱発生機構を有する中空室からなる乾燥装置及び乾
燥方法すなわち、密閉された中空室内の空気を、回転体
の回転作用により強制吸引して室外に排気させ、室内を
減圧して室内外の圧力差を略一定の平衡状態に保つと共
に、この平衡状態を維持しながら、前記回転体の回転作
用を継続させて空気との摩擦作用を促進して摩擦熱を発
生させ、この摩擦熱により中空室内を加熱し熱量として
利用する外に、さらに必要に応じて中空室内に手動また
は自動操作で外気を送給して中空室内の被乾燥物を乾燥
する装置および方法を提案した。他方、外気吸入作用と
、排気作用とを同一の熱交換機構内で互いに反対方向に
働か゛せ、排気過程の高温気体が有する熱量を、吸入過
程の低温気体が吸収して、はぼ完全に近い熱交換を行わ
せ熱損失を殆んど無くして中空室内の温度降下を防止す
ることを目的とした熱交換機構を有する減圧平衡摩擦熱
発生装置としては、特願昭57−64941などを提案
した。
′ That is, the conventional drying trap for drying material in the grain pressure hollow chamber is
From a hollow chamber with a decompression equilibrium friction heat generation mechanism that does not require a special heat source In other words, the air in a sealed hollow chamber is forcibly sucked in by the rotation of a rotating body and exhausted to the outside, reducing the pressure in the room and keeping the pressure difference between the inside and outside in a substantially constant equilibrium state. At the same time, while maintaining this equilibrium state, the rotating action of the rotating body is continued to promote frictional action with the air and generate frictional heat, and this frictional heat heats the inside of the hollow chamber and is used as heat. Furthermore, we have proposed an apparatus and method for drying materials in a hollow chamber by manually or automatically feeding outside air into the hollow chamber as needed. On the other hand, the outside air intake action and the exhaust action work in opposite directions within the same heat exchange mechanism, and the amount of heat possessed by the high temperature gas in the exhaust process is absorbed by the low temperature gas in the intake process, resulting in almost complete Japanese Patent Application No. 57-64941 was proposed as a depressurized equilibrium friction heat generating device having a heat exchange mechanism for the purpose of performing heat exchange, almost eliminating heat loss, and preventing a drop in temperature within a hollow chamber. .

