JPS61168512A - Electrode material - Google Patents

Electrode material

Info

Publication number
JPS61168512A
JPS61168512A JP60007042A JP704285A JPS61168512A JP S61168512 A JPS61168512 A JP S61168512A JP 60007042 A JP60007042 A JP 60007042A JP 704285 A JP704285 A JP 704285A JP S61168512 A JPS61168512 A JP S61168512A
Authority
JP
Japan
Prior art keywords
cell voltage
electrode material
coulombs
charging
charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60007042A
Other languages
Japanese (ja)
Other versions
JP2504940B2 (en
Inventor
Mitsutaka Miyabayashi
宮林 光孝
Akira Itsubo
明 伊坪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemical Co Ltd
Original Assignee
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Petrochemical Co Ltd filed Critical Mitsubishi Petrochemical Co Ltd
Priority to JP60007042A priority Critical patent/JP2504940B2/en
Publication of JPS61168512A publication Critical patent/JPS61168512A/en
Application granted granted Critical
Publication of JP2504940B2 publication Critical patent/JP2504940B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Ceramic Products (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To provide a low-cost electrode material enabling the production of a light-weight pollution-free cell having high energy density and maximum output density, by calcining an acrylonitrile polymer, a phenolic resin, a cellulosic resin or pitch. CONSTITUTION:The objective electrode material satisfying the following two conditions is produced by calcining a polyacrylonitrile, a phenolic resin, a cellulosic resin or pitch. The conditions are (1) the atomic ratio of H/C is <=0.20 and (2) the g value determined from the first-order differential absorption curve of electron spin resonance spectrum (at 23 deg.C) has a signal having a line width (DELTAHpp) of >=100Gauss within the range of 1.970-2.020, or is devoid of the signal having a line width of <100Gauss.

Description

【発明の詳細な説明】 (利用分野) 本発明は、軽量でエネルギー密度、最大出力密度が高く
、無公害な電池の製造を可能ならしめる電極を低コスト
で工業的に生産可能な電極材料に関する。
Detailed Description of the Invention (Field of Application) The present invention relates to an electrode material that is lightweight, has a high energy density, a high maximum output density, and can be industrially produced at low cost, making it possible to manufacture non-polluting batteries. .

(従来技術) 近年、電池の高性能化に向けた研究開発の動きは激しい
。その一つに炭素質材料を電極として電気化学的ドーピ
ングを利用した再充電可能な二次電池の研究がある。九
とえは負極KLi 金属を、正極に黒鉛を用いた場合、
黒鉛層間に充電でClO:、BF4−などの陰イオンを
ドープすることができ、この時に生ずる起電力を利用し
て電池として応用できる。放電時には、黒鉛層間からこ
れらのイオンが脱ドープされ、電流がとシだせる。こう
して充、放電のくシ返しができる二次電池として使用で
きる(電気化学46,438(1978)など)。
(Prior Art) In recent years, there has been a rapid movement in research and development aimed at improving the performance of batteries. One of these is research on rechargeable secondary batteries that use carbonaceous materials as electrodes and electrochemical doping. The ninth example is when using KLi metal as the negative electrode and graphite as the positive electrode.
Anions such as ClO:, BF4-, etc. can be doped between the graphite layers by charging, and the electromotive force generated at this time can be used for application as a battery. During discharge, these ions are dedoped from between the graphite layers, allowing current to flow out. In this way, it can be used as a secondary battery that can be charged and discharged repeatedly (Electrochemistry 46, 438 (1978), etc.).

しかし、この場合には黒鉛層間にドープされたイオン同
志の反発のためかドープ量に限度がめ夛、エネルギー密
度も低いものであって正極として黒鉛は不充分である。
However, in this case, there is a limit to the amount of doping, probably due to repulsion between ions doped between the graphite layers, and the energy density is low, making graphite insufficient as a positive electrode.

また負極としてのLi金属は、充放電のサイクルをくシ
返すにつれてLi金属電極上に成長するデンドライトの
ために充放電のサイクル数をあげることができず負極と
して不充分である。
Furthermore, Li metal as a negative electrode is insufficient as a negative electrode because it cannot increase the number of charge/discharge cycles due to dendrites that grow on the Li metal electrode as the charge/discharge cycles are repeated.

また、黒鉛を負極として用いた場合、Li  イオンな
どの陽イオンを眉間にドープすることができるが電解液
中で非常圧不安定であシ、電解液とも反応するなど電極
材として不適である(J、Elec−trochem、
5ociety、 125 、687 (1978) 
、 )。
In addition, when graphite is used as a negative electrode, it is possible to dope cations such as Li ions between the eyebrows, but it is unstable under extreme pressure in the electrolyte and reacts with the electrolyte, making it unsuitable as an electrode material ( J, Elec-trochem,
5ociety, 125, 687 (1978)
).

また、市販の活性炭素繊維を両極に用いた電池が特開昭
58−35881号公報に提案されている。しかし特開
昭55−99714号公報に活性化炭素繊維を両極に用
いた電気二重層容量が提案されているように、電荷の蓄
積及び放出をイオンのドーピング、脱ドーピングで行う
というよりは、むしろ活性炭電極と溶液の界面に正負の
電荷が極めて短い距離を隔てて相対して分布する電気二
重層を利用したものであり、エネルギー密度があがらず
、また、自己放′亀がしやすく長時間放電に耐えず、電
圧の平担性も得られぬなどのいくつかの重要な問題点を
有している。
Furthermore, a battery using commercially available activated carbon fibers for both electrodes has been proposed in Japanese Patent Application Laid-Open No. 58-35881. However, as proposed in Japanese Unexamined Patent Publication No. 55-99714, an electric double layer capacitor using activated carbon fibers for both poles, rather than accumulating and releasing charges through ion doping and dedoping, It utilizes an electric double layer in which positive and negative charges are distributed across an extremely short distance at the interface between the activated carbon electrode and the solution, so the energy density does not increase and self-emission is more likely to occur, resulting in long-term discharge. It has several important problems, such as not being able to withstand high temperatures and not being able to achieve voltage flatness.

一方、ポリアセチレンなどの導電性高分子を電極として
電気化学的ドーピングを利用した再充電可能な二次電池
の研究にも多大の関心が寄せられている。たとえば特開
昭57−121168号公報にはアセチレン重合体を用
いた電池が提案されている。しかしポリアセチレンは空
気中で酸化劣化するなど不安定であ少溶媒に含まれる微
量の水分や酸素と反応して劣化し電極としての安定桂に
劣る。とくに負極として用いたポリアセチレンが電解液
中で゛の劣化が激しい。
On the other hand, there is also a great deal of interest in research into rechargeable secondary batteries that utilize electrochemical doping with conductive polymers such as polyacetylene as electrodes. For example, JP-A-57-121168 proposes a battery using an acetylene polymer. However, polyacetylene is unstable due to oxidative deterioration in the air, and deteriorates when reacting with trace amounts of moisture and oxygen contained in the solvent, making it less stable as an electrode. In particular, the polyacetylene used as the negative electrode deteriorates severely in the electrolyte.

したがってポリアセチレンを両極に用いた電池は自己放
電が激しく、また、充放電の電荷効率も悪く、高性能で
高信頼性のIE池を得るのが難しい。
Therefore, a battery using polyacetylene as both electrodes has severe self-discharge and poor charging/discharging efficiency, making it difficult to obtain a high-performance and highly reliable IE battery.

負極電極としてLi金属を用い、ポリアセチレンを正極
電極として用いた電池では、充放電における電荷効率な
どの問題が、両極にポリアセチレンを用いた電池と比較
して改良されるが、この場合もやはり充放電過程を重ね
るにつれてLi金属電極上に成長するデンドライトのた
めに充放電のサイクル数を上げることができない等の問
題がめる。
In a battery that uses Li metal as the negative electrode and polyacetylene as the positive electrode, problems such as charge efficiency during charging and discharging are improved compared to batteries that use polyacetylene for both electrodes, but in this case as well, the charging and discharging efficiency is improved. Problems arise, such as the inability to increase the number of charge/discharge cycles due to dendrites that grow on the Li metal electrode as the process progresses.

(発明の概要) こうした現状に鑑み、本発明者らは軽量で高エネルギー
密度、高最大出力密度の無公害な二次電池の開発にはイ
オンのドーピング、脱ドーピングに対し安定で、かつ多
量のイオンをドープできる良好な正極及び負極の電極材
料が重要であること、とシわけ負極電極としてすぐれた
性能を有する材料の開発が最大のポイントであるとの認
HC立ち、すぐれた負極電極用材料の開発に鋭意努力し
てきた。その結果、本発明に到達したものである。
(Summary of the Invention) In view of the current situation, the present inventors have developed a lightweight, high energy density, high maximum output density, non-polluting secondary battery that is stable against ion doping and dedoping and requires a large amount of Recognizing that good positive and negative electrode materials that can be doped with ions are important, and the most important point being the development of materials that have excellent performance as negative electrodes, HC has developed excellent materials for negative electrodes. We have worked hard to develop. As a result, we have arrived at the present invention.

