JPS61111908A - Material for electrode - Google Patents

Material for electrode

Info

Publication number
JPS61111908A
JPS61111908A JP59230293A JP23029384A JPS61111908A JP S61111908 A JPS61111908 A JP S61111908A JP 59230293 A JP59230293 A JP 59230293A JP 23029384 A JP23029384 A JP 23029384A JP S61111908 A JPS61111908 A JP S61111908A
Authority
JP
Japan
Prior art keywords
poly
battery
charge
halogenated
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59230293A
Other languages
Japanese (ja)
Inventor
Mitsutaka Miyabayashi
宮林 光孝
Mitsuru Ueda
充 上田
Akira Itsubo
明 伊坪
Masami Takahashi
正美 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemical Co Ltd
Original Assignee
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Petrochemical Co Ltd filed Critical Mitsubishi Petrochemical Co Ltd
Priority to JP59230293A priority Critical patent/JPS61111908A/en
Priority to DE3588167T priority patent/DE3588167T2/en
Priority to EP85304139A priority patent/EP0165047B1/en
Publication of JPS61111908A publication Critical patent/JPS61111908A/en
Priority to US07/036,176 priority patent/US4725422A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To provide an electrode material giving a pollution-free cell, having an H/C atomic ratio of falling within a specific range, and prepared by baking poly(alpha-halogenated acrylonitrile), poly(beta-halogenated acrylonitrile), etc. CONSTITUTION:A compound selected from poly(alpha-halogenated acrylonitrile), poly(beta-halogenated acrylonitrile), poly(halogenated dicyanoethylene), poly(cyanoacetylene) and poly(dicyanoacetylene) or their mixture is baked to obtain a carbonaceous material having an H/C atomic ratio of 0.010-0.55, and the material is used as the objective electrode material.

Description

【発明の詳細な説明】 (目 的) 本発明は、@量でエネルギー密度、最大出力密度が高く
、無公害な電池を可能ならしめる電極材料に関する。
DETAILED DESCRIPTION OF THE INVENTION (Objectives) The present invention relates to an electrode material that has a high energy density and a high maximum output density, and which enables a non-polluting battery.

(従来技術) 近年、電池の高性能化に向けた研究開発の動きは激しい
。その一つに炭素質材料を電極として、電気化学的ドー
ピングを利用した再充電可能な二次電池の研究がちる。
(Prior Art) In recent years, there has been a rapid movement in research and development aimed at improving the performance of batteries. One example of this is research into rechargeable secondary batteries using electrochemical doping using carbonaceous materials as electrodes.

たとえば負極にLi金属を、正極に黒鉛を用いた場合、
黒鉛層間に充電でctOa−1BF番−などの陰イオン
をドープすることができ、この時に生ずる起電力を利用
して電池として応用できる。放電時には、黒鉛層間から
これらのイオンが脱ドープされ、電流がとりだされる。
For example, if Li metal is used for the negative electrode and graphite is used for the positive electrode,
Anions such as ctOa-1BF can be doped between the graphite layers by charging, and the electromotive force generated at this time can be used as a battery. During discharge, these ions are dedoped from between the graphite layers, and a current is extracted.

こうして充、放電のくシ返しができる二次電池として痩
用できる(=’!、気化学46,438(1978)な
ど)。
In this way, it can be used as a secondary battery that can be charged and discharged repeatedly (='!, Gas Chemistry 46, 438 (1978), etc.).

しかし、この場合には、黒鉛層間にドープされたイオン
同志の反発のためか、ドープ量に限度があり、エネルギ
ー密度も低いものであって正極として黒鉛は不充分であ
る。また、負極としてのLi金属は、充放電のサイクル
をくり返すにつれてLi金属電極上に成長するデンドラ
イトのために充放電のサイクル数をあげることができず
負極とじて不充分である。
However, in this case, there is a limit to the amount of doping, probably due to repulsion between ions doped between the graphite layers, and the energy density is low, making graphite insufficient as a positive electrode. Furthermore, Li metal as a negative electrode is insufficient as a negative electrode because it cannot increase the number of charge/discharge cycles due to dendrites that grow on the Li metal electrode as charge/discharge cycles are repeated.

また、黒鉛を負極として用いた場合、Li+イオンなど
の陽イオンを層間にドープすることができるが、電解液
中で非常に不安定であり、電解液とも反応するなど電極
材として不適である( J。
Furthermore, when graphite is used as a negative electrode, cations such as Li+ ions can be doped between the layers, but it is extremely unstable in the electrolyte and reacts with the electrolyte, making it unsuitable as an electrode material ( J.

Electrochem、 5ociety、 125
.687(197B) 。
Electrochem, 5ociety, 125
.. 687 (197B).

表面21+112(1983)など)。Surface 21+112 (1983), etc.).

また、比表面積が100〜2 s o On”/ yと
大きな活性炭素繊維を両極に用いた電池が特開昭58−
35881号公報に提案されている。しかしこれは自己
放電をしやすく長時間放電に耐えず、また、充放電の電
荷効率が低下するといった問題点を有し、高性能で高信
頼性の電池を得るのは難しい。これは、正極としての活
性炭素繊維は、比較的良好な電極特性を有するが、負極
側の活性炭素繊維へのカチオンイオンのドーピング、脱
ドーピングがうまくいかないために、良好な電池特性が
得られないのである。
In addition, a battery using activated carbon fibers with a large specific surface area of 100 to 2 s o On"/y for both electrodes was published in Japanese Patent Application Laid-open No.
This is proposed in Japanese Patent No. 35881. However, this has the problem of being prone to self-discharge and not being able to withstand long-term discharge, and the charge efficiency of charging and discharging decreases, making it difficult to obtain a high-performance and highly reliable battery. This is because activated carbon fibers used as positive electrodes have relatively good electrode properties, but doping and dedoping of cations to the activated carbon fibers on the negative electrode side are not successful, so good battery properties cannot be obtained. be.

したがって負極電極としてLi金属を用い、正極電極と
して活性炭素繊維を用いた電池は、両極に活性炭素繊維
を用いた電池と比較してこれらの問題点が改良されるが
、この場合は、Li金属電極上に成長するデンドライト
のために充放電のサイクル数をあげることができない。
Therefore, a battery that uses Li metal as the negative electrode and activated carbon fiber as the positive electrode has these problems improved compared to a battery that uses activated carbon fiber as both electrodes, but in this case, Li metal Due to dendrites growing on the electrodes, the number of charge/discharge cycles cannot be increased.

Li金属にかわる負極電極材料が求められる理由である
This is the reason why a negative electrode material that can replace Li metal is required.

一方、ポリアセチレンなどの導電性高分子を電極として
電気化学的ドー・ピングを利用した再充電可能な二次電
池の研究にも多大の関心が寄せられている。たとえば、
特開昭57−121168号公報にはアセチレン重合体
を用いた電池が提案されている。しかしポリアセチレン
は空気中で酸化劣化するなど不安定であり溶媒に含まれ
る微量の水分や酸素と反応して劣化し電極としての安定
性に劣る。とくに負極として用いたポリアセチレンが、
電解液中での劣化が激しい。
On the other hand, there is also a great deal of interest in research into rechargeable secondary batteries that utilize electrochemical doping with conductive polymers such as polyacetylene as electrodes. for example,
JP-A-57-121168 proposes a battery using an acetylene polymer. However, polyacetylene is unstable due to oxidative deterioration in the air, and deteriorates when reacting with trace amounts of moisture and oxygen contained in the solvent, resulting in poor stability as an electrode. In particular, the polyacetylene used as the negative electrode
Severe deterioration in electrolyte.

