JPS61168875A - Fuel cell - Google Patents

Fuel cell

Info

Publication number
JPS61168875A
JPS61168875A JP60009099A JP909985A JPS61168875A JP S61168875 A JPS61168875 A JP S61168875A JP 60009099 A JP60009099 A JP 60009099A JP 909985 A JP909985 A JP 909985A JP S61168875 A JPS61168875 A JP S61168875A
Authority
JP
Japan
Prior art keywords
fuel cell
oxidizing agent
exhaust gas
fuel
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60009099A
Other languages
Japanese (ja)
Inventor
Teruo Kumagai
熊谷 輝夫
Yuichi Kamo
友一 加茂
Seiji Takeuchi
瀞士 武内
Katsuya Ebara
江原 勝也
Hiroki Tamura
田村 広毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60009099A priority Critical patent/JPS61168875A/en
Publication of JPS61168875A publication Critical patent/JPS61168875A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04186Arrangements for control of reactant parameters, e.g. pressure or concentration of liquid-charged or electrolyte-charged reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1009Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To maintain the amount of electrolyte constant to obtain steady electric output for a long time by circulating part of oxidizing agent exhaust gas of a fuel cell to return to the cell, and controlling heat quantity added to added water based on the exhaust gas temperature. CONSTITUTION:A cell stack 10 consists of cells each of which comprises a fuel electrode, oxidizing agent electrode, and ion exchange film containing sulfuric acid and placed between both electrodes. A water content controller 7 is installed in an oxidizing agent supply hole 11 to the stack 10. A correction device 13 feedback controls the temperature of an oxidizing agent supply unit 12 so as to keep 40 deg.C and the controller 7 controls the amount of oxidizing agent electrode exhaust gas. The water content in the oxidizing agent supplied to the stack 10 is controlled so as to keep a water vapor partial pressure of 5-8%, and the electrolyte retaining amount is kept constant and steady electric output is obtained for a long time.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は燃料電池に係り、特に、電解液量を一定に保ち
得るように改良した燃料電池に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a fuel cell, and particularly to a fuel cell improved so that the amount of electrolyte can be kept constant.

〔発明の背景〕[Background of the invention]

燃料電池については、特開昭39−3162号公報に掲
載された発明、及び特開昭58−112264号公報に
掲載された発明が公知である。
Regarding fuel cells, the invention published in JP-A-39-3162 and the invention published in JP-A-58-112264 are known.

燃料電池は、燃料と酸化剤を供給し、電極上で電気化学
的な反応を進行させ直接電気エネルギーを取り出すもの
で、高効率で電気エネルギーが得られる電源として実用
化が期待されている。特に。
Fuel cells supply fuel and an oxidizing agent and allow an electrochemical reaction to proceed on electrodes to directly extract electrical energy, and are expected to be put into practical use as a power source that can obtain electrical energy with high efficiency. especially.

可搬用小型電源として液体燃料を用いるものの中でもメ
タノール−空気酸性電解質燃料電池C以下。
Among those that use liquid fuel as a portable small power source, methanol-air acid electrolyte fuel cells C and below.

メタノール燃料電池と略記)が注目を集めている。Methanol fuel cells (abbreviated as methanol fuel cells) are attracting attention.

この種の燃料電池の単位構成は、第4図に示すように燃
料極1と酸化剤極2とこの電極間に電解質3(例えば、
硫酸を含んだイオン交換膜)から成り、これを積層する
ことにより燃料電池が構成される。このように電解質に
液体電解液を用いる燃料電池においては、電解液の保持
量を安定に維持することが重要である。特にガス拡散電
極においては、初期の電解液保持量及び運転時における
蒸発、飛散等による保持量の変動によって電池性能が大
きく変化する。電解液の保持量が少ないと電極面積を小
さくしてしまうとともに電池の内部抵抗が大きくなり、
保持量が多すぎると電極を覆ってしまい電極面積が減少
するため、電池性能が低くなることが考えられる。特に
、電池運転時には蒸発により電解液の保持量が減少して
しまう問題がある。このことから、電池運転特等、電解
液の保持量を維持することが重要であり、そのためには
電池運転時に電解液の平衡保持量を考慮した水分を電池
に供給する必要がある。
As shown in FIG. 4, the unit configuration of this type of fuel cell is as shown in FIG.
A fuel cell is constructed by stacking these ion exchange membranes (containing sulfuric acid). In such a fuel cell that uses a liquid electrolyte as an electrolyte, it is important to maintain a stable amount of electrolyte. In particular, in gas diffusion electrodes, battery performance changes significantly depending on the initial amount of electrolyte retained and fluctuations in the amount retained due to evaporation, scattering, etc. during operation. If the amount of electrolyte retained is small, the electrode area will become smaller and the internal resistance of the battery will increase.
If the retained amount is too large, the electrode will be covered and the electrode area will be reduced, which may lead to a decrease in battery performance. In particular, during battery operation, there is a problem in that the amount of electrolyte retained is reduced due to evaporation. For this reason, it is important to maintain the amount of electrolyte retained during battery operation, and for this purpose, it is necessary to supply water to the battery in consideration of the balanced amount of electrolyte retained during battery operation.