さら圧発明者は、減圧平衡摩擦熱発生機構おのことを知
見した。一般に被乾燥物例えばしいたけのようなきのこ
類の乾燥においては極端な高温は要せず、むしろ高温を
かけると表面は変形したまま内部水分は残留し不完全な
乾燥となり、そのため自然乾燥が用いられることが6っ
たが、自然乾燥では植物の生理作用にょ夛養分は逸失す
る欠点を有する。ところで該減圧平衡摩擦熱発生装置は
効率が良いため直ちに高温を得やすく過熱しがちで良質
な乾燥物を得るためKは回転体の回転をしばしば中断し
て過熱を防止し7′cシ冷却機構を別個設けfcシする
必要がめシ、運転効率が低下する欠だを有した・また被
乾燥物を乾燥するにあたっては、乾燥過程で被乾燥物本
体のみならず、室内に排出される被乾燥物の含有水分、
室内に排出された含有水分の水蒸気および室内気体をも
加熱することになる、ところ1水は比熱が高いため、同
一温度に上昇するにあたっても加熱に要する熱量は他の
物質に比1.大↑あるが、逆に同一温度まで加熱したと
き含有する熱量は大である。他方摩擦熱発生4!!柳の
回転体を複数直列に設置した場合排気側の回転体付近t
など高温となることも知見した、しかるに、従来の減圧
平衡摩擦熱発生機構および熱交換機構を有する減圧平衡
摩擦熱加熱装置fは、被乾燥物から排出された水分を含
有する室内気体の有効な利用がなされず、該室内気体を
一度だけ室内導入気体と熱交換するだけ1室外圧排出し
ていたため、従来の方法多るいは装置では、運転効率、
乾燥効率が劣るという欠点を有した。この発明はこれら
知見にもとすくもの’i’tt)る◇すなわち、この発
明は中空室内の気体を、回転体の回転作用によシ強制吸
引して室外に排気させ、室内を減圧して室内外の圧力差
を略一定の平衡状態に保っと共に、この平衡状態を維持
しながら、前記回転体の回転作用を継続させて気体との
摩擦作用を促進して摩擦熱を発生させ、この摩擦熱くよ
り中空室内を加熱して、中空室内の処理物を減圧加熱す
る減圧平衡摩擦熱発生機構と複数の通路を有する中空室
循環機構とを有し、中空室循環機構および減圧平衡摩擦
熱発生機構の排気側を一体に組込むこと1熱交換機構を
形成するとともに、中空室循環機構の複数の通路を選択
的に気体が通過可能としたうえで通路内の−に蓄熱材を
設置することを特徴とする減圧平衡摩擦熱発生装置を提
供することで上記欠点を除去し、運転効率がよく乾燥効
率の良い装置を提供することを目的とする。
The inventor of further pressure has discovered a reduced pressure equilibrium friction heat generation mechanism. In general, drying of mushrooms such as shiitake mushrooms does not require extremely high temperatures; in fact, when high temperatures are applied, the surface remains deformed and internal moisture remains, resulting in incomplete drying, so natural drying is used. However, natural drying has the disadvantage that the physiological effects and nutrients of the plant are lost. By the way, since the reduced pressure equilibrium friction heat generating device has good efficiency, it is easy to obtain high temperature quickly and tends to overheat, but in order to obtain a good quality dry product, K often interrupts the rotation of the rotating body to prevent overheating. It is necessary to install a separate FC, which has the drawback of reducing operating efficiency.In addition, when drying the material to be dried, not only the material to be dried but also the material to be dried that is discharged into the room during the drying process. moisture content,
This also heats the water vapor contained in the moisture discharged into the room and the indoor gas.However, since water has a high specific heat, the amount of heat required to heat it up to the same temperature is 1.0 compared to other substances. There is a large ↑, but conversely, the amount of heat it contains when heated to the same temperature is large. On the other hand, frictional heat generation 4! ! When multiple willow rotating bodies are installed in series, near the rotating bodies on the exhaust side t
However, the conventional reduced pressure equilibrium frictional heat heating device f, which has a reduced pressure equilibrium frictional heat generation mechanism and a heat exchange mechanism, is unable to effectively utilize the indoor gas containing moisture discharged from the material to be dried. Since the indoor gas was not used and was exhausted to the outside pressure only once after exchanging heat with the gas introduced into the room, conventional methods and equipment do not have much efficiency in operation.
It had the disadvantage of poor drying efficiency. This invention is based on these findings.In other words, this invention forcibly suctions the gas inside the hollow chamber by the rotational action of a rotating body and exhausts it outside, thereby reducing the pressure inside the chamber. The pressure difference between the indoor and outdoor areas is kept in a substantially constant equilibrium state, and while this equilibrium state is maintained, the rotating action of the rotating body is continued to promote frictional action with the gas to generate frictional heat, and this friction The hollow chamber circulation mechanism and the vacuum equilibrium friction heat generation mechanism have a vacuum equilibrium friction heat generation mechanism that heats the inside of the hollow chamber to reduce pressure and heat the processed material in the hollow chamber, and a hollow chamber circulation mechanism having a plurality of passages. It is characterized by integrally incorporating the exhaust side of 1 to form a heat exchange mechanism, and allowing gas to selectively pass through the plurality of passages of the hollow chamber circulation mechanism, and then installing a heat storage material at - in the passage. It is an object of the present invention to eliminate the above-mentioned drawbacks by providing a reduced-pressure equilibrium frictional heat generating device, which has high operating efficiency and good drying efficiency.

以下この発明の実、施例の中央断面な衣わす第1図に従
って説明する。(1)は中空室でるり、必要通気箇所以
外は密閉状態に形成してなる。(2)は中空室(1)内
部に設置する減圧平衡摩擦熱発生機構fあシ、この実施
例1は回転羽根を有する回転体(3) (3)’(3)
’及び回転体(3) (3)’(3)’ を内股する略
円筒状の吸気筒(4)(4)’(4fを上下に順次3段
直列に多段に積層してなる。回転体および吸気筒の数は
任意に選択可能14ある。回転体(3) (3)’(3
)“はモータ(5)で中空室(1)内の空気等気体を吸
引排気方向に回転可能″t”sる。回転体(3)の上部
には、特願昭57−55089中等f、提案した従動回
転機構を設置してもよい。
The present invention will now be described with reference to FIG. 1, which is a central cross-sectional view of an embodiment. (1) is a hollow chamber and is formed in a sealed state except for the necessary ventilation points. (2) is a reduced pressure equilibrium frictional heat generation mechanism f installed inside the hollow chamber (1), and this Example 1 is a rotating body (3) (3)'(3) with rotating blades.
' and a rotating body (3) (3)'(3)' A substantially cylindrical intake cylinder (4) (4)' (4f) that is stacked vertically in three stages in series.A rotating body The number of intake cylinders can be arbitrarily selected from 14.Rotating body (3) (3)'(3
) can be rotated by the motor (5) in the suction and exhaust direction of the air or other gas in the hollow chamber (1). The proposed driven rotation mechanism may also be installed.

