JPS61167906A - Optical fiber - Google Patents
Optical fiberInfo
- Publication number
- JPS61167906A JPS61167906A JP60008891A JP889185A JPS61167906A JP S61167906 A JPS61167906 A JP S61167906A JP 60008891 A JP60008891 A JP 60008891A JP 889185 A JP889185 A JP 889185A JP S61167906 A JPS61167906 A JP S61167906A
- Authority
- JP
- Japan
- Prior art keywords
- refractive index
- core
- optical fiber
- loss
- dispersion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000013307 optical fiber Substances 0.000 title claims abstract description 29
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 31
- 238000009826 distribution Methods 0.000 claims abstract description 7
- 239000011521 glass Substances 0.000 claims abstract description 5
- 235000012239 silicon dioxide Nutrition 0.000 claims description 19
- 238000005253 cladding Methods 0.000 claims description 9
- 239000006185 dispersion Substances 0.000 abstract description 32
- 239000010453 quartz Substances 0.000 abstract description 18
- 239000011162 core material Substances 0.000 description 20
- 239000000463 material Substances 0.000 description 8
- 239000002019 doping agent Substances 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 239000000835 fiber Substances 0.000 description 6
- 230000003287 optical effect Effects 0.000 description 5
- 239000000377 silicon dioxide Substances 0.000 description 5
- 238000000034 method Methods 0.000 description 4
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 229910052731 fluorine Inorganic materials 0.000 description 3
- 239000011737 fluorine Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/102—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type for infrared and ultraviolet radiation
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は光通信に利用される0本発明は、石英系光ファ
イバであって、損失が最小となる波長約1.5μmにお
いて、極低損失でかつ伝送帯域劣化要因である色分散を
零とすることが可能な光ファイバに関する。Detailed Description of the Invention [Industrial Field of Application] The present invention is a silica-based optical fiber that is used in optical communications. The present invention relates to an optical fiber that can eliminate chromatic dispersion, which is a loss and a cause of transmission band deterioration.
本発明は1.5μ翔帯の石英系光ファイバにおいて、
そのパラメタを特定の条件に設定することにより、材料
分散と導波路分散を互いに打ち消すように設定して、
きわめて低損失の光ファイバを得るものである。In the present invention, in a 1.5 μ band silica optical fiber, by setting the parameters to specific conditions, material dispersion and waveguide dispersion are set to cancel each other out, thereby obtaining an extremely low loss optical fiber. It is something.
単一モードファイバの伝送帯域は色分散によって制限さ
れる。色分散はファイバ材料に依存する材料分散と比屈
折率差Δ、コア径2aに依存する導波路分散の和で与え
られる。ただし、コアの屈折率をn1、クラッドの屈折
率をn2とするとき、と定義される。石英系ファイバの
材料分散は波長1.3μm以上の領域で正となり、一方
4波路分散はステップ形ファイバの場合に、いわゆる単
一モード導波領域に(V<2.4)では負となるので、
それらの和で与えられる色分散を波長1.3μm以上の
長波長領域では、これを零とすることができることが明
らかにされている。ただし■は使用波長をλとするとき
、
で与えられる。具体的には1,5μm帯の零色分散はV
〜1近傍で
Δ>0.004
とすることによって実現される。The transmission band of single mode fiber is limited by chromatic dispersion. The chromatic dispersion is given by the sum of the material dispersion that depends on the fiber material, the relative refractive index difference Δ, and the waveguide dispersion that depends on the core diameter 2a. However, when the refractive index of the core is n1 and the refractive index of the cladding is n2, it is defined as follows. The material dispersion of silica-based fibers is positive in the wavelength region of 1.3 μm or more, while the four-wave path dispersion is negative in the so-called single mode waveguide region (V<2.4) in the case of step fibers. ,
It has been revealed that the chromatic dispersion given by the sum of these can be made zero in a long wavelength region of 1.3 μm or more. However, ■ is given by when the wavelength used is λ. Specifically, the zero color dispersion in the 1.5 μm band is V
This is achieved by setting Δ>0.004 in the vicinity of ~1.
文献: 1)、Tsuchiya and N、Imot。Literature: 1), Tsuchiya and N, Imot.