したがってポリアセチレンを両極に用いた電池は自己放
電が激しく、また、充放電の電荷効率も悪く、高性能で
高信頼性の電池を得るのが難しい。
Therefore, a battery using polyacetylene for both electrodes has severe self-discharge and poor charging/discharging efficiency, making it difficult to obtain a high-performance, highly reliable battery.

負極電極としてLi金属を用い、ポリアセチレンを正極
電極として用いた電池では、自己放電、充放電における
電荷効率などの問題が、両極にポリアセチレンを用いた
電池と比較して改良、されるが、この場合もやはり充放
電過程を重ねるにつれてLi金属電極上に成長するデン
ドライトのために充放電のサイクル数を上げることがで
きない。
In batteries that use Li metal as the negative electrode and polyacetylene as the positive electrode, problems such as self-discharge and charge efficiency during charging and discharging are improved compared to batteries that use polyacetylene as both electrodes. Again, the number of charging and discharging cycles cannot be increased because of dendrites that grow on the Li metal electrode as the charging and discharging process continues.

−(発明の概要) こうした現状に鑑み、本発明者らは、軽量で高エネルギ
ー密度、高最大出力密度の無公害な二次電池の開発には
、イオンのドーピング、脱ドーピングに対し安定で、か
つ多量のイオンをドープできる良好な正極及び負極の電
極材料が重要であること、とりわけ負極電極としてすぐ
れた性能を有する材料の開発が最大のポイントであると
の認識にたち、すぐれた電極材料の開発に鋭意努力して
きた。その結果、本発明に到達したものである。
- (Summary of the Invention) In view of the current situation, the present inventors have developed a non-polluting secondary battery that is lightweight, has a high energy density, and has a high maximum output density. We recognize that it is important to have good positive and negative electrode materials that can be doped with large amounts of ions, and that the most important point is to develop materials that have excellent performance as negative electrodes. We have worked hard to develop it. As a result, we have arrived at the present invention.

すなわち本発明は、ポリ(α−ハロゲン化アクリロニト
リル)、ポリ(β−ハロゲン化アクリロニトリル)、ポ
リ(ハロゲン化ジシアノエタン)、ポリ(シアノアセチ
レン)およびポリ(ジシアノアセチレン)の1種又は2
種以上の混合物を熱焼成して得られ、元素分析から求め
られる水素/炭素原子の原子比が0.010〜0.55
の範囲である電極材料である。
That is, the present invention provides one or more of poly(α-halogenated acrylonitrile), poly(β-halogenated acrylonitrile), poly(halogenated dicyanoethane), poly(cyanoacetylene), and poly(dicyanoacetylene).
Obtained by thermally firing a mixture of more than one species, the atomic ratio of hydrogen/carbon atoms determined from elemental analysis is 0.010 to 0.55.
The electrode material is in the range of .

負極電極とは充電時、外部電源の陰極に接続されて電子
が送シ込まれ、かつ陽イオンをドープされる電極側の電
極のことである。これに対し正極電極とは充電時、外部
電源の陽極に接続されて電子が抜きとられ、かつ陰イオ
ンをドープされる電極側の電極のことである。
The negative electrode is an electrode that is connected to the cathode of an external power source, into which electrons are sent, and which is doped with cations during charging. On the other hand, the positive electrode refers to the electrode that is connected to the anode of an external power source to extract electrons and is doped with anions during charging.

本発明の電極材料は、負極電極として用いた時にすぐれ
九電池性能を発揮する。
The electrode material of the present invention exhibits excellent battery performance when used as a negative electrode.

ざらに本発明の電極材料を正極電極として用いることも
可能である。
It is also possible to use the electrode material of the present invention as a positive electrode.

(具体的説明) 本発明において、熱焼成に供される材料としては、 ポリ(α−ハロゲン化アクリロニトリル)、ポリ(β−
ハロゲン化アクリロニトリル)は、α−ハロゲン化アク
リロニトリル、β−ハロゲン化アクリロニトリルを重合
したもので、α−ハロゲン化アクリロニトリル、β−ハ
ロゲン化アクリロニトリルの単独重合体がある。また、
他の;モノマーを少割合共重合されたものを含む。他の
コモノマーとしてはアクリロニトリルなどのニトリル基
を有するもの、7フ化ビニルなどのハロゲン化ヒニル化
合物などが用いられる。α−ハロゲン化アクリロニトリ
ルは式(1)で、β−ハロゲン化アクリロニトリルは式
(2)であられされる七ツマ−である。
(Specific explanation) In the present invention, materials to be subjected to thermal calcination include poly(α-halogenated acrylonitrile), poly(β-halogenated acrylonitrile), poly(β-
Halogenated acrylonitrile) is obtained by polymerizing α-halogenated acrylonitrile and β-halogenated acrylonitrile, and there are homopolymers of α-halogenated acrylonitrile and β-halogenated acrylonitrile. Also,
Contains those copolymerized with a small proportion of other monomers. Other comonomers that can be used include those having a nitrile group such as acrylonitrile, and halogenated vinyl compounds such as vinyl heptafluoride. α-halogenated acrylonitrile is represented by formula (1), and β-halogenated acrylonitrile is represented by formula (2).

HCコN HCCツ ボリ(α−ハロゲン化アクリロニトリル)、ポリ(β−
ハロゲン化アクリロニトリル)は、それぞれα−ハロゲ
ン化アクリロニトリル、β−ハロゲン化アクリロニトリ
ルを通常ラジカル重合して得られる。
HC CoN HCC Tubori (α-halogenated acrylonitrile), poly(β-
Halogenated acrylonitrile) is usually obtained by radical polymerization of α-halogenated acrylonitrile and β-halogenated acrylonitrile, respectively.

ポリ(ハロゲン化ジシアノエチレン)はノーロゲン化ジ
シアノエチレンを重合したもので、ハロゲン化ジシアノ
エチレンの単独重合体、並びにこれに他のコモノマーが
少割合共重合されたものを含む。ハロゲン化ジシアノエ
チレンは式(3)であられされる七ツマ−である。
Poly(halogenated dicyanoethylene) is a polymer of norogenated dicyanoethylene, and includes a homopolymer of halogenated dicyanoethylene and a small proportion of copolymerized with other comonomers. The halogenated dicyanoethylene is a heptamine represented by formula (3).

ポリ(シアンアセチレン)、ポリ(ジシアノアセチレン
)は式T41、(5)であられされるシアノアセチレン
、ジシアノアセチレンの重合体であり、単独重合体が好
ましいが、少割合の他のコモノマーが共重合されたもの
も含む。
Poly(cyanoacetylene) and poly(dicyanoacetylene) are polymers of cyanoacetylene and dicyanoacetylene expressed by the formula T41 (5), and are preferably homopolymers, but may be copolymerized with a small proportion of other comonomers. Including things that are.