すなわち、回転体(3)の上部に対向かつ適宜離れた位
置に従動ファン(7)を軸支し、対向する回転体(3)
の回転に従動して回転可能な機構14ある。このような
機構を設置した場合、中空室(1)内の気体を拡散飛翔
させ中空室(1)内15制的な気流の発生を可能とし、
乾燥作用を促がしかつ温度上昇に寄与することが可能と
なる。回転体(3)、 (3)’、 (3)’の各回転
領域には摩擦熱発生部A、A’l A’が形成される。
That is, the driven fan (7) is pivotally supported at a position opposite to and appropriately separated from the upper part of the rotating body (3), and the opposing rotating body (3)
There is a mechanism 14 which is rotatable according to the rotation of. When such a mechanism is installed, the gas in the hollow chamber (1) can be diffused and flown, making it possible to generate a uniform airflow inside the hollow chamber (1).
It is possible to accelerate the drying action and contribute to the temperature rise. Frictional heat generating portions A and A'lA' are formed in each rotating region of the rotating bodies (3), (3)', and (3)'.

(8)は中空室循環機構であり、中空室(1)の上部と
下部とを連絡し下部にはモータQ11転可能な循環ファ
ン0謙を有する。中空室循環機構(8)はその途中1摩
擦熱発生機構(2)の排気側を一体に組込むことf熱交
換機構a0を形成する。中空室循環機構(8)はまた途
中で2つ。
(8) is a hollow chamber circulation mechanism, which connects the upper and lower parts of the hollow chamber (1), and has a circulation fan in the lower part that can be rotated by a motor Q11. The hollow chamber circulation mechanism (8) integrally incorporates the exhaust side of the friction heat generation mechanism (2) in the middle thereof to form a heat exchange mechanism a0. There are also two hollow chamber circulation mechanisms (8) on the way.

の通路(91、(9どに分かれ、弁・顛の作用により通
路の選択が可能である一方の通路僧門には比熱の大きい
物質、この実施例においては水を用いた蓄熱材(111
を設置する。この実施例fは、細い合成樹脂製パイプを
積層し、]ξイライブ貯水すること!おこなう。051
は中空室内に設置するしい量に応′じた室外の気体の供
給が可能である。外気導入管aeはこの実施例では中空
室外と連絡する途中1減圧平衡摩擦熱発生機構(2)の
排気側を通過することで特願昭57−64991号に示
すいわゆる熱交換機構I′を有する。
The passage (91, (divided into 9), and the passage can be selected by the action of a valve and a lock.One passage is filled with a heat storage material (111) using a material with a large specific heat, in this example water.
Set up. In this embodiment f, thin synthetic resin pipes are stacked to store water! Let's do it. 051
It is possible to supply outdoor gas according to the desired amount installed inside the hollow chamber. In this embodiment, the outside air introduction pipe ae passes through the exhaust side of the depressurization equilibrium friction heat generation mechanism (2) on the way to communicate with the outside of the hollow chamber, so that it has a so-called heat exchange mechanism I' shown in Japanese Patent Application No. 57-64991. .

そこ〒モータ(5)に通電し1回転羽根を有する回転体
(3) 、 (3)’、 (3)’を回転すると、密閉
した中空室(1)内の空気等の気体入鴫へ曳嶌(1)へ
Q曵気篭駕鴨は回転体(3) 、 (3)’ 、 (3
fの吸引排気作用によって次第に矢印B方向に排気され
て減圧され、中空室(1)の室内外の圧力差は次第に大
きくなるが成る圧力差に達した時点で略平衡状態に達し
、この平衡状態を維持する。この平衡状態における中空
室(1)の内外の圧力差は、回転体(3) 、 (3)
’ 。
There, when the motor (5) is energized and the rotating bodies (3), (3)', (3)' having blades are rotated once, the air or other gas in the sealed hollow chamber (1) is pulled into the cloud. The Q-hikake-kago to the island (1) is a rotating body (3), (3)', (3
Due to the suction and exhaust action of f, the pressure is gradually evacuated in the direction of arrow B, and the pressure is reduced, and the pressure difference between the interior and exterior of the hollow chamber (1) gradually increases, but when the pressure difference reaches this pressure difference, an almost equilibrium state is reached, and this equilibrium state maintain. In this equilibrium state, the pressure difference between the inside and outside of the hollow chamber (1) is the pressure difference between the rotating bodies (3) and (3).
'.

