JPS61168540A - Production of quartz glass - Google Patents

Production of quartz glass

Info

Publication number
JPS61168540A
JPS61168540A JP1025885A JP1025885A JPS61168540A JP S61168540 A JPS61168540 A JP S61168540A JP 1025885 A JP1025885 A JP 1025885A JP 1025885 A JP1025885 A JP 1025885A JP S61168540 A JPS61168540 A JP S61168540A
Authority
JP
Japan
Prior art keywords
gel
drying
quartz glass
humidity
rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1025885A
Other languages
Japanese (ja)
Inventor
Satoru Miyashita
悟 宮下
Sadao Kanbe
貞男 神戸
Motoyuki Toki
元幸 土岐
Tetsuhiko Takeuchi
哲彦 竹内
Hirohito Kitabayashi
北林 宏仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP1025885A priority Critical patent/JPS61168540A/en
Publication of JPS61168540A publication Critical patent/JPS61168540A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/12Other methods of shaping glass by liquid-phase reaction processes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Silicon Compounds (AREA)

Abstract

PURPOSE:To enable the production of a large-sized quartz glass having high quality at a low cost, by detecting the temperature in a drying vessel, thereby controlling the rate of drying of a gel produced from an alkyl silicate and ultrafine silica powder. CONSTITUTION:Ultrafine silica powder is added to a sol produced by the hydrolysis of an alkyl silicate, and the pH of the mixture is properly adjusted to obtain a gel. The gel is dried and sintered to produce quartz glass. In the above process, the dried state of the gel is detected by the humidity in the drying vessel, and the drying rate is controlled by controlling the heating temperature, rate of air flow, etc. The end point of the drying of the gel is also judged by the humidity. The cracking of the dry gel during production and sintering can be prevented, and a large-sized quartz glass can be produced in high yield at a low cost.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はゾル−ゲル法による石英ガラスの製造方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing quartz glass by a sol-gel method.

〔従来の技術〕[Conventional technology]

石英ガラスはIC製造工程中でるつばやボード拡散炉等
に使用されるようになり、その有用性が認められ、更に
水酸基の少ないものや光学的均一性の良いものが開発さ
れたことによって、各種の光学的用途に使用されるよう
になり、特に光通信用の石英ガラスファイバーが最近注
目され、ている。
Quartz glass has come to be used in crucibles and board diffusion furnaces during the IC manufacturing process, and its usefulness has been recognized.Furthermore, with the development of glass with fewer hydroxyl groups and with good optical uniformity, various types of quartz glass have been used. Recently, silica glass fibers have been attracting attention, especially for optical communications.

このように石英ガラスは種々の分野で使用されその利用
範囲も広がっている。しかし、石英ガラスの製造コスト
は高く、高価なことが問題になっている。安価で高品質
の石英ガラスを製造する方法として、ゾル−ゲル法が試
みられている。
As described above, quartz glass is used in various fields, and its range of applications is expanding. However, the manufacturing cost of quartz glass is high, and the high price has become a problem. A sol-gel method has been attempted as a method for manufacturing inexpensive, high-quality quartz glass.

ゾルーゲル法全用いて歩留り良く、大型の石英ガラスを
得る方法として、アルキルシリケートを加水分解したゾ
ル中に超微粉末シリカ全加え、超音波等で分散し更にP
Kを3〜6に調整した後、50〜90℃で乾燥し、焼結
する方法があるOドライゲル作製中の割れの問題と、焼
結中の割れやクラック生成の問題を同時に解決したもの
であり、かなり大きな石英ガラス(41nchφ以上)
が低コストで製造でき、るようになりた。
As a method for obtaining large-sized quartz glass with good yield using the sol-gel method, ultrafine powdered silica is added completely to a sol prepared by hydrolyzing alkyl silicate, dispersed by ultrasonic waves, etc., and further P
After adjusting K to 3 to 6, drying and sintering at 50 to 90°C is a method that simultaneously solves the problem of cracking during the production of O dry gel and the problem of cracking and crack formation during sintering. Yes, quite large quartz glass (41 nchφ or more)
can now be manufactured at low cost.

ドライゲルの作製は、ゾルを乾燥容器に注入し、ピンホ
ールの開いたフタをして、乾燥機内で除々に溶媒を除去
する方法が一般的である。ゲルの大きさ、あるいは重量
により乾燥状態を検出し、制御する方法が示されている
A common method for producing a dry gel is to pour the sol into a drying container, cover the container with a pinhole lid, and gradually remove the solvent in a dryer. A method of detecting and controlling the dry state based on the size or weight of the gel is shown.