メタノール燃料電池1を含め液体燃料を使用する燃料電
池においては、上記を考慮した発明は未だ為されていな
い、水素−酸素気体燃料電池としては、アルカリ電解質
を用いた前記の特開昭39−3162号があるが、これ
は水素極と酸素極の両極に室温の水をそれぞれ水素と酸
素ガスでバブリングするという室温の蒸気正分の水の供
給であり、供給水分が不足で電解液の保持量を維持でき
ない。
Regarding fuel cells that use liquid fuel, including the methanol fuel cell 1, no inventions that take the above into account have been made yet.As for hydrogen-oxygen gas fuel cells, the above-mentioned Japanese Patent Laid-Open No. 39-3162, which uses an alkaline electrolyte, This method involves bubbling water at room temperature with hydrogen and oxygen gas to both the hydrogen and oxygen electrodes, respectively, to supply water equal to the amount of steam at room temperature. cannot be maintained.

また、リン酸電解液を用いた特開昭58−112264
号があるが、これは電池内の電解液に電流を流し抵抗を
求め、その抵抗を所定の値に維持するように外部から水
蒸気を添加して電解液の濃度を所定濃度一定にするもの
である。上記提案では、外部からの電源及び水蒸気が必
要であるとともに制御系が複雑になるという問題がある
In addition, Japanese Patent Application Laid-Open No. 58-112264 using a phosphoric acid electrolyte
In this method, current is passed through the electrolyte in the battery to find the resistance, and water vapor is added from outside to maintain the resistance at a predetermined value, thereby keeping the concentration of the electrolyte constant at a predetermined concentration. be. The above proposal has problems in that it requires an external power source and water vapor, and the control system becomes complicated.

次に、電解質の液量保持について詳説する。第4図につ
いて既述したごとく、燃料電池は、燃料極1と酸化剤極
2と電解質3とを主たる構成部材とし、かつ、燃料と酸
化剤とをそれぞれ供給する2個のセパレータ4.同4を
備えている。電極は例えば1種以上の白金族元素を主成
分とする触媒を導電性の多孔質担体上に担持した触媒層
6を導電性多孔質基板5上に塗布結着したものから成っ
ている。この単位電池を積層することにより電池が構成
される。この単位電池の形成あるいは積層して電池を形
成する際は、電気化学反応の水素イオンの移動を十分に
するため、及び接触抵抗を小さくするためガス拡散電極
である酸化剤極2に電解液を保持させる。
Next, the retention of electrolyte liquid volume will be explained in detail. As already described with reference to FIG. 4, the fuel cell has a fuel electrode 1, an oxidizer electrode 2, and an electrolyte 3 as its main components, and two separators 4. It is equipped with 4. The electrode is composed of, for example, a catalyst layer 6 in which a catalyst containing one or more platinum group elements as a main component is supported on a conductive porous carrier, which is coated and bonded onto a conductive porous substrate 5. A battery is constructed by stacking these unit batteries. When forming unit cells or stacking them to form a battery, an electrolytic solution is applied to the oxidizer electrode 2, which is a gas diffusion electrode, in order to ensure sufficient movement of hydrogen ions in the electrochemical reaction and to reduce contact resistance. hold it.