(3)“の回転吸引力の大きさと、吸気筒(4) 、 
(4)’、 (4)“の径と回転体(3)、(3)1.
 <s>Iとの間隙の大きさなどによって定まるが、こ
の平衡状態は1回転体(3)、(3ど、(3)“の回転
作用が継続する限り維持されるこの平衡状態1は回転体
(3)の回転領域内にある摩擦熱発生部において空気の
滞溜現象が生じ回転体(31、(31’、 (3)’と
の摩擦作用が反覆継続するので摩擦熱が発生して次第に
温度が上昇する。
(3) The magnitude of the rotational suction force and the intake cylinder (4),
(4)', (4)'' diameter and rotating body (3), (3)1.
<s> This equilibrium state is determined by the size of the gap with I, etc., but this equilibrium state is maintained as long as the rotational action of the rotating bodies (3), (3, etc., (3)" continues. This equilibrium state 1 is determined by the rotation Air stagnation occurs in the frictional heat generating part in the rotation area of the body (3), and the frictional action with the rotating body (31, (31', (3)') continues to repeat, so frictional heat is generated. The temperature gradually rises.

この摩擦熱が中空室(1)内に伝わり室内を所望の温度
に加熱する8回転体(3) 、(31’、 (31“各
付近の温度は排気側に最も近い回転体<3f付近が最も
高温となシ順次回転体(3)′付近回転体(3)付近と
温度は低くなる。
This frictional heat is transmitted into the hollow chamber (1) and heats the interior to the desired temperature. The temperature is lower in the vicinity of the rotating body (3)', which is the highest temperature, and in the vicinity of the rotating body (3).

中空室内の空気等気体は中空室循環機構(8)により矢
印C方向に循環するが途中マ摩擦熱発生機構(2)の排
気側と一体に熱交換機構α滲を形成しているため排気熱
と熱交換した気体が中空室(1)内に導入される。この
場合、蓄熱態動のない通路(91′を使用する。熱交換
する、中空室循環機構(8)内の気体は水分を多く含有
しており、乾燥した同一気体に比し比熱が大であるため
、熱交換時の熱量の吸収量が大となるにもかかわらず中
空室(1)内の気体の温度の急激な変化をさけることが
可能となる。
Gases such as air in the hollow chamber are circulated in the direction of arrow C by the hollow chamber circulation mechanism (8), but on the way, a heat exchange mechanism α is formed integrally with the exhaust side of the friction heat generation mechanism (2), so exhaust heat is absorbed. The gas that has exchanged heat with the hollow chamber (1) is introduced into the hollow chamber (1). In this case, use the passage (91') that does not have a heat storage state.The gas in the hollow chamber circulation mechanism (8) that exchanges heat contains a lot of moisture and has a higher specific heat than the same dry gas. Therefore, it is possible to avoid a sudden change in the temperature of the gas in the hollow chamber (1) even though the amount of heat absorbed during heat exchange becomes large.

中空室内が過熱状態となったときは中空室循環機5(8
)を通過する気体は、蓄熱材仙を有する通路(9)に1
 fiQを切換えることで導入する、水は比熱が高いた
め熱量の吸収の割合には他の材質に比し温度の上昇は防
止可能1ある。更に温度が上昇する場合は、摩擦熱発生
機構(2)の運転を停止し、蓄熱材に蓄熱した熱を中空
室循環機構(8)により中空室(1)内に導入する、中
空室(1)内の温度が低下したときは、摩擦熱発生機構
(2)の運゛転を再開して中空室(1)内を加熱する。
When the hollow chamber becomes overheated, the hollow chamber circulator 5 (8
) is passed through the passageway (9) having a heat storage material.
Since water, which is introduced by switching fiQ, has a high specific heat, it is possible to prevent a rise in temperature compared to other materials in terms of the rate of heat absorption. If the temperature rises further, the operation of the friction heat generation mechanism (2) is stopped and the heat stored in the heat storage material is introduced into the hollow chamber (1) by the hollow chamber circulation mechanism (8). ), the friction heat generating mechanism (2) restarts operation to heat the inside of the hollow chamber (1).