Dispersion free sjngle−mo
de fiber in1、5μm waveleng
th region ”Electronics Le
tters 19th July vo1、15 No
、5P、 476 (1979年)
波長1.5μm帯は石英系フレーム同期の光損失が最小
となる波長帯であるが、
Δ#0.003、2a ’;10.lJmの通常の単一
モード光ファイバの色分散は16〜20ps/nm−k
mと大きいため、超広帯域を必要とる光通信には適さな
かった。上記の1.5μm帯零分散単−モード光ファイ
バは、この欠点を補うため考案されたものであるが、G
eあるいはPビー1石英コアおよび純粋石英クラッドか
らなる従来の光ファイバでは比屈折率差Δを増加させる
ために、コアドーパントを増やしコアの屈折率を高める
方法をとっていた。その結果、光ファイバの光損失の主
要因であるレーり散乱損失がΔの増加に伴って増え、低
損失の1.55μ帯零分散ファイバは実現不可能であっ
た。レーリ散乱損失は波長オーダよりも小さい屈折率の
ゆらぎが原因で生ずるものであり、純粋石英に比べGe
をドーパントとして加えることによって増加する。Dispersion free sjngle-mo
fiber in 1, 5μm wave length
th region ”Electronics Le
tters 19th July vol1, 15 No.
, 5P, 476 (1979) The 1.5 μm wavelength band is the wavelength band where the optical loss of silica-based frame synchronization is the minimum, but Δ#0.003, 2a'; 10. The chromatic dispersion of a typical single mode optical fiber with lJm is 16-20 ps/nm-k
Because of its large diameter of m, it was not suitable for optical communications that require an ultra-wideband. The above-mentioned 1.5 μm band zero-dispersion single-mode optical fiber was devised to compensate for this drawback, but G
In conventional optical fibers made of a quartz core and a pure silica cladding, a method was used to increase the relative refractive index difference Δ by increasing the core dopant to increase the refractive index of the core. As a result, Ley scattering loss, which is the main cause of optical loss in optical fibers, increases as Δ increases, making it impossible to realize a low-loss 1.55μ band zero-dispersion fiber. Rayleigh scattering loss is caused by fluctuations in the refractive index that are smaller than the wavelength order, and compared to pure quartz, Ge
is increased by adding as a dopant.
第3図は比屈折率ΔあるいはGeのモル比に対するレー
リ散乱係数を示す。ここで、レーリ敗乱係数は波長(μ
m)の4乗を乗すると、損失値dB/に+*となる量で
定義される。波長1.55μmでの・レーリ散乱損失は
純粋石英では0.12dB/lo++であるのに対して
、Δ=0.003のGe ドープ石英では同じ< 0.
18dB/ kmとなる。FIG. 3 shows the Rayleigh scattering coefficient versus the relative refractive index Δ or the molar ratio of Ge. Here, the Lely failure coefficient is the wavelength (μ
m) is raised to the fourth power, the loss value dB/ is defined as +*. The Rayleigh scattering loss at a wavelength of 1.55 μm is 0.12 dB/lo++ for pure quartz, while it is the same for Ge-doped quartz with Δ=0.003 <0.
It becomes 18dB/km.
第3図より、Δ=0.006のGe ドープコア光ファ
イバのレーり散乱損失は0.234 dB/kmであり
、通常のΔ=0.003の単一モードGe ドープコ
ア光ファイバに比べ0.06dB/km増加する。From Figure 3, the Ley scattering loss of the Ge-doped core optical fiber with Δ=0.006 is 0.234 dB/km, which is 0.06 dB compared to the normal single-mode Ge-doped core optical fiber with Δ=0.003. /km increases.
この損失増加は0.2 dB/kmの(ffi tM失
先光ファイバは無視できない値であり、高いΔの値でか
つし一す散乱損失が増加しないドーパント材料の開発が
望まれていた。This loss increase is 0.2 dB/km (ffi tM loss optical fiber is a non-negligible value), and it has been desired to develop a dopant material that has a high value of Δ and does not increase scattering loss.
本発明は前述の欠点を解決するもので、波長1.5μ鋼
帯での低損失性を損なうことなく、零分散ファイバを実
現することを目的とする。The present invention is intended to solve the above-mentioned drawbacks, and aims to realize a zero-dispersion fiber without impairing the low loss property at a wavelength of 1.5μ steel strip.