〔問題点〕〔problem〕

しかし、大きさや重量で乾燥状態をチェックする従来技
術では測定そのものが困難なうえ、短期間の変化が検出
できずあまり有効な手段ではない。
However, conventional techniques that check dryness based on size and weight are not only difficult to measure, but also cannot detect short-term changes, making them not very effective methods.

また、ゲルの乾燥終了段階では大きさや重量の変化はほ
とんど認められず、乾燥終了の判断を誤まり、急激な温
度変化等を加えるとゲルは割れてしまう。従来技術はゲ
ルの乾燥終了に関し、何ら有効な情報を提供できないと
いう問題点を有する。
In addition, there is almost no change in the size or weight of the gel at the stage when it is finished drying, and if the gel is misjudged when the drying is finished and a sudden change in temperature is applied, the gel will crack. The conventional technology has a problem in that it cannot provide any effective information regarding the completion of gel drying.

そこで本発明はこのような問題点を解決するもので、そ
の目的とするところはゲルの乾燥状態を逐次検出でき、
乾燥終了に関する明解な情報を与える方法を提供するこ
とにより、ドライゲル作製の歩留り金著しく向上させる
ところにある。
Therefore, the present invention is intended to solve these problems, and its purpose is to be able to sequentially detect the dry state of the gel,
By providing a method that provides clear information regarding the completion of drying, the yield of dry gel production can be significantly improved.

〔手 段〕[hands]

本発明の石英ガラスの製造方法は、少なくともアルキル
シリケートおよび超微粉末シリカを原料とするゾル−ゲ
ル法による石英ガラスの製造方法において、ゲルの乾燥
状態を乾燥容器内の湿度により検出し、乾燥速度を制御
することを特徴とするO 〔作 用〕 乾燥速度は加熱温度Φ空気湿度・空気速度により決まる
。加熱温度と空気速度は乾燥機の設定温度、及び排気量
により制御可能である。乾燥容器内の湿度をチェックす
ることにより乾燥状態が検出でき、設定温度と排気量を
調節する際の有効な情報となる◇測定が簡単で感度も高
い。
The method for producing quartz glass of the present invention is a method for producing quartz glass by a sol-gel method using at least alkyl silicate and ultrafine powder silica as raw materials, in which the dry state of the gel is detected by the humidity in the drying container, and the drying rate is [Operation] The drying speed is determined by the heating temperature Φ air humidity and air speed. The heating temperature and air velocity can be controlled by the set temperature and exhaust volume of the dryer. The dry state can be detected by checking the humidity inside the drying container, which provides useful information when adjusting the set temperature and exhaust volume.◇Easy to measure and highly sensitive.

また、ゲルの乾燥終了段階で湿度が急激に低下する為、
乾燥終了の判断が容易である。
In addition, since the humidity drops rapidly at the end of gel drying,
It is easy to judge when drying is complete.

〔実施例〕〔Example〕

第1図は実施例1に記載する条件でゲルの乾燥を行なっ
た時の、各パラメーターの経時変化を示す。■が湿度変
化でろ・す、乾燥前期を高湿に保つことにより、ゲルの
割れを防ぐことができる。乾燥の終了時点も明確である
。■はゲルの長さ比、■は重量比である。■と■は実施
例2以下に示すような、乾燥条件の激変が起こっても、
はとんど変化しない。また、乾燥終了の判断も困難であ
る。
FIG. 1 shows changes over time in each parameter when the gel was dried under the conditions described in Example 1. ■Cracking of the gel can be prevented by keeping the humidity high during the first stage of drying. The end point of drying is also clear. ■ is the length ratio of the gel, and ■ is the weight ratio. ■ and ■ indicate that even if drastic changes in drying conditions occur as shown in Example 2 and below,
doesn't change much. Furthermore, it is difficult to determine when drying is complete.

以下、本発明について詳細に説明する。The present invention will be explained in detail below.

実施例 1 エチルシリケート4.4 Jと0.05規定塩酸水溶液
3.61を激しく攪拌し、無色透明の均一溶液を得た。
Example 1 4.4 J of ethyl silicate and 3.61 J of a 0.05N aqueous hydrochloric acid solution were vigorously stirred to obtain a colorless and transparent homogeneous solution.

そこに超微粉末シリカ(Aeroail 0X−50)
1.5kg’i徐々に添加し、充分に攪拌した。このゾ
ルを20℃に保ちながら28砒の超音波を2時間照射し
、更に1500Qの遠心力を10分間かけた。
Ultrafine powder silica (Aeroail 0X-50)
1.5 kg'i was gradually added and thoroughly stirred. This sol was irradiated with ultrasonic waves of 28 arsenic for 2 hours while being kept at 20° C., and centrifugal force of 1500 Q was further applied for 10 minutes.