以下中空室(1)内の温度に応じて1通路(91、(9
1’の切換え。
Depending on the temperature inside the hollow chamber (1), one passage (91, (9)
1' switching.

摩擦熱発生機構の運転および運転停止をおこなう。また
、中空室(1)が過湿状態となる場合は外気導入管Qf
9から外気を導入することで減湿をおこなう、この爽施
例受は外気導入管(IQは熱交換機l11(14)’を
有するので導入する外気は予熱され。
Operates and stops the friction heat generation mechanism. In addition, if the hollow chamber (1) becomes overhumidified, the outside air introduction pipe Qf
Dehumidification is performed by introducing outside air from 9. This refreshing example receiver has an outside air introduction pipe (IQ has a heat exchanger 111 (14)'), so the outside air introduced is preheated.

排気熱の有用化が図れる。したがってこの発明は、被乾
燥物の含有水分を一種の蓄熱材として利用するため急激
な温度変化は防止可能であり乾燥に適した円滑な加熱が
連続して行なうことが可能となり、運転効率、乾燥効率
は向上するさ
Exhaust heat can be made useful. Therefore, this invention utilizes the moisture contained in the dried material as a kind of heat storage material, making it possible to prevent sudden temperature changes and to continuously perform smooth heating suitable for drying, thereby improving operational efficiency and drying. Efficiency will improve

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の°−笑施例の中央断面図で委る。 (1)・・中空室、(2)・・・摩擦熱発生機構、 (
3) 、 (31’。 (3f・・・回転体、 (4) 、 (4)’ 、 (
4f・・・吸気筒、(5)・・・モータ、(6)・・・
従動回転機構、(7)・・・従動ファン、(8)・・・
中空室循環機構、 (9) 4 <91’・・・通路、
四・・・弁、I・・・蓄熱材、α2・・・モータ、a3
・・・循環ファン、 Q4) 、 (11’・・・熱交
換機構、a9・・・冑処、壜物、住e・・・外気導入管
。 αη・・・ノセルゾ 第1図
FIG. 1 shows a central cross-sectional view of an embodiment of the invention. (1)...Hollow chamber, (2)...Frictional heat generation mechanism, (
3) , (31'. (3f... rotating body, (4) , (4)' , (
4f...Intake cylinder, (5)...Motor, (6)...
Driven rotation mechanism, (7)... Driven fan, (8)...
Hollow chamber circulation mechanism, (9) 4 <91'... passage,
4... Valve, I... Heat storage material, α2... Motor, a3
...Circulation fan, Q4), (11'...Heat exchange mechanism, a9...Armor room, bottle, housing e...Outside air introduction pipe. αη...Nocelzo Figure 1

Claims (1)