本発明は、石英ガラスによるコアおよび屈折率が純粋石
英よりも低いドープガラスを用いたクラッドを含む光フ
ァイバにおいて、コアの屈折率分布はステップ形であり
、コア直径を2a、コアとクラッドとの間の比屈折率差
をΔ、コアの屈折率をfl1、および使用波長をλとす
るとき、λ
で与えられる規格化周波数Vが波長1.5μ…帯で0.
8〜1.1の間の値をとり、かつ
Δ > 0.004
以上に設定されたことを特徴とする。The present invention provides an optical fiber including a core made of quartz glass and a cladding made of doped glass with a refractive index lower than that of pure silica, in which the refractive index distribution of the core is step-shaped, the core diameter is 2a, and the distance between the core and the cladding is When the relative refractive index difference between them is Δ, the refractive index of the core is fl1, and the wavelength used is λ, the normalized frequency V given by λ is 0.
It is characterized by taking a value between 8 and 1.1 and setting Δ > 0.004 or more.
このようなパラメータの設定を行うことにより、色分散
と導波路分散とを相互に打ち消して零分散を実現する。By setting such parameters, chromatic dispersion and waveguide dispersion cancel each other out to realize zero dispersion.
第1図は本発明実施例光ファイバの径方向の屈折率分布
を示す図である。Cは着信でありコア1の部分およびク
ラッド2の部分は、その屈折率ができるだけステップ状
に変化するように調整され、屈折率差Δについては上述
の条件をとる。FIG. 1 is a diagram showing the radial refractive index distribution of an optical fiber according to an embodiment of the present invention. C is an incoming signal, and the core 1 portion and the cladding 2 portion are adjusted so that their refractive indexes change as step-like as possible, and the above-mentioned conditions are applied to the refractive index difference Δ.
第2図は本発明実施例光ファイバの径方向の屈折率分布
を示す図であり、この例では外側に石英ジャケット3を
備えている。FIG. 2 is a diagram showing the radial refractive index distribution of an optical fiber according to an embodiment of the present invention, and in this example, a quartz jacket 3 is provided on the outside.
第3図から明らかなように、純粋石英はレーリ差がドー
プ石英に比べて小さいことから、これをコア材に用いる
ことによってレーリ差の低減が可能である。この場合に
は、クラッドに屈折率を下げるためのドーパントが必要
となる。そのためのドーパントとしてはフッ素(F)あ
るいはボロン(B)が考えられるが、波長1μm以上の
長波長帯で8203ド一プ石英は吸収損失が生ずるため
、それがないフッ素がドーパントとしては適当である。As is clear from FIG. 3, since pure quartz has a smaller Ley difference than doped quartz, the Ley difference can be reduced by using pure quartz as the core material. In this case, a dopant is required in the cladding to lower the refractive index. Fluorine (F) or boron (B) can be considered as a dopant for this purpose, but since 8203 doped quartz causes absorption loss in the long wavelength range of 1 μm or more, fluorine, which does not have this, is suitable as a dopant. .
フッ素はゲルマニウム(Ge )に比べて少量のドープ
量で同等の屈折率差を形成することができ、その量は約
173である。また分子構造の相違によリフノ素ドープ
石英は、ゲルマニウムドープ石英に比べてレーリ散乱の
原因となる屈折率ゆらぎが本質的に少ない。以上2つの
理由でフッ素ドープ石英のレーり散乱は純粋石英とほぼ
等しくなり、比屈折率差Δを大きくした場合にもレーリ
散乱は増加しない。ちなみに波長1.55μmでのレー
リ散乱損失は0.12dB/kmである。Fluorine can form an equivalent refractive index difference with a smaller doping amount than germanium (Ge), and the amount is about 173. Furthermore, due to the difference in molecular structure, rifno-doped quartz has essentially less refractive index fluctuation, which causes Rayleigh scattering, than germanium-doped quartz. For the above two reasons, the Rayleigh scattering of fluorine-doped quartz is almost equal to that of pure quartz, and even when the relative refractive index difference Δ is increased, the Rayleigh scattering does not increase. Incidentally, the Rayleigh scattering loss at a wavelength of 1.55 μm is 0.12 dB/km.