得られた均質度の高いゾルを、0.1規定アンモニア水
でP H4,2に調整してからポリプロピレン製乾燥容
器(幅20cIn×20crrL×高さ10crrL)
20個に深さが1crrLになる量注入した。開口率1
チのフタをして乾燥機内に静置したが、そのうち1つの
容器内には、7タから5(mの深さの位置に湿度センサ
ー(セラミックス製)を固定した。
The resulting highly homogeneous sol was adjusted to pH 4.2 with 0.1 N ammonia water, and then placed in a polypropylene drying container (width 20 cIn x 20 crrL x height 10 crrL).
The amount was injected into 20 cells to a depth of 1 crrL. Opening ratio 1
The containers were placed in a dryer with a lid on, and a humidity sensor (made of ceramics) was fixed in one of the containers at a depth of 7 m to 5 m.

乾燥機内の温度を60℃に設定し、乾燥容器内の湿度が
80%以上に保たれるように排気量を調節した。そのま
まの条件で乾燥を続けると、7日目から湿度が減少しは
じめ、100日目20%以下になった。乾燥容器を乾燥
機から取り出したところ、ゲルは乾燥が終了しており、
急激な温度低下による割れはなかった。また、20個す
べての容器について、ゲルの割れは観察されなかった。
The temperature inside the dryer was set at 60° C., and the exhaust volume was adjusted so that the humidity inside the drying container was maintained at 80% or higher. If drying was continued under the same conditions, the humidity began to decrease from the 7th day and fell below 20% on the 100th day. When I took the drying container out of the dryer, I found that the gel had finished drying.
There were no cracks caused by the rapid temperature drop. Furthermore, no cracking of the gel was observed in all 20 containers.

ドライゲルは一辺14CIFl、厚さ0.7cmで重量
は12’Ofだりた。
The dry gel had a side of 14 CIFl, a thickness of 0.7 cm, and a weight of 12'Of.

このように歩留り100チで作製できたドライゲルを適
当な昇温プログラムによ51300℃まで加熱したとこ
ろ、無色透明な石英ガラスが製造できた。大きさは10
X10X0.5cit重量は110tだった。
When the dry gel thus produced at a yield of 100 cm was heated to 51,300° C. using an appropriate heating program, colorless and transparent quartz glass was produced. The size is 10
The weight of X10X0.5cit was 110t.

実施例 2 実施例1と同様の方法で乾燥を開始した後、2日目に温
度を80℃に上昇させると、湿度が50チに低下し、6
日目に10%以下になった。乾燥機からとシ出したとこ
ろ、ドライゲルの作製歩留りは20%だった。
Example 2 After starting drying in the same manner as in Example 1, when the temperature was raised to 80°C on the second day, the humidity decreased to 50°C and
It dropped to less than 10% on the first day. When removed from the dryer, the dry gel production yield was 20%.

一方、温度を80℃に上昇させた後、湿度が80%以上
になるよう排気量を減少させた場合は、8日目に湿度が
10チ以下になった。ドライゲルの作製歩留りは80%
だった。
On the other hand, when the temperature was raised to 80°C and the exhaust volume was reduced so that the humidity was 80% or higher, the humidity became 10°C or lower on the 8th day. Dry gel production yield is 80%
was.

実施例 3 実施例1と同様の方法で乾燥を開始した後、5日目から
急激な湿度減少がおこらないよう注意しながら、徐々に
排気量を増加させた。8日目に湿度が20チ以下になっ
たので乾燥をやめると、ドライゲルの作製歩留りは90
%だった。
Example 3 After drying was started in the same manner as in Example 1, the exhaust volume was gradually increased from the 5th day while being careful not to cause a sudden decrease in humidity. On the 8th day, the humidity fell below 20 degrees, so we stopped drying and the dry gel production yield was 90 degrees.
%was.

実施例 4 乾燥容器の開口率i 0.5 %に減少させ、実施例1
と同様の方法で乾燥を開始すると、10日目から湿度が
減少しはじめ、15日目に20−以下に1  なった。
Example 4 The opening ratio i of the drying container was reduced to 0.5%, and the opening ratio i of the drying container was reduced to 0.5%.
When drying was started in the same manner as above, the humidity began to decrease from the 10th day and reached 20-1 or less on the 15th day.

乾燥容器を乾燥機から取り出したところ、ゲルは乾燥が
終了しておシ、急激な温度低下による割れはなかった。
When the drying container was removed from the dryer, the gel had completely dried and there was no cracking due to the sudden temperature drop.

ドライゲルの作製歩留りは100%だった。The dry gel production yield was 100%.