H−C=C−C帖     (3) N=C−CTC−CミN(4) 本発明の電極材料は、上述のポリ(α−ハロゲン化アク
リロニトリル)、ポリ(β−ハロゲン化アクリロニトリ
ル)、ポリ(ハロゲン化ジシアノエチレン)、ポリ(シ
アノアセチレン)、及びポリ(ジシアノアセチレン)の
一種又は2m以上の混合物を熱焼成をすることによって
得られ石。モノマー及びポリマーの工業的製造のしやす
さなどの点からポリ(α−ハロゲン化アクリロニトリル
)、ポリ(β−ハロゲン化アクリロニトリル)とくにポ
リ(α−)・ロゲン化アクリロニトリル)を熱焼成する
前駆体として用いるのが好ましい。とくにポリ(α−フ
ルオロアクリロニトリル)、ポリ(α−クロロアクリロ
ニトリル)が好ましい。
H-C=C-C (3) N=C-CTC-CmiN (4) The electrode material of the present invention includes the above-mentioned poly(α-halogenated acrylonitrile), poly(β-halogenated acrylonitrile), A stone obtained by thermally firing one type or a mixture of 2 m or more of poly(halogenated dicyanoethylene), poly(cyanoacetylene), and poly(dicyanoacetylene). From the viewpoint of ease of industrial production of monomers and polymers, it is used as a precursor for thermal sintering of poly(α-halogenated acrylonitrile), poly(β-halogenated acrylonitrile), especially poly(α-) and halogenated acrylonitrile). It is preferable to use Particularly preferred are poly(α-fluoroacrylonitrile) and poly(α-chloroacrylonitrile).

ポリ(α−ハロゲン化アクリロニトリル)、ポリ(β−
ハロゲン化アクリロニトリル)、ポリ(ハロゲン化ジシ
アノエチレン)を熱焼成する前に、ピリジン、DBU(
1,8−ジアザビシクロ(4,3゜0)ウンデセン−7
)、トリエチルアミンなどの三級アミン化合物、ベンゼ
ン−トリメチルアンモニウム水酸化物、ナトリウムアミ
ド(液体アンモニア中で使用)、水酸化アルカリ(高温
高圧下で使用)、カリウムブトキシド、ブチルリチウム
、アルカリ水溶液とアミン化合物、クラウンニーチル等
の相間移動触媒成分などを用いて処理し、脱ハロゲン化
水素反応を実施し、その後、熱焼成することで本発明の
電極材料を得る方法は好ましい方法である。
Poly(α-halogenated acrylonitrile), poly(β-
Pyridine, DBU (halogenated acrylonitrile) and poly(halogenated dicyanoethylene) are
1,8-diazabicyclo(4,3゜0) undecene-7
), tertiary amine compounds such as triethylamine, benzene-trimethylammonium hydroxide, sodium amide (used in liquid ammonia), alkali hydroxide (used under high temperature and pressure), potassium butoxide, butyl lithium, aqueous alkaline solutions and amine compounds A preferred method is to obtain the electrode material of the present invention by treating the electrode material with a phase transfer catalyst component such as , crown nityl, etc., carrying out a dehydrohalogenation reaction, and then thermally calcining it.

熱焼成は、真空中ないし不活性ガス11素、アルゴンe
tc )流下又は酸化性ガス(!2気etc )流下、
又は両者の混合ガス流下に実施される。通常は真空下又
は不活性ガス流下で熱焼成される。
Thermal firing is performed in vacuum or inert gas, argon e.
tc) flowing down or oxidizing gas (!2 gas etc.) flowing down,
Or it is carried out under a mixed gas flow of both. It is usually thermally fired under vacuum or under a flow of inert gas.

熱焼成温度に生成する高分子共役系の水素/炭素原子の
原子比に密接に関連しておシ、この原子比が0.015
〜0.55の範囲に合致させるべく熱焼成温度が選択さ
れる。通常は180〜2000℃の範囲で熱焼成温度が
選択される。
Closely related to the atomic ratio of hydrogen/carbon atoms in the polymer conjugated system produced at the thermal firing temperature, this atomic ratio is 0.015.
The thermal firing temperature is selected to match the range of .about.0.55. Usually, the firing temperature is selected in the range of 180 to 2000°C.

熱焼成する前の前記重合体は繊維状、粉状、粒状、フィ
ルム状など各種の形態で用いられる。
The polymer before thermal baking is used in various forms such as fibrous, powder, granular, and film forms.

また上記のポリシアノアセチレン、ポリジシアノアセチ
レンは、それぞれシアノアセチレンまたはジシアノアセ
チレンを200〜1000℃の適当な温度で熱重合させ
て得ることができ、熱重合物を更に適当な温度で熱焼成
することによシ連続的に製造することができる。
Moreover, the above-mentioned polycyanoacetylene and polydicyanoacetylene can be obtained by thermally polymerizing cyanoacetylene or dicyanoacetylene, respectively, at an appropriate temperature of 200 to 1000°C, and the thermally polymerized product can be further thermally calcined at an appropriate temperature. It can be manufactured continuously.

本発明の電極材料は元素分析から求められる水素/炭素
原子の原子比が0.010〜0.55の範囲に、好まし
くは0.015〜0.50、更に好ましくは0.02 
Q〜0.45の範囲にある。水素/炭素原子の原子比が
上限及び下限をこえると電極材料として安定した充放電
特性、貯蔵特性が得られない。
The electrode material of the present invention has an atomic ratio of hydrogen/carbon atoms determined from elemental analysis in the range of 0.010 to 0.55, preferably 0.015 to 0.50, more preferably 0.02.
Q is in the range of 0.45. If the atomic ratio of hydrogen/carbon atoms exceeds the upper and lower limits, stable charge/discharge characteristics and storage characteristics cannot be obtained as an electrode material.

さらに本発明の電極材料は、赤外線スペクトルから求め
られる下記式で表わされる吸光度比Aが0.60以下、
好ましくは0.50以下のものが適当である。
Furthermore, the electrode material of the present invention has an absorbance ratio A of 0.60 or less, which is expressed by the following formula and determined from an infrared spectrum.
Preferably, a value of 0.50 or less is appropriate.

A=A2080〜2280 /Al450 #165G
A 110110−2280  は、赤外線吸収スペク
トルにおける2080〜2280cm  の範囲の最大
ピークの吸光度である。厳密には2200〜2240c
mのニトリル基に基く吸収の吸光度である。
A=A2080~2280/Al450 #165G
A 110110-2280 is the absorbance of the maximum peak in the range of 2080 to 2280 cm in the infrared absorption spectrum. Strictly speaking, 2200-2240c
It is the absorbance of absorption based on the nitrile group of m.

A1450−16501f、赤外吸収スペクトルにおけ
る1450〜1650cM″1の範囲の最大吸収ピーク
の吸光度である。共役系に基く吸収ピークと考えられる
A1450-16501f is the absorbance of the maximum absorption peak in the range of 1450 to 1650 cM''1 in the infrared absorption spectrum.It is considered to be an absorption peak based on a conjugated system.