第2図に酸化剤極に保持させた電解液の保持量と電流霞
度60*A/−での単位電池の初期電池電圧の関係を示
す(60℃設定)0図より、電解液保持量が少さい所で
は電解液が不足のため電極上の反応の面積が小さく、電
解液保持量が多い所では触媒表面が電解液に覆われて反
応面積が減少するため性能が低下する。このことから、
電池性能を高くするためには、電解液保持量を所定の値
に保つことが重要である。この結果は、電池の運動初期
の性能で、電解液保持量は運転開始時には十分である。
Figure 2 shows the relationship between the amount of electrolyte held in the oxidizer electrode and the initial battery voltage of the unit battery at a current haze of 60*A/- (set at 60°C). In places where the amount of electrolyte is small, the reaction area on the electrode is small due to a lack of electrolyte, and in places where there is a large amount of electrolyte held, the catalyst surface is covered with electrolyte and the reaction area is reduced, resulting in a decrease in performance. From this,
In order to improve battery performance, it is important to maintain the amount of electrolyte retained at a predetermined value. This result indicates the performance of the battery at the initial stage of operation, and the amount of electrolyte retained is sufficient at the start of operation.

しかし長時間運転を続けることにより電解液は運転温度
60℃の平衡濃度まで濃縮され、これによって電解液保
持量が不足になり電池性能が低下するという問題がある
1本発明者らはこの平衡状層を考慮して、電解液の初期
保持量の増加及び電解液濃度の高い電解液を用いてみた
が、電電性能が安定するのに長時間を要するとともに電
池電圧が低いという結果であった。
However, by continuing to operate for a long time, the electrolyte concentrates to the equilibrium concentration at the operating temperature of 60°C, which causes a problem in that the amount of electrolyte retained is insufficient and the battery performance deteriorates. In consideration of the layer structure, attempts were made to increase the initial amount of electrolyte retained and to use an electrolyte with a high electrolyte concentration, but the result was that it took a long time for the electrical performance to stabilize and the battery voltage was low.

以上のことから、電池電圧を向上させ、かつ長時間性能
を維持するためには運転状態の電解液の状態を考慮する
ことが必要であり、そのためには酸化剤極の電解液保持
量を所定の保持量に維持する必要がある。
From the above, in order to improve battery voltage and maintain long-term performance, it is necessary to consider the state of the electrolyte during operation. It is necessary to maintain the retention amount at .

〔発明の目的〕[Purpose of the invention]

本発明は上述の事情に鑑みて為されたもので、電解液量
を一定に保持して電気的出力を長時間にわたって安定せ
しめ得る燃料電池を提供しようとするものである。
The present invention has been made in view of the above-mentioned circumstances, and it is an object of the present invention to provide a fuel cell that can maintain a constant amount of electrolyte and stabilize electrical output over a long period of time.

〔発明の概要〕[Summary of the invention]

上記の目的を達成するために創作した本発明の燃料電池
について、先ず、その基本的原理を次に説明する。
First, the basic principle of the fuel cell of the present invention created to achieve the above object will be explained below.

本発明者等は、本燃料電池の開発において鋭意検討を重
ねた結果、運転中(60℃)の単位電池における酸化剤
極の電解液保持量は、保持した硫酸と水蒸気分圧によっ
て平衡値が定まることに着目した。この関係を第3図に
示す。
As a result of intensive studies in the development of this fuel cell, the inventors found that the amount of electrolyte retained in the oxidizer electrode in a unit cell during operation (at 60°C) is at an equilibrium value due to the retained sulfuric acid and water vapor partial pressure. We focused on what is fixed. This relationship is shown in FIG.

本発明は、上記の水分濃度の依存性を利用するものであ
り、酸化剤極へ供給される酸化剤中の水分濃度を所定濃
度一定にコントロールする。
The present invention utilizes the water concentration dependence described above, and controls the water concentration in the oxidant supplied to the oxidizer electrode to be constant at a predetermined concentration.

上述の原理に基づいて前記の目的(電解液量を一定に保
持する)を達成するため、第1の発明は酸素を含むガス
を酸化剤として用いると共に運転条件下で平衡組成とな
らない電解液を用いた燃料電池において、該燃料電池の
酸化剤排出ガスの1部を循環せしめて燃料電池内へ戻す
手段を設けたことを特徴とする。
In order to achieve the above object (maintaining a constant amount of electrolyte) based on the above-mentioned principle, the first invention uses a gas containing oxygen as an oxidizing agent and uses an electrolyte that does not have an equilibrium composition under operating conditions. The fuel cell used is characterized in that it is provided with means for circulating a portion of the oxidizer exhaust gas from the fuel cell and returning it into the fuel cell.