すなわち本発明は、アクリロニトリル重合体、フェノー
ル樹脂、セルロース樹脂、又ハ、ピッチを熱焼成してな
シ、かつ、下記(1)、(2)を満足する電極材料であ
る。
That is, the present invention is an electrode material that does not contain an acrylonitrile polymer, a phenol resin, a cellulose resin, or c. pitch, and satisfies the following (1) and (2).

(1)水素/炭素原子の原子比が0.20以下であるこ
と。
(1) The atomic ratio of hydrogen/carbon atoms is 0.20 or less.

(2)電子スピン共鳴スペクトル(23℃測定)の一次
微分吸収曲線から求められる2値が1.970〜2.0
20の範囲に線巾が100ガウス以上のシグナルを有す
るか、又は、lOOガウス未満のシグナルを有しないこ
と。
(2) The binary value obtained from the first-order differential absorption curve of the electron spin resonance spectrum (measured at 23°C) is 1.970 to 2.0.
Have a signal with a line width of 100 Gauss or more in the range of 20, or have no signal with a line width of less than 10 Gauss.

本発明の電極材料は負極′ft極として用いた時にすぐ
れた電池性能を発揮する。
The electrode material of the present invention exhibits excellent battery performance when used as a negative electrode.

(発明の詳細な説明) 本発明において、負極電極とは充電時、外部電源の陰極
に接続されて電子が送り込まれ、かつ陽イオンがドープ
される電極側の電極のことである。
(Detailed Description of the Invention) In the present invention, the negative electrode refers to an electrode that is connected to the cathode of an external power source to which electrons are sent and doped with cations during charging.

本発明の電極材料の合成に用いられるフェノール樹脂は
、フェノール性水酸基を有する芳香族炭化水素化合物と
アルデヒド化合物を散性又は塩基性触媒の存在下で縮合
させることで得られる縮合物を意味する。
The phenolic resin used in the synthesis of the electrode material of the present invention means a condensate obtained by condensing an aromatic hydrocarbon compound having a phenolic hydroxyl group and an aldehyde compound in the presence of a dispersive or basic catalyst.

フェノール性水酸基を有する芳香族炭化水素化合物とし
ては、たとえばフェノール、オルソクレゾール、パラク
レゾール、メタクレゾール、3.5−キシレノールなど
のキシレノール、パラ−ターシャリ−グチルフェノール
などのアルキルフェノール、パラフェニルフェノール、
ビスフェノールA、レゾルシンなどが用いられる。
Examples of the aromatic hydrocarbon compound having a phenolic hydroxyl group include phenol, orthocresol, para-cresol, metacresol, xylenol such as 3,5-xylenol, alkylphenol such as para-tert-glutylphenol, para-phenylphenol,
Bisphenol A, resorcinol, etc. are used.

アルデヒド化合物は、ホルムアルデヒド、パラホルムア
ルデヒド、トリオキサン、アセトアルデヒド、フルフラ
ール、アクロレインなどがろる。
Examples of aldehyde compounds include formaldehyde, paraformaldehyde, trioxane, acetaldehyde, furfural, and acrolein.

とくにホルムアルデヒド、パラホルムアルデヒド、トリ
オキサンが通常よく用いられる。
In particular, formaldehyde, paraformaldehyde, and trioxane are commonly used.

上記フェノール性水酸基を有する芳香族炭化水素化合物
とアルデヒド化合物を酸性又は塩基性触媒の存在下で縮
合させることで得られる縮合物は、さらに硬化剤によっ
て、あるいはたんに加熱することで適当に硬化反応をお
こなわせることが望ましい。適当な形に賦形後、硬化反
応をお仁なわせることで、熱焼成後得られる電極材料の
形状を選択することができる。
The condensate obtained by condensing the above-mentioned aromatic hydrocarbon compound having a phenolic hydroxyl group and an aldehyde compound in the presence of an acidic or basic catalyst can undergo an appropriate curing reaction with a curing agent or simply by heating. It is desirable to have them do this. By allowing a curing reaction to occur after shaping into an appropriate shape, the shape of the electrode material obtained after thermal firing can be selected.

すなわち、上記フェノール性水酸基を有する芳香族炭化
水素化合物とアルデヒド化合物を酸性触媒の存在下で縮
合させることで得られるノボラック型フェノール樹脂は
、さらにホルムアルデヒド、パラホルムアルデヒド、ア
セトアルデヒド、フルフラール、アクロレイン、ヘキサ
ンメチレンテトラミン、トリメチロールホスフィンオキ
シトfZトの架橋剤を用いて硬化反応をおこなわせるこ
とができる。また、エポキシ基金有する化合物、たとえ
ばエポキシ樹脂を硬化剤として用いることもできる。更
に、フェノールをアルカリ触媒の存在下にアルデヒド化
合物を反応させて得られるレゾール型フェノール樹脂を
上述のノボラック型フェノール樹脂と反応させて硬化さ
せること本できる。
That is, the novolac type phenol resin obtained by condensing the above-mentioned aromatic hydrocarbon compound having a phenolic hydroxyl group and an aldehyde compound in the presence of an acidic catalyst further contains formaldehyde, paraformaldehyde, acetaldehyde, furfural, acrolein, and hexanemethylenetetramine. The curing reaction can be carried out using a crosslinking agent such as trimethylolphosphine oxyto fZ. It is also possible to use epoxy-based compounds, such as epoxy resins, as hardeners. Furthermore, a resol type phenol resin obtained by reacting phenol with an aldehyde compound in the presence of an alkali catalyst can be cured by reacting it with the above-mentioned novolac type phenol resin.

更に、フェノール性水酸基を有する芳香族炭化水素化合
物とアルデヒド化合物を塩基性触媒の存在下に反応させ
て得られるレゾール型フェノール樹脂は、次んに加熱す
ることで硬化反応をおこさせることができる。
Furthermore, a resol type phenolic resin obtained by reacting an aromatic hydrocarbon compound having a phenolic hydroxyl group and an aldehyde compound in the presence of a basic catalyst can be heated to cause a curing reaction.

本発明の電極材料の合成に用いられるフェノール樹脂は
、ポリP−ビニルフェノール、ポリイソプロペニルフェ
ノールなどのフェノール基tM合単位に含むポリマーを
用いることができる。通常はこれらのポリマーを、ホル
ムアルデヒド、パラホルムアルデヒド、アセトアルデヒ
ド、フルフラール、アクロレイン、ヘキサメチレンテト
ラミン、トリメチロールホスフィンオキシト、エポキシ
樹脂などのエポキシ基を有する化合物、レゾールなどを
用いて適当に硬化させて用いる。
As the phenolic resin used in the synthesis of the electrode material of the present invention, a polymer containing a phenol group tM combination unit such as polyP-vinylphenol or polyisopropenylphenol can be used. Usually, these polymers are appropriately cured using a compound having an epoxy group such as formaldehyde, paraformaldehyde, acetaldehyde, furfural, acrolein, hexamethylenetetramine, trimethylolphosphine oxide, epoxy resin, or resol.

本発明の電極材料の合成に用いるポリアクリロニトリル
は、アクリロニトリルの単独重合体又はアクリロニトリ
ルに他のコモノマーを少割合共重合させた共重合体を意
味する。アクリロニトリルの単独重合体又はアクリロニ
トリルとα−ハロゲン化アクリロニトリルの共重合体が
好ましL/%Oアクリロニトリルと共重合するコモン1
−にα−ハロゲン化アクリロニトリルあるいはβ−ハロ
ゲン化アクリロニトリル以外の七ツマ−を使用するとき
は、共重合体中のコモノマーの割合は20モルチ以下、
好ましくはlOモルチ以下に抑えるのがよい。
The polyacrylonitrile used in the synthesis of the electrode material of the present invention means a homopolymer of acrylonitrile or a copolymer obtained by copolymerizing acrylonitrile with a small proportion of other comonomers. A homopolymer of acrylonitrile or a copolymer of acrylonitrile and α-halogenated acrylonitrile is preferred, and common 1 is copolymerized with L/%O acrylonitrile.
- When using a hexamer other than α-halogenated acrylonitrile or β-halogenated acrylonitrile, the proportion of comonomer in the copolymer is 20 mol or less,
It is preferable to suppress it to less than 1Omolti.