吸光度比Aは、ニトリル基が環化し、共役系が成長する
につれて小さくなる。
The absorbance ratio A becomes smaller as the nitrile group cyclizes and the conjugated system grows.

吸光度比Aが0.60を越えると電極材料として安定し
た充放電の電荷効率、良好な貯蔵特性が得られない。
If the absorbance ratio A exceeds 0.60, stable charging/discharging charge efficiency and good storage characteristics cannot be obtained as an electrode material.

なお、共役系が広がると2080〜2280cm””に
あられれるC!!!!N基の吸収がみられなくなり、か
つ1450〜165oi1の範囲の吸収ピークもブロー
ドになってしまって、厳密な吸光度比Aの計算ができな
いことがある。この場合は吸光度比人を(吸光度A20
80〜2280  がほぼ0とみなせるとき)はぼ0と
判別することにする。
In addition, when the conjugate system expands, C! ! ! ! Absorption of the N group is no longer observed, and the absorption peak in the range of 1450 to 165 oi1 becomes broad, making it impossible to accurately calculate the absorbance ratio A. In this case, the absorbance ratio (absorbance A20
80 to 2280 can be regarded as almost 0) is determined to be approximately 0.

さらに本発明の電極材料は、電子スピン共鳴スペクトル
(23℃で測定)から求められるt値が19.900〜
20,100の範囲にシグナルを有し、かつそのシグナ
ルの線巾(ΔHPP )が3〜1500ガウスの範囲の
ものが好ましい。
Furthermore, the electrode material of the present invention has a t value of 19.900 to 19.900 determined from an electron spin resonance spectrum (measured at 23°C).
It is preferable to have a signal in the range of 20,100 and a line width (ΔHPP) of the signal in the range of 3 to 1500 Gauss.

本発明の電極材料は、場合によっては2つ以上の電子ス
ピン共鳴スペクトルのシグナルを有することがあるが、
そのうちの少なくとも1つのシグナルのt値は1.99
00〜2.0100の範囲にあり、そのシグナルの線巾
(ΔH,,)が3ガウス以上、さらにF13〜1500
ガウスの範囲にある。
Although the electrode material of the present invention may have two or more electron spin resonance spectrum signals in some cases,
The t value of at least one of the signals is 1.99
00 to 2.0100, the signal width (ΔH,,) is 3 Gauss or more, and F13 to 1500
in the Gaussian range.

本発明に関する電極材料は単独で、あるいはこれに炭素
繊維などの導電材、補強材等を加えた形で各種の形状で
電極として用いられる。
The electrode material according to the present invention can be used as an electrode in various shapes either alone or in combination with a conductive material such as carbon fiber, a reinforcing material, etc.

本発明の電極材料を用いた電池は以下のような構成を有
する。すなわち負極に本発明の電極材料を主な活物質と
して用い、正極には活性化炭素繊維など正極電極として
比較的良好な特性を有する電極材料が選ばれる。
A battery using the electrode material of the present invention has the following configuration. That is, the electrode material of the present invention is used as the main active material for the negative electrode, and an electrode material having relatively good characteristics as a positive electrode, such as activated carbon fiber, is selected for the positive electrode.

負極に他の電極材料、正極に本発明の正極材料を用いる
場合、正極及び負極に本発明の電極材料を用いる場合も
可能である。
When using another electrode material for the negative electrode and the positive electrode material of the present invention for the positive electrode, it is also possible to use the electrode material of the present invention for the positive electrode and the negative electrode.

電解質トシテは1ictO4,LiCA、 LiPFg
、 KCNS。
Electrolyte is 1ictO4, LiCA, LiPFg
, K.C.N.S.

NaPFa + LiBF4.N(Bu)4CtO4,
N(Bu)4C6などのアルカリ金属塩、アルカリ土類
金属塩、テトラアルキルアンモニウム塩などの公知の塩
をプロピレンカーボネート、エチレンカーボネート、ア
セトニトリル、γ−ブチロラクトン、ジメチルフォルム
アマイド、ジメチルスルフオキシド、エチルエーテル、
テトラヒドロフラン、グライム類等、一般に電池に用い
られる有機溶媒の一種又は二種以上の混合溶媒に溶解さ
せたものを通常は用いる。
NaPFa + LiBF4. N(Bu)4CtO4,
Known salts such as alkali metal salts such as N(Bu)4C6, alkaline earth metal salts, and tetraalkylammonium salts are combined with propylene carbonate, ethylene carbonate, acetonitrile, γ-butyrolactone, dimethylformamide, dimethylsulfoxide, and ethyl ether. ,
Usually, a solvent dissolved in one or a mixed solvent of two or more organic solvents commonly used in batteries, such as tetrahydrofuran and glymes, is used.

分解電圧の高い溶媒を用いるという観点からは有機溶媒
としてプロピレンカーボネート、エチレンカーボネート
などが好ましい。又、液漏れのないコンパクトな電池を
得る丸めには、常温あるいは電池の使用温度で固体の電
解質を用いるのが好ましい。
From the viewpoint of using a solvent with a high decomposition voltage, propylene carbonate, ethylene carbonate, etc. are preferable as the organic solvent. Further, in order to obtain a compact battery that does not leak, it is preferable to use an electrolyte that is solid at room temperature or the operating temperature of the battery.

上記の構成からなる電池の両極に外部電源により一定電
圧をかけて、あるいは定電流が流れるように電圧を規制
してなどして充電操作を行なうと、正極には陰イオンが
、負極には陽イオンがドープされて、それぞれP型電極
机型電極となシ、この両極に生じる起電力を利用して電
池として使用することができる。放電時には、各電解質
イオンはそれぞれの電極から脱ドープされ、電流がとシ
だせる。こうした充電、放電のサイクルを繰シ返すこと
によシニ次電池として使用することができる。
When a battery with the above configuration is charged by applying a constant voltage to both poles from an external power supply or by regulating the voltage so that a constant current flows, anions are generated at the positive electrode and positive at the negative electrode. When doped with ions, the P-type electrode and desk-type electrode can be used as a battery by utilizing the electromotive force generated at these two electrodes. During discharge, each electrolyte ion is dedoped from its respective electrode, allowing current to flow out. By repeating such charging and discharging cycles, it can be used as a secondary battery.

また、ドープ看の異なるiyt型またはP型電極どうし
を用いても起電力を生ずるが、その起電力は両極にP型
、h型電極を用いた場合に比して低いものとなる。
Although an electromotive force is generated even when IYT type or P type electrodes having different doping levels are used, the electromotive force is lower than when P type or H type electrodes are used for both poles.

以下、実施例をあげて5本発明を具体的に説明する。な
お、元素分析、赤外線スペクトル測定、電子スピン共鳴
スペクトルの測定は下記方法により実施した。
EXAMPLES Hereinafter, the present invention will be specifically explained with reference to Examples. In addition, elemental analysis, infrared spectrum measurement, and electron spin resonance spectrum measurement were performed by the following methods.