以上平板を例に説明したが、ゲルの形状がチューブでも
ロッドでも同様の効果が得られる。また多くのゲルを同
時に乾燥させる大型乾燥容器にも本発明は適用できる。
Although the explanation has been given using a flat plate as an example, the same effect can be obtained even if the gel shape is a tube or a rod. The present invention can also be applied to large-sized drying containers that dry many gels at the same time.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、少なくともアルキル
シリケートおよび超微粉末゛シリカを原料とするゾル−
ゲル法による石英ガラスの製造方法において、ゲルの乾
燥状態を乾燥容器内の湿度により検出し、乾燥速度を制
御することにより、ドライゲルの作製歩留り金著しく向
上させる効果を有する。また、乾燥終了を明確に表示す
る為、乾燥不足による割れや過剰な乾燥時間を防ぐこと
ができる。
As described above, according to the present invention, a sol made of at least alkyl silicate and ultrafine powder silica is used.
In a method for manufacturing quartz glass using the gel method, the drying state of the gel is detected by the humidity in the drying container and the drying rate is controlled, which has the effect of significantly improving the production yield of dry gel. In addition, since the completion of drying is clearly indicated, cracks due to insufficient drying and excessive drying time can be prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はゲルが乾燥する過程での変化を示す図である。 ■乾燥容器内の湿度 ■ゲルの長さ比 ■ゲルの重量比 FIG. 1 is a diagram showing changes in the gel during the drying process. ■Humidity inside the drying container ■Gel length ratio ■Gel weight ratio

Claims (1)

【特許請求の範囲】 1)少くともアルキルシリケートおよび超微粉末シリカ
を原料とするゾル−ゲル法による石英ガラスの製造方法
において、ゲルの乾燥状態を乾燥容器内の湿度により検
出し、乾燥速度を制御することを特徴とする石英ガラス
の製造方法。 2)ゲルの乾燥終了も乾燥容器内の湿度により確認する
ことを特徴とする特許請求の範囲第1項記載の石英ガラ
スの製造方法。
[Claims] 1) In a method for producing quartz glass by a sol-gel method using at least alkyl silicate and ultrafine powder silica as raw materials, the drying state of the gel is detected by the humidity in the drying container, and the drying rate is determined. A method for producing quartz glass characterized by controlling. 2) The method for producing quartz glass according to claim 1, wherein completion of drying of the gel is also confirmed by checking the humidity in the drying container.
JP1025885A 1985-01-23 1985-01-23 Production of quartz glass Pending JPS61168540A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1025885A JPS61168540A (en) 1985-01-23 1985-01-23 Production of quartz glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1025885A JPS61168540A (en) 1985-01-23 1985-01-23 Production of quartz glass

Publications (1)

Publication Number Publication Date
JPS61168540A true JPS61168540A (en) 1986-07-30

Family

ID=11745291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1025885A Pending JPS61168540A (en) 1985-01-23 1985-01-23 Production of quartz glass

Country Status (1)

Country Link
JP (1) JPS61168540A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4727350A (en) * 1986-04-28 1988-02-23 Hitoshi Ohkubo Surge absorber
JP2009137836A (en) * 2007-12-10 2009-06-25 Degussa Novara Technology Spa Method for producing glassy monolith via sol-gel process

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4727350A (en) * 1986-04-28 1988-02-23 Hitoshi Ohkubo Surge absorber
JP2009137836A (en) * 2007-12-10 2009-06-25 Degussa Novara Technology Spa Method for producing glassy monolith via sol-gel process
EP2088128A1 (en) * 2007-12-10 2009-08-12 Degussa Novara Technology S.p.A. Method for the production of glassy monoliths via the sol-gel process

Similar Documents

Publication Publication Date Title
JPS61168540A (en) Production of quartz glass
JP2635313B2 (en) Method for producing silica glass
JPS62265129A (en) Production of silica glass
JPS63117917A (en) Production of glass
JPS60131834A (en) Manufacture of quartz glass
SU1549931A1 (en) Method of producing quartz glass
JPS6191022A (en) Production of quartz glass
JPS63182222A (en) Production of silica glass
JPS6296339A (en) Production of optical fiber preform
JPS6291429A (en) Production of glass
JPS63151623A (en) Production of organic substance-containing silica bulk material
JPS63307126A (en) Production of silica glass
JPH0512290B2 (en)
JPS6144727A (en) Production of glass for optical fiber
JPS61236618A (en) Production of quartz glass
JPS6046933A (en) Manufacture of quartz glass plate
JPS63134525A (en) Production of glass
JPH0761876B2 (en) Method for producing silica glass
JPH0755836B2 (en) Glass manufacturing method
JPS60239328A (en) Manufacture of quartz glass
JPS63144127A (en) Production of quartz glass
JPS6065731A (en) Method for mass production of quartz glass
JPS62158133A (en) Production of silica glass
JPS60108324A (en) Production of quartz glass
JPH02248332A (en) Production of silica glass