本発明に用いられるセルロース樹脂は、セルロース及び
セルロース誘導体を意味する。セルロースには、木綿、
麻、2ミー等の天然セルロース、木材、竹、リンター等
から得られるパルプ、ビスコースレーヨン、ポリノジッ
ク、銅アンモニアレーヨン等の再生セルロースが含まれ
る。セルロース誘導体トシてはセルロースをエステル化
、エーテル化したものなどで、1、アセチルセルロース
、セルロースアセテートブチレート、セルロースアセテ
ートグロビオネート、エチルセルロースなどがその例で
ある。
The cellulose resin used in the present invention means cellulose and cellulose derivatives. Cellulose includes cotton,
These include natural celluloses such as hemp and 2M, pulps obtained from wood, bamboo, linters, etc., and regenerated celluloses such as viscose rayon, polynosic, cuprammonium rayon, etc. Cellulose derivatives include those obtained by esterifying or etherifying cellulose, such as cellulose acetate, cellulose acetate butyrate, cellulose acetate globionate, and ethyl cellulose.

セルロース樹脂としては上記セルロースが通常よく用い
られる。
As the cellulose resin, the above-mentioned cellulose is usually used.

本発明に用いられるピッチは、原油の分解時に生成する
原油ピッチ、ナフサの分解時に生成するエチレンヘビー
エンドピッチ、アスファルト分解時に生成するアスファ
ルト分解ピッチ、あるいは、石炭の熱分解時に生成する
コールピッチであシ、炭素と水素からなる化合物の混合
物であ夛、実質的にキノリンネ溶分を含まない等方性ピ
ッチである。この等方性ピッチを不活性ガス流下で加熱
することでメンフェーズ含有率を上げてから本発明に用
いるピッチとして使用することもできる0本発明に用い
るピッチは、これを熱焼成して生成する電極材料の充、
放電特性、電極としての機械的強度のバランスから、メ
ソフェーズ含有率0〜60チのものが通常は用いられる
。メン7エーズ含有率は室温における偏光顕微鏡観察に
よって求めたもので、試料であるピッチの偏光顕微鏡視
野中の異方性部分の面積の占める比率を示すものである
The pitch used in the present invention is crude oil pitch produced during the cracking of crude oil, ethylene heavy end pitch produced during the cracking of naphtha, asphalt cracked pitch produced during the cracking of asphalt, or coal pitch produced during the thermal cracking of coal. It is an isotropic pitch that contains a mixture of compounds consisting of carbon and hydrogen and is substantially free of quinoline solvents. This isotropic pitch can be heated under a flow of inert gas to increase the menphase content and then used as the pitch used in the present invention.The pitch used in the present invention is produced by thermally baking it. Filling the electrode material,
In view of the balance between discharge characteristics and mechanical strength as an electrode, those having a mesophase content of 0 to 60 inches are usually used. The Men7Aze content was determined by polarizing microscopic observation at room temperature, and indicates the ratio of the area occupied by the anisotropic portion in the polarizing microscopic field of view of the pitch sample.

本発明の電極材料は上述のポリアクリロニトリル、フェ
ノール樹脂、セルロース樹脂、又は、ピッチを熱焼成し
て得られる。充放電特性及び電極の強度等からポリアク
リロニトリル、フェノール樹脂、セルロース樹脂が好ま
しい。
The electrode material of the present invention is obtained by thermally firing the above-mentioned polyacrylonitrile, phenol resin, cellulose resin, or pitch. Polyacrylonitrile, phenol resin, and cellulose resin are preferred from the viewpoint of charge/discharge characteristics and electrode strength.

ポリアクリロニトリルは、熱焼成する前に200〜40
0℃の温度で、空気等の活性雰囲気下に加熱する耐炎化
処理を施すことが望ましい。
Polyacrylonitrile has a 200 to 40
It is desirable to perform flameproofing treatment by heating in an active atmosphere such as air at a temperature of 0°C.

また、ピッチも、熱焼成する前に200〜400℃の温
度で、空気等の活性雰囲気下に加熱する不融化処理を施
すのが好ましい。
It is also preferable that the pitch be subjected to an infusible treatment by heating it in an active atmosphere such as air at a temperature of 200 to 400° C. before thermal baking.

熱焼成は、真空中ないし不活性ガス(窒素、アルゴン等
)流下又は酸化性ガス(空気等)流下、又は両者の混合
ガス流下に実施される。通常は真空下、又は不活性ガス
流下で熱焼成される。
Thermal firing is carried out in a vacuum or under an inert gas (nitrogen, argon, etc.) flow, an oxidizing gas (air etc.) flow, or a mixed gas flow of both. It is usually fired under vacuum or under a flow of inert gas.

熱焼成温度は生成する高分子共役系の水素/炭素原子の
原子比に密接に関連しておシ、この原子比が0.20以
下となるべく熱焼成温度が選択される。通常は500〜
3000℃、好ましくは1000〜2800℃、更に好
ましくは1500〜2700℃の温度で熱焼成される。
The thermal calcination temperature is closely related to the hydrogen/carbon atomic ratio of the polymer conjugated system to be produced, and the thermal calcination temperature is selected so that this atomic ratio is 0.20 or less. Usually 500~
Thermal firing is carried out at a temperature of 3000°C, preferably 1000 to 2800°C, more preferably 1500 to 2700°C.

熱焼成する前の前記重合体は繊維状、粉状、粒状、フィ
ルム状など各種の形態で用いられる。
The polymer before thermal baking is used in various forms such as fibrous, powder, granular, and film forms.

本発明の電極材料は、熱焼成した後水蒸気にょシ賦活化
する方法、熱焼成する前の形態を多孔質とする方法など
公知の手法によシ比表面積を増加させて用いるのが好ま
しい。
The electrode material of the present invention is preferably used after increasing its specific surface area by a known method such as thermally baking and then steam activation, or making the material porous before thermally baking.

本発明の電極材料の比表面積は好ましくはi。The specific surface area of the electrode material of the present invention is preferably i.

rl/If以上、更KIFfましくは100−79以上
、とくに好ましくId:、1000nl/を以上である
rl/If or more, more preferably KIFf or more than 100-79, particularly preferably Id:, 1000 nl/ or more.

本発明の電極材料は元素分析から求められる水素/炭素
原子の原子比が0.20以下、好ましくは0.15以下
、更に好ましくは0.1θ〜0.01である。水素/炭
素原子の原子比が0.20を越えると、負極電極材料と
して充放電過程における過電圧が大きくなシ良好な充放
電特性が得られない。
The electrode material of the present invention has a hydrogen/carbon atom atomic ratio determined from elemental analysis of 0.20 or less, preferably 0.15 or less, and more preferably 0.1θ to 0.01. If the atomic ratio of hydrogen/carbon atoms exceeds 0.20, overvoltage during the charging and discharging process will be large as a negative electrode material, and good charging and discharging characteristics will not be obtained.

本発明の電極材料は電子スピン共鳴スペクトル(23℃
で測定)の一次微分吸収曲線から求められるf値が1.
9700〜2.0200の範囲にシグナルを有し、かつ
そのシグナルの線巾(ΔHpp)が100ガウス以上、
好ましくは200ガウス以上、更釦好ましくは300ガ
ウス以上であるか、電子スピン共鳴スペクトル(23℃
で測定)の一次微分吸収曲線から求められるf値が1.
970〜2.020の範囲に、シグナルの線巾(ΔHp
p)が100ガウス未満、好ましくは200ガウス未満
、更に好ましくは300ガウス未満であるシグナルを有
しないものが用いられる。
The electrode material of the present invention has an electron spin resonance spectrum (23℃
When the f-value determined from the first-order differential absorption curve (measured at 1) is 1.
has a signal in the range of 9700 to 2.0200, and the line width (ΔHpp) of the signal is 100 Gauss or more,
Preferably 200 Gauss or more, preferably 300 Gauss or more, or electron spin resonance spectrum (23°C
When the f-value determined from the first-order differential absorption curve (measured at 1) is 1.
The line width of the signal (ΔHp
Those having no signal with p) less than 100 Gauss, preferably less than 200 Gauss, more preferably less than 300 Gauss are used.

電子スピン共鳴スペクトル(23℃で測定)の一次微分
吸収曲線から求められるt値が1.9700〜2.02
0の範囲に、シグナルの線巾が100ガウス以上である
シグナルを有せず、あるいは、シグナルの線巾が100
ガウス未満であるシグナルを有する場合は、負極電極材
料として充放電過程における過電圧が大きくなシ良好な
充放電特性が得られない。
The t value determined from the first-order differential absorption curve of the electron spin resonance spectrum (measured at 23°C) is 1.9700 to 2.02.
0, there is no signal with a signal width of 100 Gauss or more, or the signal width is 100 Gauss or more.
When the negative electrode material has a signal less than Gauss, the overvoltage during the charging and discharging process is large and good charging and discharging characteristics cannot be obtained.