〔元素分析〕[Elemental analysis]

サンプルを120℃で約15hr減圧乾燥後、ドライボ
ックス内にて、ホットプレート上で1o。
After drying the sample under reduced pressure at 120°C for about 15 hours, it was dried at 1o on a hot plate in a dry box.

℃にして、1hr減圧乾燥し、アルゴン中でアルミニウ
ムカップにテンプリングして、パーキンエルマー240
C型元素分析計にて測定した。
℃, vacuum dried for 1 hr, tempered in an aluminum cup under argon, and packed with PerkinElmer 240.
Measured using a C-type elemental analyzer.

〔赤外線スペクトル測定〕[Infrared spectrum measurement]

サンプルをKBr錠剤と乳鉢にて混合し、粉末化した。 The sample was mixed with KBr tablets in a mortar and powdered.

この粉末をプレスしてシート状に成型した。This powder was pressed into a sheet.

このシート状ナンブルをD i gi lab製Qua
limaticフーリエ変換赤外分光光度計にて測定し
た。
This sheet-like number is manufactured by Di gi lab Qua
Measurement was performed using a limatic Fourier transform infrared spectrophotometer.

〔電子スピン共鳴スペクトル測定〕[Electron spin resonance spectrum measurement]

電子スピン共鳴の一次微分吸収スベクトルはJEOL 
 JEB−Pg  IX  ESRスペク)ロメーター
を用い、Xバンドで測定する。粉末状の試料はそのまま
、微小片状試料はメノウ乳鉢で粉末化して、外径2mの
毛細管に入れ、さらに毛細管を外径511IllのES
R管に入れる。高周波磁場の変調幅を6.3ガウスとす
る。以上すべて空気雰囲気下、23℃で行う。−次微分
吸収スペクトルのピーク間の線巾(ΔHpp )は、M
n” / Mg O標準資料を用いて決定する。
The first-order differential absorption vector of electron spin resonance is JEOL
Measurement is performed in the X band using a JEB-Pg IX ESR spectrometer. Powdered samples are left as they are, fine flake samples are pulverized in an agate mortar, placed in a capillary tube with an outer diameter of 2 m, and then the capillary tube is placed in an ES tube with an outer diameter of 511 Ill.
Put it in the R tube. The modulation width of the high-frequency magnetic field is assumed to be 6.3 Gauss. All of the above is carried out at 23° C. in an air atmosphere. The line width (ΔHpp) between the peaks of the −th order differential absorption spectrum is M
n”/MgO standard data.

(以下余白) 実施例1 ポリ(α−フルオロアクリロニトリル)をアセトン溶媒
に溶解させた後、ガラス板上にギヤスト、風乾して厚さ
20μのフィルムを得た。このフィルムを石英製ガラス
管に入れ、真空脱気した。さらにこのフィルムの入った
石英製ガラス管を電気加熱炉にセットし、真空下10で
7分の速度で300℃迄昇温した。さらに真空下300
℃で1時間保持した。こうして黒色のフィルム状基体を
得た。このフィルム状基体の赤外線吸収スペクトルを第
1図に示した。
(The following is a blank space) Example 1 After dissolving poly(α-fluoroacrylonitrile) in an acetone solvent, it was cast on a glass plate and air-dried to obtain a film with a thickness of 20 μm. This film was placed in a quartz glass tube and degassed under vacuum. Furthermore, the quartz glass tube containing this film was set in an electric heating furnace, and the temperature was raised to 300° C. at a rate of 7 minutes under vacuum for 10 minutes. Further under vacuum 300
It was kept at ℃ for 1 hour. In this way, a black film-like substrate was obtained. The infrared absorption spectrum of this film-like substrate is shown in FIG.

また、パーキンエルマー24QC型元素分析計を用いて
測定した元素分析から求め念原子比を表1に示した。更
に、上記熱焼成して得念フィルム状基体のESRスペク
トルを第2図に示した。これらデータよ抄上記フィルム
状基体の水素/炭素原子比は、0.45赤外線吸収スペ
クトルから求めた吸光度比A=A201G ”w tt
so/)、、!sso 〜1ssoは0.40.電子ス
ピン共鳴スペクトルから求めた?値が2.0 O12の
シグナルの半値巾(Δ■)は6.8ガウスであった。
In addition, Table 1 shows the assumed atomic ratio determined from elemental analysis measured using a PerkinElmer 24QC elemental analyzer. Further, FIG. 2 shows the ESR spectrum of the heat-sintered film-like substrate. Based on these data, the hydrogen/carbon atomic ratio of the above film-like substrate is 0.45.The absorbance ratio obtained from the infrared absorption spectrum is A=A201G"w tt
so/),,! sso ~1sso is 0.40. Determined from electron spin resonance spectrum? The half width (Δ■) of the signal with a value of 2.0 O12 was 6.8 Gauss.

表1 〔上記フィルム状基体を負極電極に用いた電池〕上記フ
ィルム状基体11岬を55メツシユの白金製金網に包み
一方の電極とした。又、フェノール系活性炭素繊維フェ
ルト(日本カイノール社製ACN  504−15)1
1yを同様に55メツシユの白金製金網に包みもう一方
の電極とした。
Table 1 [Battery using the above film-like substrate as a negative electrode] The above film-like substrate 11 cape was wrapped in a 55-mesh platinum wire mesh and used as one electrode. In addition, phenolic activated carbon fiber felt (ACN 504-15 manufactured by Nippon Kynor Co., Ltd.) 1
1y was similarly wrapped in a 55-mesh platinum wire mesh to serve as the other electrode.

両電極間に0.5 ymaの厚みのグラスファイバー濾
紙を隔膜としておいた。両電極間に白金線をリード線と
してつないだ。ポテンショスタット/ガルバノスタット
(北斗電工社製HA−501)の陰極に上記フィルム状
基体を白金製金網で包んだ電極を、又陽極にフェノール
系活性炭素繊維フエルトを白金製金網で包んだ電極を接
続し、両電極間に0.15mAの一定電流を流して充電
し念。クーロンメーター指示値で2.0クーロンの電荷
を充電した時点で充電を打ちきった。
A glass fiber filter paper with a thickness of 0.5 yma was placed between both electrodes as a diaphragm. A platinum wire was connected between both electrodes as a lead wire. An electrode made of the above film-like substrate wrapped in a platinum wire mesh is connected to the cathode of a potentiostat/galvanostat (HA-501 manufactured by Hokuto Denko Co., Ltd.), and an electrode made of a phenolic activated carbon fiber felt wrapped in a platinum wire mesh is connected to the anode. Then, charge it by passing a constant current of 0.15 mA between both electrodes. Charging was terminated when a charge of 2.0 coulombs was reached as indicated by the coulomb meter.

〔電池性能〕[Battery performance]

上記充電後の電池の開路電圧を測定し4.Ovを得た。 4. Measure the open circuit voltage of the battery after the above charging. I got Ov.

父上記充電後直ちにIKΩの抵抗を両極間につないで定
抵抗放電を実施し、両極間の電位が0、IVになる迄に
放電し念電荷量は1.54クーロンであった。
Immediately after the above charging, a constant resistance discharge was carried out by connecting an IKΩ resistor between the two electrodes, and the electric charge was discharged until the potential between the two electrodes reached 0.IV, and the amount of electric charge was 1.54 coulombs.