また、前記と同一の目的を達成する為、第2の発明は、
酸素を含むガスを酸化剤として用いると共に運転条件下
で平衡組成とならない電解液を用いた燃料電池において
、該燃料電池に供給される酸化剤に水を添加する装−を
備え、更に、上記の水を添加する装置は、燃料電池の排
ガスを熱源として、かつ該排ガスの温度に基づいて添加
水に与える熱量を制御することによって発生蒸気量を制
御する機能を備えたものとしたことを特徴とする。
Moreover, in order to achieve the same object as the above, the second invention is as follows:
A fuel cell using an oxygen-containing gas as an oxidizing agent and an electrolyte that does not have an equilibrium composition under operating conditions, further comprising a device for adding water to the oxidizing agent supplied to the fuel cell, and further comprising: The device for adding water uses the exhaust gas of the fuel cell as a heat source and has a function of controlling the amount of steam generated by controlling the amount of heat given to the added water based on the temperature of the exhaust gas. do.

〔発明の実施例〕[Embodiments of the invention]

第4図について述べた燃料極1を、本実施例においては
次のように構成する。
The fuel electrode 1 described with reference to FIG. 4 is constructed as follows in this embodiment.

炭素粉末(ファーネスブラック:商標名・キャボット社
製)に白金とルテニウムとして50ut%担持した触媒
粉末を1.15 g  とり蒸留水2 m 11を加え
よく混練し1次にポリテトラフルオロエチレン液(PT
FH,ダイキン製:商標名・ポリフロンディスバージ目
ンDi、2.5倍希釈)を1mg加え混合する。このペ
ーストをカーボンペーパ(E−715:商標名・呉羽化
学製)100X128■に均一に塗布し、乾燥後、30
0℃窒素雰囲中で約30分焼成する0以上のように構成
した燃料極を燃料極電極Aと名付ける。
1.15 g of catalyst powder supporting 50 ut% of platinum and ruthenium was added to carbon powder (Furnace Black: trade name, manufactured by Cabot Corporation), mixed with 2 ml of distilled water and kneaded well.
Add 1 mg of FH (manufactured by Daikin, trade name: Polyfron Disverge Di, 2.5 times diluted) and mix. This paste was evenly applied to carbon paper (E-715: trade name, manufactured by Kureha Chemical Co., Ltd.) 100 x 128 cm, and after drying,
The fuel electrode configured as above and fired for about 30 minutes in a nitrogen atmosphere at 0° C. is named fuel electrode electrode A.

次に、第4図について述べた酸化剤電極2を。Next, the oxidizer electrode 2 described with reference to FIG.

本実施例においては次の如く構成する。This embodiment is configured as follows.

炭素粉末に白金として30ut%担持した触媒粉末を0
.77 g  とり蒸留水を加えて混線後、ポリフロン
ディスパージョンDl液を0.55 mjl加え混合し
たものを、カーボンベーパ100×128−に塗布し、
風乾後、空気中で300”C約30分焼成した。この電
極の触媒層に電解液として4.5■ol/41 硫酸を
保持させる0以上のように構成した酸化剤電極を酸化剤
電極Bと名付ける。
Catalyst powder with 30 ut% of platinum supported on carbon powder
.. After adding 77 g of distilled water and mixing, add and mix 0.55 mjl of Polyflon dispersion Dl solution, apply the mixture to carbon vapor 100 x 128-
After air-drying, the oxidizer electrode was calcined in air at 300"C for about 30 minutes.The oxidizer electrode was configured to hold 4.5 ol/41 sulfuric acid as an electrolyte in the catalyst layer of this electrode. Name it.

実施例1゜ 本実施例は、酸化剤の供給孔に酸化剤中の水分濃度をコ
ントロールする装置を備えたメタノール燃料電池である
。その外観の概略を第1図に示す。
Example 1 This example is a methanol fuel cell equipped with an oxidant supply hole equipped with a device for controlling the water concentration in the oxidant. The outline of its appearance is shown in Fig. 1.