本発明の電極材料は場合によっては2つ以上の電子スピ
ン共鳴スペクトルのシグナルを有することがあるが、そ
の場合、そのうちの少なくとも1つのシグナルのt値が
1.970〜2.020の範囲にあ)、そのシグナルの
線巾が100ガウス以上のものが用いられる。
The electrode material of the present invention may have two or more electron spin resonance spectrum signals in some cases, and in that case, at least one of the signals has a t value in the range of 1.970 to 2.020. ), the signal width of which is 100 Gauss or more is used.

また、本発明の電極材料は電子スピン共鳴スペクトル(
23℃で測定)の一次微分吸収曲線のシグナルの線巾が
極度に広がってそのシグナルの判別が難しくなる場合が
ある。この場合、電子スピン共鳴スペクトル(23℃で
測定)の一次微分吸収曲線のi値が1.9700〜2.
0100の範囲に、シグナルの線巾が100ガウス未満
であるシグナルを有しないものが用いられる。
Furthermore, the electrode material of the present invention has an electron spin resonance spectrum (
In some cases, the line width of the signal of the first-order differential absorption curve (measured at 23°C) becomes extremely wide, making it difficult to distinguish the signal. In this case, the i value of the first-order differential absorption curve of the electron spin resonance spectrum (measured at 23°C) is 1.9700-2.
0100, with no signal having a signal linewidth of less than 100 Gauss is used.

さらに本発明の電極材料はX線広角回折を用いて定量化
される擬黒鉛構造において、(002)面の面間隔d…
が3.405λ以上、好ましくは3゜41 GA以上、
更に好ましくは3.415λ以上、また、C軸方向の結
晶子の大きさくLc)が55A以下、好ましくは50^
以下、更1ctIFましくは45A以下のものが望まし
い。
Furthermore, the electrode material of the present invention has a pseudographite structure quantified using X-ray wide-angle diffraction, and the interplanar spacing d of the (002) plane...
is 3.405λ or more, preferably 3°41 GA or more,
More preferably 3.415λ or more, and the crystallite size Lc) in the C-axis direction is 55A or less, preferably 50^
Below, 1ctIF or 45A or less is desirable.

さらに本発明の電極材料は(iio)面の面間隔(dx
lo ) O2倍の距離(2doox )が2.460
^以下、好ましくは2.455^以下、また、a軸方向
の結晶子の大きさくLa)が17λ以上、好ましくは1
9大以上、更に好ましくは21^以上のものが望ましい
Furthermore, the electrode material of the present invention has an interplanar spacing (dx
lo) O2 times the distance (2doox) is 2.460
^ or less, preferably 2.455^ or less, and the crystallite size La) in the a-axis direction is 17λ or more, preferably 1
A value of 9 or more, more preferably 21^ or more is desirable.

本発明の電極材料は上述の擬黒鉛構造を有し、いわゆる
黒鉛Kまで発達した規則的な積層構造を有しない。
The electrode material of the present invention has the above-mentioned pseudographite structure and does not have the regular laminated structure developed to so-called graphite K.

本発明の電極材料は単独で、あるいは炭素繊維などの導
電材、補強材等を加え念形で各種の形状で電極として用
いられる。
The electrode material of the present invention can be used as an electrode in various shapes either alone or with the addition of a conductive material such as carbon fiber, a reinforcing material, etc.

本発明の電極材料を周込た電池は以下のような構成を有
する。すなわち負極には本発明の電極材料を主な活物質
として用いる。正極には活性化炭素繊維など正極電極材
料として比較的良好な特性を有する電極材料が選ばれる
A battery incorporating the electrode material of the present invention has the following configuration. That is, the electrode material of the present invention is used as the main active material in the negative electrode. For the positive electrode, an electrode material having relatively good properties as a positive electrode material, such as activated carbon fiber, is selected.

電解質としてはL i C/ 0.、l、j C1、L
i Pk’6、KCNS、NaPF、、LiBF、、N
(Bu)、(JO4、N(Bu)4C1などのアルカリ
金属塩、アルカリ土類金属塩、テトラアルキルアンモニ
ウム塩などの公知の塩をプロピレンカーボネート、エチ
レンカーボネート、アセトニトリル、r−ブチロラクト
ン、ジメチルフォルムアマイド、ジメチルスルフオキシ
ド、エチルエーテル、テトラヒドロフラン、グライム類
等、一般に電池に用いられる有機溶媒の一種又は二種以
上の混合溶媒罠溶解させたものを通常は用いる。分解電
圧の高す溶媒を用いるという観点からは有機溶媒として
プロピレンカーボネート、エチレンカーボネートなどが
好まし騒。
As an electrolyte, L i C/0. ,l,j C1,L
i Pk'6, KCNS, NaPF, , LiBF, , N
Known salts such as alkali metal salts, alkaline earth metal salts, and tetraalkylammonium salts such as (Bu), (JO4, N(Bu)4C1), propylene carbonate, ethylene carbonate, acetonitrile, r-butyrolactone, dimethylformamide, Usually, a solution containing one or more organic solvents commonly used in batteries, such as dimethyl sulfoxide, ethyl ether, tetrahydrofuran, glyme, etc., is used.The point of view is to use a solvent that increases the decomposition voltage. Propylene carbonate, ethylene carbonate, etc. are preferred as organic solvents.

また、液漏れのなりコンパクトな電池を得るためには、
常温あるbは電池の使用温度で固体の電解質を用いるの
が好ましい。
In addition, in order to obtain a compact battery that does not leak,
It is preferable to use a solid electrolyte at room temperature b, which is the operating temperature of the battery.

上記の構成からなる電池の両極に外部電源により一定電
圧をかけて、あるいは定電流が流れるように電圧を規制
してなどして充電操作を行なうと、正極には陰イオンが
、負極には陽イオンがドープされて、それぞれP型電極
、nm電極となシ、この両極に生じる起電力を利用して
電池として使用することができる。放電時には、各tS
質イオンはそれぞれの電極から脱ドープされ、電流がと
力だせる。こうした充電、放電のサイクルを繰夛返すこ
とによプニ次電池として使用することができる0 また、ドープ量の異なる\型電極どうしを用いても起電
力を生ずるが、その起電力は両極にPW。
When a battery with the above configuration is charged by applying a constant voltage to both poles from an external power supply or by regulating the voltage so that a constant current flows, anions are generated at the positive electrode and positive at the negative electrode. When doped with ions, it can be used as a battery by utilizing the electromotive force generated at both the P-type electrode and the nm-type electrode. During discharge, each tS
The quality ions are dedoped from each electrode, and a current is generated. By repeating these charging and discharging cycles, it can be used as a secondary battery.Also, even if \-type electrodes with different doping amounts are used, an electromotive force is generated; .

7Vl電極を周込た場合に比して低いものとなる。This is lower than when a 7Vl electrode is included.

以下、実施例をあげて本発明を具体的に説明する。なお
元素分析、電子スピン共鳴スペクトル、X線広角回折の
測定は下記方法によシ実施する。
Hereinafter, the present invention will be specifically explained with reference to Examples. Note that elemental analysis, electron spin resonance spectroscopy, and X-ray wide-angle diffraction measurements are carried out by the following methods.

〔元素分析〕[Elemental analysis]

サンプルを120℃で約15時間減圧乾燥後ドライボッ
クス内にてホットプレート上で100℃にして1時間減
圧乾燥し、アルゴン中でアルミニウムカップにサンプリ
ングして、パーキンエルマー240C型元素分析計にて
測定した。
The sample was dried under reduced pressure at 120°C for about 15 hours, then dried under reduced pressure at 100°C on a hot plate in a dry box for 1 hour, sampled in an aluminum cup under argon, and measured using a Perkin Elmer 240C elemental analyzer. did.

〔電子スピン共鳴スペクトル〕[Electron spin resonance spectrum]

電子スピン共鳴の一次微分吸収スベクトルはJEOL 
JB8−Fn  IX nsRスペクトロメーターを用
い、Xバンドで測定する。粉末状の試料はそのまま、微
小片状試料はメノウ乳鉢で粉末化して、外径2mの毛細
管に入れ、さらに毛細管を外径5諷のESRWK入れる
。高周波磁場の変調幅を6.3ガウスとする。以上すべ
て空気雰囲気下、23℃で行う。一次微分吸収スペクト
ルのピーク間の線幅(ΔHpp ) はMP/MfO標
準試料を用iて決定する。
The first-order differential absorption vector of electron spin resonance is JEOL
Measurement is performed in the X band using a JB8-Fn IX nsR spectrometer. Powdered samples are left as they are, and minute flake samples are pulverized in an agate mortar, placed in a capillary tube with an outer diameter of 2 m, and the capillary tube is further placed in an ESRWK with an outer diameter of 5 m. The modulation width of the high-frequency magnetic field is assumed to be 6.3 Gauss. All of the above is carried out at 23° C. in an air atmosphere. The linewidth (ΔHpp) between the peaks of the first-order differential absorption spectrum is determined using an MP/MfO standard sample.