【特許請求の範囲】 (1)  中空室内の気体を1回転体の回転作用により
強制吸引して室外に排気させ、室内を減圧して室内外の
圧力差を略一定の平衡状態に保つと共に、この平衡状態
を維持しながら、前記回転体の回転作用を継続させて気
体との摩擦作用を促進して摩擦熱が発生させ、この摩擦
熱により中空室内を茄熱して、中空室内の処理物を減圧
加熱する減圧平衡摩擦熱発生機構と複数の通路を有する
中空室循環機構とを有L2、中空室循環機構および減圧
平衡摩擦熱発生機構の排気側を一体に組込むことで熱交
換機構を形成するとともに、中空室循環機構の複数の通
路を選択的に一抹が通過可能としたうえ1通路内の−に
蓄熱材を設置することを特徴とする減圧平衡摩擦熱発生
装置。 (2)減圧平衡1擦熱発生機構が、多段回転体からなる
特許請求の範囲第1項記載の減圧平衡摩擦熱発生装置。 (3)  多段回転体が中・空室内にある特許請求の範
囲第2項記載の減圧平衡摩擦熱発生装置、(4)蓄熱材
が比熱の高い材質受ある特許請求の範囲第1項才たは第
2項または第3項記載の減圧平衡摩擦熱発生装置。 (5)蓄熱材が水である特許請求の範囲第1項または第
2項または第3項記載の減圧平衡摩擦熱発生装置。
[Scope of Claims] (1) The gas in the hollow chamber is forcibly suctioned by the rotating action of a rotating body and exhausted to the outside, and the pressure inside the chamber is reduced to keep the pressure difference between the inside and outside in a substantially constant equilibrium state, While maintaining this equilibrium state, the rotating action of the rotating body is continued to promote frictional action with the gas to generate frictional heat, and this frictional heat heats the inside of the hollow chamber to cool the processing material inside the hollow chamber. A heat exchange mechanism is formed by integrating a reduced pressure equilibrium friction heat generation mechanism for heating under reduced pressure and a hollow chamber circulation mechanism having a plurality of passages, and integrating the hollow chamber circulation mechanism and the exhaust side of the reduced pressure equilibrium friction heat generation mechanism. In addition, a reduced pressure equilibrium friction heat generating device is characterized in that one passage is selectively allowed to pass through a plurality of passages of the hollow chamber circulation mechanism, and a heat storage material is installed in one passage. (2) The reduced pressure balanced friction heat generating device according to claim 1, wherein the reduced pressure balanced friction heat generating mechanism comprises a multi-stage rotating body. (3) The depressurized equilibrium frictional heat generating device according to claim 2, in which the multi-stage rotary body is in a hollow chamber; (4) the device according to claim 1, in which the heat storage material is made of a material with high specific heat. is the reduced pressure equilibrium friction heat generating device according to item 2 or 3. (5) The reduced pressure equilibrium friction heat generating device according to claim 1, 2 or 3, wherein the heat storage material is water.
JP57232541A 1982-12-27 1982-12-27 Pressure reduced and balanced frictional heat generating device Granted JPS59122855A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57232541A JPS59122855A (en) 1982-12-27 1982-12-27 Pressure reduced and balanced frictional heat generating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57232541A JPS59122855A (en) 1982-12-27 1982-12-27 Pressure reduced and balanced frictional heat generating device

Publications (2)

Publication Number Publication Date
JPS59122855A true JPS59122855A (en) 1984-07-16
JPS6116905B2 JPS6116905B2 (en) 1986-05-02

Family

ID=16940940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57232541A Granted JPS59122855A (en) 1982-12-27 1982-12-27 Pressure reduced and balanced frictional heat generating device

Country Status (1)

Country Link
JP (1) JPS59122855A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6127478A (en) * 1984-07-17 1986-02-06 株式会社山益製作所 Closing drying method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6127478A (en) * 1984-07-17 1986-02-06 株式会社山益製作所 Closing drying method

Also Published As

Publication number Publication date
JPS6116905B2 (en) 1986-05-02

Similar Documents

Publication Publication Date Title
US2993563A (en) Method and apparatus of conditioning air
KR870001831B1 (en) Heat generation apparatus and its process utilizing air circulation and convection
KR890003896B1 (en) Heating process and its apparatus in reducing air pressure within a balanced level
JPS59122855A (en) Pressure reduced and balanced frictional heat generating device
JPS6022264B2 (en) Vacuum drying equipment
JPS59122857A (en) Pressure reduced and balanced frictional heat generating device
JPS59122856A (en) Pressure reduced and balanced frictional heat generating device
JPS62138676A (en) Rotary type decompression drier
JPS6349148B2 (en)
JPS605870B2 (en) Outside air diffusion introduction device in reduced pressure equilibrium heating drying equipment
JPH0454875B2 (en)
CN210197959U (en) Bobbin paper drying device
JPS6186534A (en) Decompression heating heat-generating method
JPS58224269A (en) Method of pressure reduced equilibrium heating and apparatus thereof
JPS5928309Y2 (en) Partition plate structure for diffusion and introduction of outside air in vacuum equilibrium heating drying equipment
JPS61107052A (en) Pressure reduction heater
JPS59220129A (en) Flower pot
JPS6123461B2 (en)
JPS5952756B2 (en) Device for removing condensation of vaporized moisture in vacuum equilibrium heating dryer
JPS599198Y2 (en) cooling tower
JPS5913592Y2 (en) multipurpose storage
JPS5847621B2 (en) Decompression equilibrium forced swirl convection heating method and its device
JPS6058144A (en) Dermatophytosis treating device
JPS5821185B2 (en) Decompression equilibrium swirl convection heating method
JPS6144227B2 (en)