前述の燃料極電極Aと酸化剤極電極Bにより、電極間に
希硫酸を含有したイオン交換膜(CMV:商標名・層化
成製)を電解質として介在させた積層セルの電池スタッ
ク10を構成した。電池スタック10への酸化剤供給孔
11に水分濃度コントロール装置7を備えた。第5図は
、水分濃度コントロール装置(1)の概略図である。酸
化剤供給部12の温度が40℃になるように補正装置1
3によりフィードバック制御し、酸化剤極排出ガス量を
調節した。水分濃度コントロール装置! (1)を備え
ることにより、電池スタック1oへ供給される酸化剤中
の水分を5〜8%の水蒸気分圧の範囲でコントロールす
ることができた。
The aforementioned fuel electrode A and oxidizer electrode B constituted a battery stack 10 of a laminated cell in which an ion exchange membrane containing dilute sulfuric acid (CMV: trade name, manufactured by Chiya Kasei Co., Ltd.) was interposed as an electrolyte between the electrodes. . A moisture concentration control device 7 was provided in the oxidizing agent supply hole 11 to the battery stack 10. FIG. 5 is a schematic diagram of the water concentration control device (1). The correction device 1 adjusts the temperature of the oxidizing agent supply section 12 to 40°C.
3, the amount of gas discharged from the oxidizer electrode was adjusted by feedback control. Moisture concentration control device! By providing (1), it was possible to control the moisture in the oxidizing agent supplied to the battery stack 1o within a water vapor partial pressure range of 5 to 8%.

実施例2゜ 本実施例は、酸化剤供給孔11に水分濃度コントロール
装置(II)を備える以外は前記の実施例1と同じ燃料
電池である。該装置(n)の概略図を第6図に示した。
Example 2 This example is the same fuel cell as Example 1 except that the oxidant supply hole 11 is equipped with a water concentration control device (II). A schematic diagram of the apparatus (n) is shown in FIG.

酸化剤極へ供給される酸化剤の水分を水分検知器18で
検知し、補正装置13により生成水を含んだ酸化剤極排
出ガスの1部を循環させる量を調節する。水分検知器で
水分が6%の水蒸気分圧になるように設定したところ、
酸化剤中の水分を水蒸気分圧5〜7%の範囲でコントロ
ールすることができた。
Moisture in the oxidant supplied to the oxidizer electrode is detected by a moisture detector 18, and a correction device 13 adjusts the amount of circulating part of the oxidizer electrode exhaust gas containing produced water. When the moisture detector was set so that the water vapor partial pressure was 6%,
It was possible to control the moisture in the oxidizing agent within a water vapor partial pressure range of 5 to 7%.

実施例3゜ 酸化剤供給孔11に水分濃度コントロール装置(m)を
備える以外は前記の実施例1と同じ燃料電池である。該
装置(II)の概略図を第7図に示す、水蒸気生成部1
9の温度を温度検出部20で検出し、水蒸気生成部の温
度を40℃に維持するように補正装置13によりフィー
ドバック制御し酸化剤極排出ガス(50〜55℃)循環
量の調節を行なった。該装置(II)を備えることによ
り電池スタック10へ供給される酸化剤中の水分を5〜
6%の水蒸気分圧の範囲でコントロールできた。
Example 3 This fuel cell is the same as Example 1 except that the oxidizing agent supply hole 11 is equipped with a water concentration control device (m). A schematic diagram of the device (II) is shown in FIG. 7, steam generation section 1
9 was detected by the temperature detection unit 20, and the correction device 13 performed feedback control to maintain the temperature of the steam generating unit at 40°C, and the circulation amount of the oxidizer electrode exhaust gas (50 to 55°C) was adjusted. . By providing the device (II), moisture in the oxidizing agent supplied to the battery stack 10 can be reduced to 5 to 50%.
It was possible to control the water vapor partial pressure within a range of 6%.

前述の実施例1,2.3を用いて、電流密度60i+A
/aJにおける電池の600時間の連続試験を行なった
。燃料タンク9にはメタノール1■oil/a−硫酸1
.5■o 41 / Jl  のアノライトを充填し。
Using the above-mentioned Examples 1 and 2.3, the current density was 60i+A.
/aJ was subjected to a continuous test of 600 hours. In the fuel tank 9, there is 1 methanol/oil/a-sulfuric acid 1
.. Filled with 5 ■ o 41 / Jl of anorite.

このアノライトを電池スタックへ循環して、燃料濃度を
保つようにメタノールと水を供給した。上記の試験にお
ける通電時間と出力電力との関係を第8図に示す。
This anolite was circulated to the cell stack, and methanol and water were supplied to maintain the fuel concentration. FIG. 8 shows the relationship between energization time and output power in the above test.

実線のカーブ(1)は実施例1の出力電力を示し、破線
のカーブ(…)は実施例2の出方電力を示し、1点鎖線
のカーブ(ffl)は実施例3の出力電力を示す。
The solid line curve (1) shows the output power of Example 1, the broken line curve (...) shows the output power of Example 2, and the dashed-dotted curve (ffl) shows the output power of Example 3. .