(X線広角回折) 本発明において採用する(002)の面間隔d ooz
、C軸方向の結晶子の大きさLC,(110)の面間隔
drt・、a軸方向の結晶子の大きさLaは下記の方法
で測定した。
(X-ray wide-angle diffraction) The (002) lattice spacing d ooz employed in the present invention
, the crystallite size LC in the C-axis direction, the (110) interplanar spacing drt·, and the crystallite size La in the a-axis direction were measured by the following methods.

[1)  (002)面の面間隔 d oox試料が粉
末の場合はそのまま、微小片状の場合にはメノウ乳鉢で
粉末化し、試料に対して約15重量−のX線標準用高純
度シリコン粉末を内部標準物質として加え混合し、試料
セルにつめ、グラファイトモノクロメータ−で単色化し
たCuK線を線源とし、反射式ディフラクトメーター法
によって広角X線回折曲線を測定する0曲線の補正には
、いわゆるローレンツ、偏光因子、吸収因子、原子散乱
因子等に関する補正は行わず、次の簡便法を用いる。
[1] Interplanar spacing between (002) planes If the d oox sample is a powder, use it as is, or if it is in the form of small pieces, powder it in an agate mortar and add high-purity silicon powder for X-ray standards with a weight of about 15% to the sample. is added as an internal standard substance, mixed, packed into a sample cell, and made monochromatic with a graphite monochromator.The wide-angle X-ray diffraction curve is measured using the reflection diffractometer method.To correct the 0 curve, , so-called Lorentz, polarization factors, absorption factors, atomic scattering factors, etc. are not corrected, and the following simple method is used.

即ち(002)回折に相当する曲線のベースラインを引
き、ベースラインからの実質強度をプロットし直して(
002面)の補正曲線を得る。この曲線のピーク高さの
3分の2の高さに引いた角度軸に平行な線が回折曲線と
交わる線分の中点を求め、中点の角度を内部標準で補正
し、これを回折角の入 2倍とし、CuKd、線の波長−とから次式のブラッグ
式によってd ooz  を求める。
That is, by drawing the baseline of the curve corresponding to (002) diffraction and replotting the real intensity from the baseline, we get (
002 plane) is obtained. Find the midpoint of the line segment where a line parallel to the angular axis drawn at two-thirds of the peak height of this curve intersects with the diffraction curve, correct the angle at the midpoint using an internal standard, and calculate this. By taking care to double the input, d ooz is obtained from CuKd and the wavelength of the line by the following Bragg equation.

λ doox=−一7− (A) 231nθ λ:1.5418A 08回折角 (2)C軸方向の結晶子の大きさ二LC前項で得た補正
回折曲線において、ピーク高さの半分の位置におけるい
わゆる半価中βを用いてC軸方向の結晶子の大きさを次
式よシ求める。
λ doox=-17- (A) 231nθ λ: 1.5418A 08 Diffraction angle (2) Size of crystallite in C-axis direction 2LC In the corrected diffraction curve obtained in the previous section, at the position half the peak height Using the so-called half value β, the size of the crystallite in the C-axis direction is determined by the following formula.

形状因子Kについては種々議論もめるが、K=0.90
を用いる。λ、θについては前項と同じ意味である。
There are various discussions about the shape factor K, but K=0.90
Use. λ and θ have the same meaning as in the previous section.

(3)  (110)面の面間隔do・上記d oos
  の測定法に準じた0(4)a軸方向の結晶子の大き
さLa 上記(Lc) の測定法に準じた。
(3) Interplanar spacing do of (110) plane・d oos above
The crystallite size La in the 0(4) a-axis direction was based on the measurement method described above (Lc).

実施例1 ポリアクリロニトリル繊維(アクリロニトリルか 1oo1)を電気加装置にセットし、真空下10℃/分
の速度で300℃迄昇温した0さらに真空下300℃で
1時間保持した0こうして得られた黒色の基材をさらに
窒素流下20℃/分の速度で1600℃迄昇温した。さ
らに窒素流下1600℃で1時間保持した。こうして得
られた試料の元素分析から求めた水素/炭素の原子比を
表1に、電子のスピン共鳴スペクトルの一次微分吸収曲
線をgt図に、X線広角回折から求めた(002)面の
面間隔do・1 C軸方向の結晶子の大きさくLc)、
(110)面の面間隔do・、及び、a軸方向の結晶子
の大きさくLa)  を表2IC示した0これらデータ
より上記試料の水素/炭素原子比は0.040、電子ス
ピン共鳴スペクトルから求めたt値が1.982のシグ
ナルの半値巾(ΔHpp)は4000ガウス以上であっ
た。また、X線広角回折から求めた(002)面の面間
隔d ooz は3.45λ、C軸方向の結晶子の大き
さくLc)  は42.3^、(110)面の面間隔d
 11G の2倍の距離2 d noは2.43^、a
軸方向の結晶子の大きさくLa )は37.6^であっ
た。
Example 1 Polyacrylonitrile fibers (acrylonitrile or 101) were set in an electric processing device and heated to 300°C at a rate of 10°C/min under vacuum. The black substrate was further heated to 1600° C. at a rate of 20° C./min under nitrogen flow. Further, the temperature was maintained at 1600° C. for 1 hour under nitrogen flow. The hydrogen/carbon atomic ratio determined from elemental analysis of the sample thus obtained is shown in Table 1, the first-order differential absorption curve of the electron spin resonance spectrum is shown in the gt diagram, and the plane of the (002) plane determined from X-ray wide-angle diffraction. Distance do・1 Crystallite size in C-axis direction Lc),
The interplanar spacing do・ of the (110) plane and the crystallite size La) in the a-axis direction are shown in Table 2IC.0 From these data, the hydrogen/carbon atomic ratio of the above sample is 0.040, and from the electron spin resonance spectrum The half width (ΔHpp) of the signal with the determined t value of 1.982 was 4000 Gauss or more. Also, the interplanar spacing d ooz of the (002) plane obtained from X-ray wide-angle diffraction is 3.45λ, the crystallite size Lc) in the C-axis direction is 42.3^, and the interplanar spacing d of the (110) plane
11G twice the distance 2 d no is 2.43^, a
The crystallite size (La) in the axial direction was 37.6^.

〔上記試料を負極電極に用いた電池〕[Battery using the above sample as the negative electrode]

上記試料8岬を55メツシユの白金製金網に包み一方の
電極とした。また、セルロース系活性炭素繊維フェルト
(東洋紡社製KF−1600)8岬を同様に55メツシ
ユの白金製金網に包みもう一方の電極とし友。両電極間
に0.5■の厚みのグラスファイバー濾紙を隔膜として
おいた。両電極間に白金線をリード線としてつないだ。
The above sample 8 cape was wrapped in a 55-mesh platinum wire mesh and used as one electrode. In addition, 8 capes of cellulose-based activated carbon fiber felt (KF-1600 manufactured by Toyobo Co., Ltd.) were similarly wrapped in a 55-mesh platinum wire mesh and used as the other electrode. A 0.5-inch thick glass fiber filter paper was placed between both electrodes as a diaphragm. A platinum wire was connected between both electrodes as a lead wire.

ポテンショスタット/ガルバノスタット(北斗電工社製
HA−501)の陰極に上記試料を白金製金網に包んだ
電極を、また、陽極にセルロース系活性炭素繊維フェル
トを白金製金網に包んだ電極を接続し、両電極間KO,
15mAの一定電流を流して充電した。クーロンメータ
ー指示値で3.OOクーロンの電荷を充電した時点で充
電を打ちきった。充電時の平均電圧は3.4vであった
。その後回路をオープンにしたま130分間放置したが
セル電圧は充電直後に比し0.04 V低下したにとど
まった。その後lKΩの抵抗を両極間につないで定抵抗
放電を実施し、セル電圧が1.0VICなる迄に放電し
た電荷量は2.00クーロンであった。また、放電時充
電量3.00クーロン、平均セル電圧3.2VK対し、
放電電荷量2.IOクーロン、平均セル電圧2.4vで
あつ九06回目の充電後、15時間放置して後IKΩの
定抵抗放電を実施し、充電電荷量3.00クーロン、平
均セル電圧3.2vに対し放電電荷量1.50クーロン
、平均セル電圧は2.OVであった〇 比較例1 市販のポリアクリロニトリル活性炭素繊維(東邦レーヨ
ン社製FGWT3A)の元素分析から求めた水素/炭素
の原子比を表1に示した。水素/炭素原子比は0.30
7であった。
An electrode in which the above sample was wrapped in a platinum wire mesh was connected to the cathode of a potentiostat/galvanostat (HA-501 manufactured by Hokuto Denko Co., Ltd.), and an electrode in which cellulose-based activated carbon fiber felt was wrapped in a platinum wire mesh was connected to the anode. , KO between both electrodes,
It was charged by flowing a constant current of 15 mA. 3. Coulomb meter reading. Charging stopped when the charge of OO coulombs was charged. The average voltage during charging was 3.4v. Thereafter, the circuit was left open for 130 minutes, but the cell voltage decreased by only 0.04 V compared to immediately after charging. Thereafter, a 1 KΩ resistor was connected between the two electrodes to perform constant resistance discharge, and the amount of charge discharged until the cell voltage reached 1.0 VIC was 2.00 coulombs. In addition, for the charge amount during discharging of 3.00 coulombs and the average cell voltage of 3.2 VK,
Discharge charge amount 2. After charging for the 906th time with IO coulombs and average cell voltage of 2.4V, it was left for 15 hours and then IKΩ constant resistance discharge was performed, and discharged with charge amount of 3.00 coulombs and average cell voltage of 3.2V. The charge amount is 1.50 coulombs, and the average cell voltage is 2. OV Comparative Example 1 The hydrogen/carbon atomic ratio determined from elemental analysis of commercially available polyacrylonitrile activated carbon fiber (FGWT3A manufactured by Toho Rayon Co., Ltd.) is shown in Table 1. Hydrogen/carbon atomic ratio is 0.30
It was 7.