上述の充電及び放電の操作を繰し返し実施し、4回目の
充電量2.Qクーロンに対し放電電荷量は1.50クー
ロンであった。5回目の充電後、15時間放置して後I
KΩの定抵抗放電を実施し充電電荷量2.0クーロンに
対し放電電荷量1.23クーロンを得た。
The above-described charging and discharging operations are repeated until the fourth charge amount is 2. The discharge charge amount was 1.50 coulombs relative to Q coulombs. After the 5th charge, leave it for 15 hours and then
A constant resistance discharge of KΩ was performed, and a discharged charge amount of 1.23 coulombs was obtained for a charged charge amount of 2.0 coulombs.

各サイクルにおける電荷効率を表−2に示す。Table 2 shows the charge efficiency in each cycle.

(以下余白) 実施例2 実施例1で得たフィルム状基体をさらに窒素流下20℃
/分の速度でSOO℃迄昇温した。さらに窒素流下SO
O℃で1時間保持した。こうして黒色のフィルム状基体
を得た。このフィルム状基体の赤外線スペクトルを第3
図、元素分析の値を表1に示した。又、電子スピン共鳴
スペクトル(ESBスペクトル)を第4図に示した。こ
れらデータよ沙上記フィルム状基体の水素/炭素原子比
は、0.40、赤外線吸収スペクトルから求めた吸光度
比A = Aj口o 〜!1110 /A15110 
N165Gは0.37、電子スピン共鳴スペクトルから
求めたf値が2.0011のシグナルの半値巾(ΔH)
は6.3ガウスであつ九〇 〔上記フィルム状基体を負極電極に用いた電池〕上記フ
ィルム状基体11■を負極に用いた以外は実施例1と同
様の方法で電池を構成し、実施例1と同様にして充電し
念。クーロンメーター指示値で2.0クーロンの電荷を
充電した時点で充電をうちきった。
(Left below) Example 2 The film-like substrate obtained in Example 1 was further heated at 20°C under nitrogen flow.
The temperature was raised to SOO°C at a rate of 1/min. Furthermore, SO under nitrogen flow
It was held at 0° C. for 1 hour. In this way, a black film-like substrate was obtained. The infrared spectrum of this film-like substrate is
Figures and values of elemental analysis are shown in Table 1. Further, an electron spin resonance spectrum (ESB spectrum) is shown in FIG. Based on these data, the hydrogen/carbon atomic ratio of the above film-like substrate is 0.40, and the absorbance ratio determined from the infrared absorption spectrum is A = Aj ~! 1110 /A15110
N165G is 0.37, and the half width (ΔH) of the signal with an f value of 2.0011 determined from the electron spin resonance spectrum
is 6.3 Gauss and 90 [Battery using the above film-like substrate as the negative electrode] A battery was constructed in the same manner as in Example 1 except that the above-mentioned film-like substrate 11■ was used as the negative electrode. Make sure to charge it in the same way as step 1. Charging was terminated when a charge of 2.0 coulombs was charged as indicated by the coulomb meter.

〔電池性能〕[Battery performance]

上記充電後、直ちにIKΩの抵抗を両極間につないで定
抵抗放電を実施し、両極間の電位がo、iVになる迄に
放電した電荷量は1.56クーロンであった。
Immediately after the above charging, a constant resistance discharge was performed by connecting a resistor of IKΩ between the two electrodes, and the amount of charge discharged until the potential between the two electrodes reached o, iV was 1.56 coulombs.

上述の充電及び放電の操作を繰り返し実施し、4回目の
充電量2.0クーロンに対し放電電荷量は1.57クー
ロンであった。5回目の充電後、15時間放置して後I
KΩの定抵抗放電を実施し、充電電荷量2.0クーロン
に対し放電電荷量は1.27クーロンを得た。
The above-described charging and discharging operations were repeated, and the amount of discharged charge was 1.57 coulombs compared to the fourth charge amount of 2.0 coulombs. After the 5th charge, leave it for 15 hours and then
A constant resistance discharge of KΩ was performed, and the discharged charge amount was 1.27 coulombs compared to the charged charge amount of 2.0 coulombs.

比較例1 フェノール系活性炭素繊維フェルト(日本カイノール社
製人eN504−15)1119を負極に用いた以外は
すべて実施例1と同様の方法で電池を構成し、実施何重
と同様にして充電した。クーロンメーター指示値で2.
0クーロンの電荷を充電した時点で充電をうち舞った。
Comparative Example 1 A battery was constructed in the same manner as in Example 1, except that phenolic activated carbon fiber felt (manufactured by Nippon Kynol Co., Ltd. eN504-15) 1119 was used as the negative electrode, and charged in the same manner as in the experiments. . 2 with the coulomb meter reading.
When it was charged with a charge of 0 coulombs, it stopped charging.

〔電池性能〕[Battery performance]

上記充電後、直ちにIKΩの抵抗を両極間につないで定
抵抗放電を実施し、両極間の電位が0.1Vになる迄に
放電した電荷量は1.48クーロンであった。
Immediately after the above charging, a constant resistance discharge was carried out by connecting a resistor of IKΩ between the two electrodes, and the amount of charge discharged until the potential between the two electrodes reached 0.1 V was 1.48 coulombs.

上述の充電及び放電の操作を繰抄返し実施し、4回目の
充電量2.0クーロンに対し放電電荷量は0.76クー
ロンであった。5回目の充電後、15時間放置して後I
KΩの定抵抗放電を実施し充電電荷量2.0クーロンに
対し放電電荷量0.47クーロンを得た。
The above-described charging and discharging operations were repeated, and the discharged charge amount was 0.76 coulombs compared to the fourth charge amount of 2.0 coulombs. After the 5th charge, leave it for 15 hours and then
A constant resistance discharge of KΩ was performed, and a discharged charge amount of 0.47 coulombs was obtained for a charged charge amount of 2.0 coulombs.

比較例2 〔ポリアセチレンフィルムの作成〕 触媒にTi (0−nBu)4A4(Et )s系、溶
媒にトルエンを用いて、1tのガラス製オートクレーブ
にアセチレンガスを吹き込み、白州らの方法(J、P。
Comparative Example 2 [Preparation of polyacetylene film] Using Ti(0-nBu)4A4(Et)s as a catalyst and toluene as a solvent, acetylene gas was blown into a 1-ton glass autoclave, and the method of Hakushu et al. (J, P .

S、 Polymer  Chemistry Edi
tion  Vol 12 11〜20 (1974)
等に記載の公知の方法)によりポリアセチレンフィルム
を得た。
S, Polymer Chemistry Edi
tion Vol 12 11-20 (1974)
A polyacetylene film was obtained by a known method described in et al.

〔上記ポリアセチレンフィルムを負極に用いた電池〕上
記ポリアセチレンフィルム11qを負極に用いた以外は
すべて実施例1と同様の方法で電池を構成し、実施例1
と同様にして充電したクーロンメーター指示値で2.0
クーロンの電荷を充電した時点で充電をうち趣った。
[Battery using the above polyacetylene film as the negative electrode] A battery was constructed in the same manner as in Example 1 except that the above polyacetylene film 11q was used as the negative electrode.
The coulomb meter reading was 2.0 when charged in the same manner as above.
When the coulomb charge was charged, the charge was stopped.