2点鎖線のカーブ(汁)は比較例として示した従来の燃
料電池の出力電力を示し、この従来例の構成は次の如く
である。即ち、酸化剤の供給に水分濃度コントロール装
置を設置せず、ファン付設により空気を供給する以外は
実施例1と同様であ。
The two-dot chain curve indicates the output power of a conventional fuel cell shown as a comparative example, and the configuration of this conventional example is as follows. That is, it is the same as Example 1 except that a water concentration control device is not installed to supply the oxidizing agent, and air is supplied by a fan.

る・ 〔発明の効果〕 上記の各実施例1,2.3に示したように1本発明を適
用すると、酸化剤中の水分濃度を所定濃度範囲に維持す
ることが可能であり、これによって電解液保持量の維持
ができるので、燃料電池の性能向上及び燃料電池の出力
電力を変動することなく長時間維持できる効果がある。
[Effects of the Invention] When the present invention is applied as shown in each of Examples 1 and 2.3 above, it is possible to maintain the water concentration in the oxidizing agent within a predetermined concentration range. Since the amount of electrolyte retained can be maintained, the performance of the fuel cell can be improved and the output power of the fuel cell can be maintained for a long time without fluctuation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例の概要的な外観斜視図。 第2図は、酸化剤極の電解液保持量と単位電池電圧の関
係を示した図表、第3図は、水蒸気分圧と電解液保持量
の関係を示した図表、第4図は、メタノール−空気酸性
電解質燃料電池の単位構成図である。 第5図乃至第7図はそれぞれ本発明を適用して構成した
水分濃度コントロール装置の説明図である。 第8図は本発明の詳細な説明するための図表である。 1・・・燃料極、2・・・酸化剤極、3・・・電解質、
4・・・セパレータ、5・・・カーボンペーパ、6・・
・触媒層。
FIG. 1 is a schematic external perspective view of an embodiment of the present invention. Figure 2 is a chart showing the relationship between the electrolyte retention amount of the oxidizer electrode and unit cell voltage, Figure 3 is a diagram showing the relationship between water vapor partial pressure and electrolyte retention amount, and Figure 4 is the methanol - A unit configuration diagram of an air acid electrolyte fuel cell. FIG. 5 to FIG. 7 are explanatory diagrams of a water concentration control device constructed by applying the present invention, respectively. FIG. 8 is a diagram for explaining the present invention in detail. 1... Fuel electrode, 2... Oxidizer electrode, 3... Electrolyte,
4...Separator, 5...Carbon paper, 6...
・Catalyst layer.

Claims (1)