この市販のポリアクリロニトリル活性炭素繊維(東邦レ
ーヨン社製F’GWT3A)8岬を負極電極材料に用い
た以外はすべて実施例1と同様の方法で電池を構成し、
実施例1と同様にして充電した。クーロンメーター指示
値で3.0クーロンの電荷を充電した時点で充電をうち
きった。充電時の平均セル電圧は3.7vであった。そ
の後回路をオープンにしたまま30分間放置したがセル
電圧は充電直後に比し0.4v低下した。その後IKΩ
の抵抗を両極間につないで定抵抗放電を実施し、セル電
圧が1.OVKなる迄に放電した電荷量は1.40クー
ロンであった。また、放電時の平均セル電圧は2.3v
であった。
A battery was constructed in the same manner as in Example 1 except that this commercially available polyacrylonitrile activated carbon fiber (F'GWT3A manufactured by Toho Rayon Co., Ltd.) was used as the negative electrode material.
Charging was carried out in the same manner as in Example 1. When the coulomb meter indicated a value of 3.0 coulombs, the battery was completely charged. The average cell voltage during charging was 3.7v. After that, the circuit was left open for 30 minutes, but the cell voltage decreased by 0.4V compared to immediately after charging. After that IKΩ
A constant resistance discharge is performed by connecting a resistor between the two electrodes until the cell voltage reaches 1. The amount of charge discharged until OVK was reached was 1.40 coulombs. Also, the average cell voltage during discharge is 2.3V
Met.

上述の充電及び放電の操作を繰り返し5回目の充電量3
.00クーロン、平均セル電圧3.6vに対し、放電電
荷量1.40クーロン、平均セル電圧2.2vであった
。6回目の充電後15時間放置して後IKΩの定抵抗放
電を実施し、充電電荷量3゜00クーロン、平均セル電
圧3.5vに対し放電電荷量1.10クーロン、平均セ
ル電圧は1.6vであった。
Repeat the above charging and discharging operations until the fifth charge amount is 3.
.. 00 coulombs and an average cell voltage of 3.6v, the amount of discharged charge was 1.40 coulombs and the average cell voltage was 2.2v. After the 6th charge, the battery was left for 15 hours, and then a constant resistance discharge of IKΩ was carried out.The charge amount was 3.00 coulombs and the average cell voltage was 3.5V, whereas the discharged charge amount was 1.10 coulombs and the average cell voltage was 1. It was 6v.

実施例2 フェノール繊維(日本カイノール社製カイノーまた ルフエルト3−504)を電気加熱INKセットし、窒
素流下20℃/分の速度で1700℃迄昇温した。さら
に窒素流下1700℃で1時間保持した0こうして得ら
れた試料の元素分析から求めた水素/炭素の原子比を表
1に、電子スピンの共鳴スペクトルの一次微分吸収曲線
を第2図に、X線広角回折から求めた(002)面の面
間隔duet、C軸方向の結晶子の大きさくLC)、(
110)面の面間隔dsx・、a軸方向の結晶子の大き
さくLa)′t−表2に示した。これらのデータより上
記試料の水素/炭素原子比は0.048、電子スビ/共
鳴スペクトルから求めたt値が1.980のシグナルの
半値巾(ΔHpp)は305ガラスであった。また、X
線広角回折から求めた(002)面の面間隔d ooz
は3.62^、C軸方向の結晶子の大きさくLc)は1
1.2A、(110)面の面間隔do・ の2倍の距″
離2d+1oは2.43^、a軸方向の結晶子の大きさ
くLa)は22.7 ;であった。
Example 2 Phenol fibers (Kynor Mata Rufelt 3-504 manufactured by Nippon Kynor Co., Ltd.) were set in an electrically heated INK and heated to 1700° C. at a rate of 20° C./min under nitrogen flow. The hydrogen/carbon atomic ratio determined from elemental analysis of the sample thus obtained is shown in Table 1, and the first-order differential absorption curve of the electron spin resonance spectrum is shown in Figure 2. Planar spacing duet of (002) plane determined from line wide-angle diffraction, crystallite size in C-axis direction LC), (
110) Interplanar spacing dsx·, crystallite size in the a-axis direction La)'t - shown in Table 2. From these data, the hydrogen/carbon atomic ratio of the sample was 0.048, and the half width (ΔHpp) of the signal with a t value of 1.980 determined from the electron beam/resonance spectrum was 305 glass. Also, X
Interplanar spacing of (002) plane determined from line wide-angle diffraction d ooz
is 3.62^, and the crystallite size Lc) in the C-axis direction is 1
1.2A, the distance twice the distance of the (110) plane do.''
The distance 2d+1o was 2.43^, and the crystallite size La) in the a-axis direction was 22.7;

〔上記試料を負極電極に用いた電池〕[Battery using the above sample as the negative electrode]

上記試料811Qを負極電極に用いた以外はすべて実施
例1と同様の方法で電池を構成した。両電極間に0.1
5 mAの一定電流を流し、クーロンメーター指示値で
3.00クーロンの電荷を充電した時点で充電をうちき
った。充電時の平均電圧は3.3Vであった。その後回
路をオープンにしたまま30分間放置したがセル電圧は
充電直後に比し0.03V低下したにとどまった。その
後IKΩの抵抗を両極間につないで定抵抗放電を実施し
、セル電圧が1.OVになる迄に放電した電荷量は2.
07クーロンであった。又放電時の平均セル電圧は2.
6vであった。
A battery was constructed in the same manner as in Example 1 except that Sample 811Q was used as the negative electrode. 0.1 between both electrodes
A constant current of 5 mA was applied, and charging was terminated when a charge of 3.00 coulombs was reached as indicated by the coulomb meter. The average voltage during charging was 3.3V. After that, the circuit was left open for 30 minutes, but the cell voltage decreased by only 0.03V compared to immediately after charging. After that, a constant resistance discharge was performed by connecting a resistor of IKΩ between the two poles, and the cell voltage was 1. The amount of charge discharged before reaching OV is 2.
It was 0.07 coulombs. Also, the average cell voltage during discharge is 2.
It was 6v.

上述の充電及び放電の操作を繰フ返し5回目の充電量3
.00クーロン、平均セル電圧3.2vlc対し、′放
電電荷量2.08クーロン、平均セル電圧2.5vであ
った。6回目の充電後、15時間放置して後rKΩの定
抵抗放電を実施し、充電電荷量3.00クーロン、平均
セル電圧3.2VK対し、放電電荷量1.60クーロン
、平均セル電圧は2.OVであった。
Repeat the above charging and discharging operation until the fifth charge amount is 3.
.. 00 coulombs and the average cell voltage was 3.2 vlc, whereas the discharge charge amount was 2.08 coulombs and the average cell voltage was 2.5 v. After the 6th charge, it was left to stand for 15 hours and then a constant resistance discharge of rKΩ was carried out.The charged charge amount was 3.00 coulombs and the average cell voltage was 3.2VK, whereas the discharged charge amount was 1.60 coulombs and the average cell voltage was 2. .. It was OV.

比較例2 市販の7エノール活性炭素繊維(日本カイノール社#A
CN−504)の元素分析から求めた水素/炭素の原子
比を表1に示した。水素/炭素原子比は0.230であ
った。
Comparative Example 2 Commercially available 7-enol activated carbon fiber (Japan Kynor Co., Ltd. #A
The hydrogen/carbon atomic ratio determined from elemental analysis of CN-504) is shown in Table 1. The hydrogen/carbon atomic ratio was 0.230.