〔電池性能〕[Battery performance]

王妃充電後、只ちにIKΩの抵抗を両極間につないで定
抵抗放電を実施し、両極間の電位が0.1Vになる迄に
放電した電荷量は1.40クーロンであった。
Immediately after the queen charging, a constant resistance discharge was performed by connecting an IKΩ resistor between the two electrodes, and the amount of charge discharged until the potential between the two electrodes reached 0.1 V was 1.40 coulombs.

上述の充電及び放電の操作を繰り返し実施し、4回目の
充電量2.0クーロンに対し、放電電荷量は0.70ク
ーロンであり食。5回目の充電後15時間放置して後I
KΩの定抵抗放電を実施し充電電荷量2.0クーロンに
対し放電電荷量0.43クーロンを得た。
The above-described charging and discharging operations were repeated, and while the fourth charge amount was 2.0 coulombs, the discharged charge amount was 0.70 coulombs. After charging for the 5th time, leave it for 15 hours.
A constant resistance discharge of KΩ was performed, and a discharged charge amount of 0.43 coulombs was obtained for a charged charge amount of 2.0 coulombs.

比較例3 実施例1と同様にしてアセトン溶液からキャストしたポ
リ(α−フルオロアクリロニトリル)のフィルムを石英
製ガラス管に入れ、これを電気加熱戸にセットした。窒
素流下30℃/分の速度で3000℃迄昇温した。さら
に窒素流下、aoo。
Comparative Example 3 A poly(α-fluoroacrylonitrile) film cast from an acetone solution in the same manner as in Example 1 was placed in a quartz glass tube, and this was set in an electric heating door. The temperature was increased to 3000°C at a rate of 30°C/min under nitrogen flow. Further nitrogen flow, aoo.

℃で30分保持した。こうして黒色のフィルム状基体を
得た。このフィルム状基体をパーキンエルマー240C
型元素分析計を用いて測定した元素分析から求めた水素
/炭素原子の原子比を表1に示したが、水素/炭素原子
の原子比は0.010未満であった。
It was kept at ℃ for 30 minutes. In this way, a black film-like substrate was obtained. This film-like substrate was prepared using PerkinElmer 240C
The atomic ratio of hydrogen/carbon atoms determined from elemental analysis using a type elemental analyzer is shown in Table 1, and the atomic ratio of hydrogen/carbon atoms was less than 0.010.

〔上記フィルム状基体を負極電極に用いた電池〕E上記
フィルム基体11119を負極に用いた以外は実施例1
と同様の方法で電池を構成し、実施例1と同様にして充
電した。クーロンメーター指示値で2.0クーロンの電
荷を充電した時点で充電をうちきった。
[Battery using the above film substrate as the negative electrode] E Example 1 except that the above film substrate 11119 was used as the negative electrode.
A battery was constructed in the same manner as in Example 1, and charged in the same manner as in Example 1. Charging was terminated when a charge of 2.0 coulombs was charged as indicated by the coulomb meter.

〔電池性能〕[Battery performance]

辷記充電後只ちにIKΩの抵抗を両極間につないで定抵
抗放電を実施し、両極間の電位が0.1vになる迄に放
電、した電荷量は0.92クーロンであった。
Immediately after charging, constant resistance discharge was performed by connecting an IKΩ resistor between the two electrodes, and the amount of charge discharged until the potential between the two electrodes reached 0.1 V was 0.92 coulombs.

上記の充電及び放電の操作を繰り返し実施し・、4回目
の充電量2.0クーロンに対し放電電荷量は0.60ク
ーロンであった。5回目の充電後、15時間放置して後
IKΩの定抵抗放電を実施し充電電荷量2.0クーロン
に対し放電電荷量0.31クーロンを得た。
The above charging and discharging operations were repeated, and the discharged charge amount was 0.60 coulombs compared to the fourth charge amount of 2.0 coulombs. After the fifth charge, the battery was left to stand for 15 hours, and then constant resistance discharge of IKΩ was performed to obtain a discharged charge of 0.31 coulombs for a charged charge of 2.0 coulombs.

比較例4 比較例3と同様にしてアセトン溶液からキャストしたポ
リ(a−フルオロアクリロニトリル)のフィルムを石英
製ガラス管に入れ、これを電気加熱戸にセットした。窒
素流下10℃/分の速度で180℃迄昇温した。さらに
窒素流下180℃で30分間保持した。こうして得たフ
ィルム状基体の元素分析の値から求めた水素/炭素原子
の原子比は0.59、又赤外線スペクトルから求めた吸
光度比A = Axtao−ggso / A1550
〜1m5oは、1.2であった。
Comparative Example 4 A poly(a-fluoroacrylonitrile) film cast from an acetone solution in the same manner as in Comparative Example 3 was placed in a quartz glass tube, and this was set in an electric heating door. The temperature was increased to 180°C at a rate of 10°C/min under nitrogen flow. Further, the temperature was maintained at 180° C. for 30 minutes under nitrogen flow. The atomic ratio of hydrogen/carbon atoms determined from the elemental analysis value of the film-like substrate thus obtained was 0.59, and the absorbance ratio determined from the infrared spectrum was A = Axtao-ggso / A1550.
~1m5o was 1.2.

〔上記フィルム状基体を負極電極に用いた電池〕上記フ
ィルム状基体11キを負極に用いた以外は実施例1と同
様の方法で電池を構成し、実施例1と同様にして充電し
た。クーロンメーター指示値で2.0クーロンの電荷を
充電した時点で充電をうちきった。
[Battery using the above film-like substrate as the negative electrode] A battery was constructed in the same manner as in Example 1, except that the above-mentioned film-like substrate 11 was used as the negative electrode, and charged in the same manner as in Example 1. Charging was terminated when a charge of 2.0 coulombs was charged as indicated by the coulomb meter.

〔電池性能〕[Battery performance]

上記充電後、只ちにIKΩの抵抗を両極間につないで定
抵抗放電を実施し、両極間の電位が0.IVになる迄放
電したが、放電電荷量は、0.40クーロンに寸ぎなか
った。
Immediately after the above charging, a resistor of IKΩ is connected between the two electrodes and a constant resistance discharge is performed, so that the potential between the two electrodes becomes 0. Although the battery was discharged to IV, the amount of discharged charge was less than 0.40 coulombs.

〔実施例1.2と比較例1.2の比較〕表2の1 cy
cle、 4 cycle 、 5 cycle (1
5時間放電)の充放電電荷動車のいづれも実施例1.2
は比較例1.2より高く、電池としてすぐれていること
がわかる。すなわち本発明の有機高分子系電極材料を負
極として用いた電池は、公知の活性化炭素繊維、ポリア
セチレンを負極に用いた電池よしはるかにすぐれた電池
であることがわかる。
[Comparison of Example 1.2 and Comparative Example 1.2] 1 cy in Table 2
cle, 4 cycle, 5 cycle (1
Example 1.2 of the charging/discharging electric vehicle (5 hours discharge)
is higher than Comparative Example 1.2, indicating that it is an excellent battery. That is, it can be seen that a battery using the organic polymer electrode material of the present invention as a negative electrode is far superior to a battery using known activated carbon fiber or polyacetylene as a negative electrode.