【特許請求の範囲】 1、酸素を含むガスを酸化剤として用いると共に運転条
件下で平衡組成とならない電解液を用いた燃料電池にお
いて、該燃料電池の酸化剤排出ガスの1部を循環せしめ
て燃料電池内へ戻す手段を設けたことを特徴とする燃料
電池。 2、前記の酸化剤排出ガスの1部を循環せしめる手段は
、当該燃料電池の温度を検出する手段を備え、検出した
温度に基づいて酸化剤排出ガスの循環流量を制御する構
造であることを特徴とする特許請求の範囲第1項に記載
の燃料電池。 3、前記の酸化剤排出ガスの1部を循環せしめる手段は
、酸化剤排出ガス中の水分濃度を検出する手段を備え、
検出した温度に基づいて酸化剤排出ガスの循環流量を制
御する構造であることを特徴とする特許請求の範囲第1
項に記載の燃料電池。 4、前記の酸素を含むガスは空気であることを特徴とす
る特許請求の範囲第1項に記載の燃料電池。 5、前記の燃料電池は、燃料として液体燃料を用いるも
のであることを特徴とする特許請求の範囲第1項に記載
の燃料電池。 6、前記の液体燃料はメタノールであることを特徴とす
る特許請求の範囲第5項に記載の燃料電池。 7、酸素を含むガスを酸化剤として用いると共に運転条
件下で平衝組成とならない電解液を用いた燃料電池にお
いて、該燃料電池に供給される酸化剤に水を添加する装
置を備え、更に、上記の水を添加する装置は、燃料電池
の排ガスを熱源として、かつ、該排ガスの温度に基づい
て添加水に与える熱量を制御することによつて発生蒸気
量を制御する機能を備えたものとすることを特徴とする
。 8、前記の酸素を含むガスは空気であることを特徴とす
る特許請求の範囲第7項に記載の燃料電池。 9、前記の燃料電池は、燃料として液体燃料を用いるも
のであることを特徴とする特許請求の範囲第7項に記載
の燃料電池。 10、前記の液体燃料はメタノールであることを特徴と
する特許請求の範囲第7項に記載の燃料電池。
[Claims] 1. In a fuel cell that uses a gas containing oxygen as an oxidant and uses an electrolyte that does not have an equilibrium composition under operating conditions, a part of the oxidizer exhaust gas of the fuel cell is circulated. A fuel cell characterized by being provided with means for returning the fuel into the fuel cell. 2. The means for circulating a portion of the oxidant exhaust gas has a structure that includes means for detecting the temperature of the fuel cell and controls the circulation flow rate of the oxidizer exhaust gas based on the detected temperature. A fuel cell according to claim 1, characterized in that: 3. The means for circulating a portion of the oxidizing agent exhaust gas includes means for detecting the moisture concentration in the oxidizing agent exhaust gas,
Claim 1, characterized in that the structure is such that the circulating flow rate of the oxidant exhaust gas is controlled based on the detected temperature.
The fuel cell described in Section. 4. The fuel cell according to claim 1, wherein the oxygen-containing gas is air. 5. The fuel cell according to claim 1, wherein the fuel cell uses liquid fuel as fuel. 6. The fuel cell according to claim 5, wherein the liquid fuel is methanol. 7. A fuel cell using a gas containing oxygen as an oxidizing agent and an electrolyte that does not have an equilibrium composition under operating conditions, further comprising a device for adding water to the oxidizing agent supplied to the fuel cell, The water adding device described above uses the exhaust gas of the fuel cell as a heat source and has a function of controlling the amount of steam generated by controlling the amount of heat given to the added water based on the temperature of the exhaust gas. It is characterized by 8. The fuel cell according to claim 7, wherein the oxygen-containing gas is air. 9. The fuel cell according to claim 7, wherein the fuel cell uses liquid fuel as fuel. 10. The fuel cell according to claim 7, wherein the liquid fuel is methanol.
JP60009099A 1985-01-23 1985-01-23 Fuel cell Pending JPS61168875A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60009099A JPS61168875A (en) 1985-01-23 1985-01-23 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60009099A JPS61168875A (en) 1985-01-23 1985-01-23 Fuel cell

Publications (1)

Publication Number Publication Date
JPS61168875A true JPS61168875A (en) 1986-07-30

Family

ID=11711172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60009099A Pending JPS61168875A (en) 1985-01-23 1985-01-23 Fuel cell

Country Status (1)

Country Link
JP (1) JPS61168875A (en)

Similar Documents

Publication Publication Date Title
Watanabe et al. Self‐humidifying polymer electrolyte membranes for fuel cells
US7993791B2 (en) Self-humidifying proton exchange membrane, membrane-electrode assembly, and fuel cell
JPH0374468B2 (en)
JP2007287415A (en) Fuel cell
JP2002289230A (en) Polymer electrolyte fuel cell
JP2004311225A (en) Catalytic powder, catalytic electrode, and electrochemical device
JP3163370B2 (en) Redox battery
JP3850721B2 (en) Control method of polymer electrolyte fuel cell
JP3360485B2 (en) Fuel cell
JPH1145733A (en) Solid polimer fuel cell
WO2008096887A1 (en) Membrane-electrode assembly and fuel cell comprising the same
US20050053821A1 (en) Self-moisturizing proton exchange membrane, membrane-electrode assembly and fuel cell
JP6543671B2 (en) Fuel cell output inspection method
JPH10270057A (en) Solid high molecular fuel cell
JP2000003718A (en) Method for activating high molecular electrolyte fuel cell
JP2002164057A (en) Solid high molecular fuel cell and method of manufacturing the same
JP2001307749A (en) Solid polymer fuel battery and stack of the same
JPH10208757A (en) Fuel cell generating set
JPH069143B2 (en) Fuel cell storage method
JPS61168875A (en) Fuel cell
JP2741574B2 (en) Solid polymer electrolyte fuel cell
JP2002289202A (en) Method for lowering fuel cell cathode activating overvoltage
JPS63237363A (en) Methanol fuel cell
JP2004152588A (en) Electrode structure for solid polymer fuel cell
JPH0622153B2 (en) How to operate a fuel cell