この市販の7エノール活性炭素繊維(日本カイノール社
製ACN−504)8wgを負極電極材料に用いた以外
はすべて実施例1と同様の方法で電池を構成し、実施例
2と同様の方法で充電した。
A battery was constructed in the same manner as in Example 1, except that 8 wg of this commercially available 7-enol activated carbon fiber (ACN-504 manufactured by Nippon Kynor Co., Ltd.) was used as the negative electrode material, and charged in the same manner as in Example 2. did.

クーロンメーター指示値で3.00クーロンの電荷を充
電した時点で充電をうちきった0充電時の平均セル電圧
は3.5vであった。その後回路をオープンにしたまま
30分間放置したがセル電圧は充電底、後に比し0.3
v低下した0その後lKΩの抵抗を両極間につないで定
抵抗放電を実施し、セル電圧が1.o Vになる迄に放
電した電荷量は1.50クーロンであった。又、放電時
の平均セル電圧は2.1 Vであった。
The average cell voltage at the time of zero charging was 3.5 V, which was the point at which charging was completed when a charge of 3.00 coulombs was charged as indicated by the coulomb meter. After that, I left the circuit open for 30 minutes, but the cell voltage was at the bottom of charging, and after that it was 0.3
After the cell voltage decreased to 0, a constant resistance discharge was performed by connecting a 1KΩ resistor between the two poles, and the cell voltage decreased to 1. The amount of charge discharged until reaching oV was 1.50 coulombs. Further, the average cell voltage during discharge was 2.1 V.

上述の充電及び放電の操作を繰り返し5回目の充電fi
3.00クーロン、平均セル電圧3.4■に対し、放電
電荷量1.50クーロン、平均セル電圧2.1■でめっ
た。6回目の充電後15時間放置して後IKΩの定抵抗
放電を実施し、充電電荷量3゜0θクーロン、平均セル
電圧は3.4VK対し放電電荷量1.20クーロン、平
均セル電圧は1.7 Vでめった。
Repeat the above charging and discharging operations for the fifth time.
The discharge charge amount was 1.50 coulombs and the average cell voltage was 2.1 cm, whereas the discharge charge amount was 1.50 coulombs and the average cell voltage was 2.1 cm. After the 6th charge, it was left to stand for 15 hours and then a constant resistance discharge of IKΩ was carried out, and the charge amount was 3°0θ coulombs, the average cell voltage was 3.4VK, the discharged charge amount was 1.20 coulombs, and the average cell voltage was 1. 7 I met with V.

流下20℃/分の速度で1700℃迄昇温した。The temperature was raised to 1700°C at a flow rate of 20°C/min.

さらに窒素流F1700℃で1時間保持した。こうして
得られた試料の元素分析から求めた水素/炭素の原子比
を表1iC電子スピン共鳴スペクトルの一次微分吸収曲
線を第3図に、X線広角回折から求めた(002)面の
面間隔dooz、C軸方向の結晶子の大きさくLC)(
110)面の面間隔duoSa軸方向の結晶子の大きさ
くLa )を表2に示した。
Further, the temperature was maintained at 1700° C. under nitrogen flow for 1 hour. The hydrogen/carbon atomic ratio determined from elemental analysis of the sample thus obtained is shown in Table 1. The first-order differential absorption curve of the C electron spin resonance spectrum is shown in Figure 3. The interplanar spacing of the (002) plane determined from X-ray wide-angle diffraction is , the crystallite size in the C-axis direction LC) (
Table 2 shows the interplanar spacing of the 110) planes (duoSa), the crystallite size in the axial direction (La).

これらのデータよシ上記試料の水素/炭素原子比は0.
0、電子スピン共鳴スペクトルの一次微分吸収曲線から
求められる?値が1.970〜2’、020の範囲にシ
グナルの線巾(ΔHpp)が100ガウス未満であるシ
グナルを有せず、X線広角回折から求めた(002)面
の面間隔doo*は3.53^、C軸方向の結晶子の大
きさくLc )は24.6^、(110)面の面間隔d
xtoの2倍の距離2duoは2o43^、a軸方向の
結晶子の大きさLaは23..4^であった0 〔上記試料を負極電極に用いた電池〕 上記試料8可を負極電極に用いた以外はすべて実施例1
と同様の方法で電池を構成した。両電他間に0.15馬
Aの一定電流を流し、クーロンメーター指示値で3.0
0クーロンの電荷を充電した時点で充電をうちきった。
According to these data, the hydrogen/carbon atomic ratio of the above sample is 0.
0, determined from the first-order differential absorption curve of the electron spin resonance spectrum? There is no signal with a signal width (ΔHpp) of less than 100 Gauss in the value range of 1.970 to 2',020, and the interplanar spacing doo* of the (002) plane determined from X-ray wide-angle diffraction is 3. .53^, the crystallite size in the C-axis direction Lc) is 24.6^, the interplanar spacing d of the (110) plane
The distance 2duo, which is twice xto, is 2o43^, and the crystallite size La in the a-axis direction is 23. .. 4^ was 0 [Battery using the above sample as the negative electrode] All examples were Example 1 except that the above sample 8 was used as the negative electrode.
The battery was constructed in a similar manner. A constant current of 0.15 A is passed between both electric currents, and the coulomb meter reading is 3.0.
The charge was exhausted when the charge of 0 coulombs was charged.

充電時の平均電圧は3.3Vであった。その後回路をオ
ープンにしたまま30分間放置したがセル電圧は充電直
後に比し0.04■低下したKとどまった。その後IK
Ωの抵抗を両極間〈つないで定抵抗放電を実施し、セル
電圧が1.o Vになる迄に放電した電荷量は2.04
クーロンであった。又、放電時の平均セル電圧は2.6
Vであった。
The average voltage during charging was 3.3V. After that, the circuit was left open for 30 minutes, but the cell voltage remained at K, which was 0.04 ■ lower than immediately after charging. Then IK
A constant resistance discharge is performed by connecting a resistor of Ω between the two poles, and the cell voltage reaches 1. The amount of charge discharged until it reaches o V is 2.04
It was Coulomb. Also, the average cell voltage during discharge is 2.6
It was V.

上述の充電及び放電の操作を繰夛返し5回目の充電量3
.00クーロン、平均セル電圧3.2vに対し、放電電
荷量2.05クーロン、平均セル電圧2.5vであった
。6回目の充電後、15時間放置して後IKΩの定抵抗
放電を実施し、充電電荷量3.00り4−ロン、平均セ
ル電圧3.2vに対し、放電電荷量1.57クーロン、
平均セル電圧は2.I Vであった。
Repeat the above charging and discharging operation until the fifth charge amount is 3.
.. 00 coulombs and an average cell voltage of 3.2v, the amount of discharged charge was 2.05 coulombs and the average cell voltage was 2.5v. After the 6th charge, it was left to stand for 15 hours, and then a constant resistance discharge of IKΩ was carried out.The charged charge amount was 3.00 l4-ron, and the average cell voltage was 3.2V, while the discharged charge amount was 1.57 coulombs.
The average cell voltage is 2. It was IV.

比較例3 グラファイト質炭素繊維の元素分析から求めた水素/炭
素の原子比を表1に、電子スピン共鳴スペクトルの一次
微分吸収曲線を第4図に、X@広角回折から求めた(0
02面)の面間隔d ooa、C軸方向の結晶子の大き
さくf、c)を表2に示した。これらのデータより上記
試料の水素/炭素原子比は0.040以下、電子スピン
共鳴スペクトルから求めたf値が2.003のシグナル
の半値巾(・へHpp)は50ガウスであった。又、X
線広角回折から求めた(002)面の面間隔doomは
3.402λ、C軸方向の結晶子の大きさくLc )は
165^であった。
Comparative Example 3 The hydrogen/carbon atomic ratio determined from elemental analysis of graphitic carbon fiber is shown in Table 1, the first-order differential absorption curve of the electron spin resonance spectrum is shown in Figure 4, and the (0
Table 2 shows the interplanar spacing d ooa of the 02 plane), the crystallite size f in the C-axis direction, and c). From these data, the hydrogen/carbon atomic ratio of the sample was 0.040 or less, and the half-width (.Hpp) of the signal with an f value of 2.003 determined from the electron spin resonance spectrum was 50 Gauss. Also, X
The interplanar spacing doom of the (002) plane determined from line wide-angle diffraction was 3.402λ, and the crystallite size Lc) in the C-axis direction was 165^.