〔実施例1.2と比較例3、番の比較〕表2の1 cy
cle 、 4 cycle 、 5 cycle (
15時間放置)の充放電の電荷効率のいづれも、実施例
1.2は、比較例3.4より高く、電池としてすぐれて
いることがわかる。すなわち本発明の有機高分子系電極
材料を負極として用いた電池は、本発明の特許請求範囲
外である水素/炭素原子の原子比を有する有機高分子系
電極材料を負極として用いた電池よしすぐれた電池であ
ることがわかる。
[Comparison of numbers between Example 1.2 and Comparative Example 3] 1 cy in Table 2
cle, 4 cycle, 5 cycle (
It can be seen that the charge efficiency of Example 1.2 is higher than that of Comparative Example 3.4 in both charging and discharging charge efficiencies (after being left for 15 hours), indicating that it is an excellent battery. In other words, a battery using the organic polymer-based electrode material of the present invention as a negative electrode is superior to a battery using an organic polymer-based electrode material as a negative electrode having an atomic ratio of hydrogen/carbon atoms that is outside the scope of the claims of the present invention. It can be seen that the battery is

【図面の簡単な説明】 第1図は実施例−1で得たフィルム状基体の赤外線吸収
スペクトル図、第2図は同フィルム状基体のESRスペ
クトル図、第3図、第4図はそれぞれ実施例2で得たフ
ィルム状基体の赤外線吸収スペクトル図、ESRスペク
トル図である。 特許出願人  三菱油化株式会社 代理人 弁理士 古 川 秀 利 (ほか1名) 一彼 壺父 (cm−9 第2図
[Brief explanation of the drawings] Fig. 1 is an infrared absorption spectrum diagram of the film-like substrate obtained in Example-1, Fig. 2 is an ESR spectrum diagram of the same film-like substrate, and Figs. 2 is an infrared absorption spectrum diagram and an ESR spectrum diagram of the film-like substrate obtained in Example 2. FIG. Patent applicant Mitsubishi Yuka Co., Ltd. agent Patent attorney Hidetoshi Furukawa (and 1 other person) Ichigo Tsubochi (cm-9 Figure 2)

Claims (1)

【特許請求の範囲】 1 ポリ(α−ハロゲン化アクリロニトリル)、ポリ(
β−ハロゲン化アクリロニトリル)、ポリ(ハロゲン化
ジシアノエチレン)、ポリ(シアノアセチレン)、およ
びポリ(ジシアノアセチレン)から選ばれた1種又は2
種以上の混合物を熱焼成して得られ、水素/炭素原子の
原子比が0.010〜0.55の範囲である電極材料 2 ポリ(α−ハロゲン化アクリロニトリル)を熱焼成
して得られる特許請求範囲1項記載の電極材料
[Claims] 1. Poly(α-halogenated acrylonitrile), poly(
One or two selected from β-halogenated acrylonitrile), poly(halogenated dicyanoethylene), poly(cyanoacetylene), and poly(dicyanoacetylene)
Electrode material 2 obtained by thermally calcining a mixture of more than one species and having an atomic ratio of hydrogen/carbon atoms in the range of 0.010 to 0.55 Patent obtained by thermally calcining poly(α-halogenated acrylonitrile) Electrode material according to claim 1
JP59230293A 1984-06-12 1984-11-02 Material for electrode Pending JPS61111908A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP59230293A JPS61111908A (en) 1984-11-02 1984-11-02 Material for electrode
DE3588167T DE3588167T2 (en) 1984-06-12 1985-06-11 Secondary batteries containing pseudo-graphite produced by pyrolysis as the electrode material
EP85304139A EP0165047B1 (en) 1984-06-12 1985-06-11 Secondary batteries containing electrode material obtained by pyrolysis
US07/036,176 US4725422A (en) 1984-06-12 1987-04-08 Electrode material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59230293A JPS61111908A (en) 1984-11-02 1984-11-02 Material for electrode

Publications (1)

Publication Number Publication Date
JPS61111908A true JPS61111908A (en) 1986-05-30

Family

ID=16905544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59230293A Pending JPS61111908A (en) 1984-06-12 1984-11-02 Material for electrode

Country Status (1)

Country Link
JP (1) JPS61111908A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4888310A (en) * 1986-11-25 1989-12-19 Battelle Memorial Institute Pulverulent silicon nitride composition including oxidized silicon carbide whiskers

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5893176A (en) * 1981-11-30 1983-06-02 Toray Ind Inc Secondary battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5893176A (en) * 1981-11-30 1983-06-02 Toray Ind Inc Secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4888310A (en) * 1986-11-25 1989-12-19 Battelle Memorial Institute Pulverulent silicon nitride composition including oxidized silicon carbide whiskers

Similar Documents

Publication Publication Date Title
US8242213B2 (en) Method for manufacturing polyradical compound and battery
JP4687848B2 (en) Power storage device
JP2948205B1 (en) Method for producing negative electrode for secondary battery
KR102000101B1 (en) Gel polymer electrolyte composition, gel polymer electrolyte and electrochemical device comprising the same
KR20090093165A (en) Cathode active material and cathode and lithium battery containing the material
US8034484B2 (en) Electrochemical device and electrode active material for electrochemical device
KR101650569B1 (en) Lithium transition metal cathode active material, preparation method thereof, and lithium secondary battery comprising the same
JP7084587B2 (en) Polymers, electrode active materials and secondary batteries
KR20090088625A (en) Anode active material, method of preparing the same, and anode and lithium battery containing the material
JPH04284374A (en) Nonaqueous electrolytic secondary battery
JP2948206B1 (en) Anode materials for non-aqueous secondary batteries
WO2014120970A1 (en) Organometallic-inorganic hybrid electrodes for lithium-ion batteries
JP6814064B2 (en) Organic compounds, electrode active materials and secondary batteries using them
JPH11339778A (en) Manufacture of secondary battery negative electrode
JPS61111908A (en) Material for electrode
JP2574730B2 (en) Organic electrolyte battery
JP2562601B2 (en) Organic electrolyte battery with activated carbon-aniline composite as positive electrode
JP2920079B2 (en) Organic electrolyte battery
KR100457093B1 (en) Fabrication of a polymer electrolyte for lithium/sulfur battery and room temperature lithium/sulfur battery containing the same with one flat voltage
JP2004200122A (en) Manufacturing method of non-aqueous electrolyte secondary battery
US9882240B2 (en) Graft copolymer, process for producing the graft copolymer, process for preparing a gel polymer electrolyte including the graft copolymer, and intermediate copolymer of the graft copolymer
JP3297116B2 (en) Carbonaceous material and battery using it
JP2519454B2 (en) Organic electrolyte battery using nitrogen-containing substrate as electrode
JP2923424B2 (en) Organic electrolyte battery
JPH08124569A (en) Negative electrode methrial for lithium secondary battery and lithium secondary battery using this negative electrode metarial