〔上記試料を負極電極釦用いた電池〕[Battery using the above sample as the negative electrode button]

上記試料8岬を負極電極に用いた以外はすべて実施例1
と同様の方法で電池を構成し、実施例1と同様の方法で
充電した。クーロンメーター指示値で3.00クーロン
の電荷を充電した時点で充電をうちきった。充電時の平
均セル電圧は4.2vであった。その後回路をオープン
にしたまま30分間放置したがセル電圧は充電直後に比
し1.5 V低下した。その後IKΩの抵抗を両極間に
つないで定抵抗放電を実施し、セル電圧がz、o Vに
なる迄に放電した電荷量は1.20クーロンであった。
All Example 1 except that the above Sample 8 Misaki was used as the negative electrode.
A battery was constructed in the same manner as in Example 1, and charged in the same manner as in Example 1. Charging was completed when the charge of 3.00 coulombs was charged as indicated by the coulomb meter. The average cell voltage during charging was 4.2v. After that, the circuit was left open for 30 minutes, but the cell voltage decreased by 1.5 V compared to immediately after charging. Thereafter, a constant resistance discharge was performed by connecting a resistor of IKΩ between the two electrodes, and the amount of charge discharged until the cell voltage reached z,o V was 1.20 coulombs.

又放電時の平均セル電圧は2.Ovであった。Also, the average cell voltage during discharge is 2. It was Ov.

上述の充電及び放電の操作を繰ジ返し5回目の充電量3
.00クーロン、平均セル電圧4.Ovに対し、放電電
荷t1.16クーロン、平均セル電圧1.9■であった
。6回目の充電後15時間放置して後IKΩの定抵抗放
電を実施し、充電電荷量3゜00クーロン、平均セル電
圧は4.2VK対し放電電荷量はi、o oクーロン、
平均セル電圧は1.2vであった。
Repeat the above charging and discharging operation until the fifth charge amount is 3.
.. 00 coulombs, average cell voltage 4. Ov, discharge charge t was 1.16 coulombs, and average cell voltage was 1.9 . After the 6th charge, the cell was left to stand for 15 hours, and then a constant resistance discharge of IKΩ was carried out.The charged charge amount was 3゜00 coulombs, the average cell voltage was 4.2 VK, and the discharged charge amount was i, o o coulombs.
Average cell voltage was 1.2v.

〔実施例1,2.3と比較例1,2.3の比較〕実施例
1,2.3及び比較例1,2.3の過電圧(充電直後の
セル電圧と回路をオープンにして30分放置後のセル電
圧の差)及び充放電の電荷効率 を表3に示した。
[Comparison of Examples 1, 2.3 and Comparative Examples 1, 2.3] Overvoltage of Examples 1, 2.3 and Comparative Examples 1, 2.3 (cell voltage immediately after charging and 30 minutes with the circuit open) Table 3 shows the difference in cell voltage after standing and the charge efficiency of charging and discharging.

実施例1,2.3のサンプルは比較例1,2゜3に比し
て過電圧が小さく、lサイクル、5サイクル、6サイク
ル(15時間放置後)の充放電の電荷効率のいづれも高
く、電池性能としてすぐれていることがわかる。
The samples of Examples 1 and 2.3 had lower overvoltages than Comparative Examples 1 and 2.3, and had higher charge efficiencies during charging and discharging for 1 cycle, 5 cycles, and 6 cycles (after being left for 15 hours). It can be seen that the battery performance is excellent.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図、第3図及び第4図は、夫々、第1実施
例、第2実施例、第3実施例、及び第3比較例で得られ
た電極材料の電子スピン共鳴スペクトルの一次微分吸収
曲線である。 特許出願人  三菱油化株式会社 代理人 弁理士 古 川 秀 利 (tlか1名)
Figures 1, 2, 3, and 4 show electron spin resonance spectra of electrode materials obtained in the first example, second example, third example, and third comparative example, respectively. This is the first-order differential absorption curve of . Patent applicant Mitsubishi Yuka Co., Ltd. Agent Patent attorney Hidetoshi Furukawa (TL or one person)

Claims (1)

【特許請求の範囲】 1 ポリアクリロニトリル、フェノール樹脂、セルロー
ス樹脂、又は、ピッチを熱焼成してなり、かつ、下記(
1)、(2)を満足することを特徴とする電極材料。 (1)水素/炭素原子の原子比が0.20以下であるこ
と。 (2)電子スピン共鳴スペクトル(23℃測定)の一次
微分吸収曲線から求められるg値が1.970〜2.0
20の範囲に、線巾(ΔHpp)が100ガウス以上の
シグナルを有するか、又は、100ガウス未満のシグナ
ルを有しないこと。
[Claims] 1. Made by thermally firing polyacrylonitrile, phenol resin, cellulose resin, or pitch, and comprising the following (
An electrode material characterized by satisfying 1) and (2). (1) The atomic ratio of hydrogen/carbon atoms is 0.20 or less. (2) The g value determined from the first-order differential absorption curve of electron spin resonance spectrum (measured at 23°C) is 1.970 to 2.0
20, have a signal with a line width (ΔHpp) of 100 Gauss or more, or have no signal with a line width (ΔHpp) of 100 Gauss or less.
JP60007042A 1985-01-18 1985-01-18 Negative electrode of non-aqueous solvent secondary battery Expired - Lifetime JP2504940B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60007042A JP2504940B2 (en) 1985-01-18 1985-01-18 Negative electrode of non-aqueous solvent secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60007042A JP2504940B2 (en) 1985-01-18 1985-01-18 Negative electrode of non-aqueous solvent secondary battery

Publications (2)

Publication Number Publication Date
JPS61168512A true JPS61168512A (en) 1986-07-30
JP2504940B2 JP2504940B2 (en) 1996-06-05

Family

ID=11654991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60007042A Expired - Lifetime JP2504940B2 (en) 1985-01-18 1985-01-18 Negative electrode of non-aqueous solvent secondary battery

Country Status (1)

Country Link
JP (1) JP2504940B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009132559A (en) * 2007-11-30 2009-06-18 Fujifilm Corp Method for manufacturing activated carbon
EP2560229A2 (en) 2005-10-20 2013-02-20 Mitsubishi Chemical Corporation Lithium secondary batteries and nonaqueous electrolyte for use in the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57118376A (en) * 1981-01-13 1982-07-23 Furukawa Electric Co Ltd:The Zinc-halogen battery
JPS5893176A (en) * 1981-11-30 1983-06-02 Toray Ind Inc Secondary battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57118376A (en) * 1981-01-13 1982-07-23 Furukawa Electric Co Ltd:The Zinc-halogen battery
JPS5893176A (en) * 1981-11-30 1983-06-02 Toray Ind Inc Secondary battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2560229A2 (en) 2005-10-20 2013-02-20 Mitsubishi Chemical Corporation Lithium secondary batteries and nonaqueous electrolyte for use in the same
EP3217463A1 (en) 2005-10-20 2017-09-13 Mitsubishi Chemical Corporation Lithium secondary batteries and nonaqueous electrolyte for use in the same
EP3557684A2 (en) 2005-10-20 2019-10-23 Mitsubishi Chemical Corporation Lithium secondary batteries and nonaqueous electrolyte for use in the same
EP3840101A1 (en) 2005-10-20 2021-06-23 Mitsubishi Chemical Corporation Lithium secondary batteries and nonaqueous electrolyte for use in the same
JP2009132559A (en) * 2007-11-30 2009-06-18 Fujifilm Corp Method for manufacturing activated carbon

Also Published As

Publication number Publication date
JP2504940B2 (en) 1996-06-05

Similar Documents

Publication Publication Date Title
US6294292B1 (en) Secondary power source
JPH0517669B2 (en)
CN106992286A (en) A kind of preparation method of high power capacity trielement composite material
JPWO2006082708A1 (en) Positive electrode for secondary battery, method for producing the same, and secondary battery
JPS60170163A (en) Organic electrolyte cell
JPS61168512A (en) Electrode material
EP3930041A1 (en) Battery material
JP2574730B2 (en) Organic electrolyte battery
JPH11144759A (en) Secondary power source
JPH0630260B2 (en) Organic electrolyte battery
JP2519180B2 (en) Organic electrolyte battery
JPH08264180A (en) Lithium secondary battery negative electrode material and lithium secondary battery using it
JPH0346756A (en) Plastic secondary cell
JP2524184B2 (en) Organic electrolyte battery containing composite electrodes
JP2646461B2 (en) Organic electrolyte battery
JPS63301465A (en) Organic electrolyte battery with composite matter of aniline as positive electrode
JP2588405B2 (en) Organic electrolyte battery using high concentration mixed solute
JP2519454B2 (en) Organic electrolyte battery using nitrogen-containing substrate as electrode
JP2749605B2 (en) Organic electrolyte battery
JP2601784B2 (en) Organic electrolyte battery
JP2619842B2 (en) Organic electrolyte battery
JPS61111908A (en) Material for electrode
CN117352696A (en) Carbon nano tube-sulfur composite material embedded with single-molecule material derived quantum dot nitride and preparation method thereof
JPH08124569A (en) Negative electrode methrial for lithium secondary battery and lithium secondary battery using this negative electrode metarial
JP2616774B2 (en) Organic electrolyte battery using metal oxide composite as positive electrode

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term