フッ素ドープ光ファイバは、光フアイバ母材製造法とし
て広(用いられているVAD法によって以下の手順で製
作される。まずコアとなる純粋石英母材をVAD法によ
り製作しガラス化する。次に再びVAD法によってこの
母材の周辺にP−SzOzを堆積させる。第1図の例は
これを直接ガラス化した場合であり、第2図の例は寸法
合わせのためにこの上に石英ジャケット3をかぶせた後
ガラス化した場合である。Fluorine-doped optical fibers are manufactured using the VAD method, which is widely used as an optical fiber base material manufacturing method, using the following steps. First, a pure quartz base material, which serves as the core, is manufactured using the VAD method and vitrified. Next, P-SzOz is deposited around this base material again by the VAD method.The example shown in Figure 1 is a case where this is directly vitrified, and the example shown in Figure 2 is a case where a quartz jacket 3 is placed on top of this for dimension adjustment. This is the case when it is covered with glass and then vitrified.
第4図は波長1.55μ禦でのステップ形単−モードフ
ァイルの材料分散と導波路分散とコア半径aの関係を種
々の比屈折率差Δに対して示している。FIG. 4 shows the relationship between material dispersion, waveguide dispersion, and core radius a of a stepped single-mode file at a wavelength of 1.55 μm for various relative index differences Δ.
比屈折率差Δの増加に伴って導波路分散は増加し、Δ>
0.004
では再分散の和を零とすることが可能であることがわか
る。第5図には零分散が実現できるaとΔを波長1.4
〜1,6μmに対して示している。図中の破線は第一高
次モードのカットオフを表しており、破線より下側は単
一モード導波領域である。As the relative refractive index difference Δ increases, the waveguide dispersion increases, and Δ>
It can be seen that at 0.004, it is possible to make the sum of redispersion zero. Figure 5 shows a and Δ that can achieve zero dispersion at a wavelength of 1.4.
Shown for ~1,6 μm. The broken line in the figure represents the cutoff of the first higher-order mode, and the area below the broken line is the single mode waveguide region.
したがってaおよびΔはこの単一モード導波頭域・で各
零分散波長に対する値を選べばよい。Therefore, values for a and Δ can be selected for each zero-dispersion wavelength in this single mode waveguide area.
第5図よりλ〉1.5μlで零分散を実現するためには
、Δ>0.004とすることが必要であり、このときの
■の値は前記Vの定義に、使用波長λと、第5図から得
られる比屈折率Δ、およびコア半径aを代入することに
より、0.8〜1.1が得られる。From FIG. 5, in order to achieve zero dispersion when λ>1.5 μl, it is necessary to set Δ>0.004, and the value of ■ in this case is based on the definition of V above, and the wavelength used λ By substituting the relative refractive index Δ obtained from FIG. 5 and the core radius a, 0.8 to 1.1 is obtained.
以上説明したように、本光ファイバは、石英系光ファイ
バの損失が最小となる波長1.5μm帯において波長分
散を零とすることが可能であり、かつ従来のこの種の1
.5μm帯零分散光ファイバに比べて損失を0.1 d
B/km以上低減し、低い比屈折率Δの光ファイバと同
等の損失0.12dB/kmまで低減できる。したがっ
て、本発明による光ファイバは超広帯域、超低損失であ
り、長距離無中継超大容量光通信用伝送路として将来大
いに有望である。As explained above, this optical fiber can make the chromatic dispersion zero in the wavelength band of 1.5 μm, where the loss of silica-based optical fiber is minimum, and is superior to the conventional one of this type.
.. 0.1 d loss compared to 5 μm band zero dispersion optical fiber
The loss can be reduced to 0.12 dB/km, which is equivalent to an optical fiber with a low relative refractive index Δ. Therefore, the optical fiber according to the present invention has an ultra-wide band and an ultra-low loss, and is very promising as a transmission line for long-distance non-repeater ultra-high capacity optical communications in the future.
第1図および第2図は本発明実施例光ファイバの屈折率
分布を示す図。
第3図はレーリ敗乱係数と比屈折率差ΔあるいはGe
ドーパントとの関係を示す図。
第4図は分散とコア半径の関係を示す図。
第5図は零分散波長に対するコア半径と比屈折率差Δの
関係およびカヨトオフ条件を示す図。
1・・・コア、2・・・クラッド、3・・・石英ジャケ
ット。FIGS. 1 and 2 are diagrams showing refractive index distributions of optical fibers according to embodiments of the present invention. Figure 3 shows the Lely failure coefficient and the relative refractive index difference Δ or Ge
A diagram showing the relationship with dopants. FIG. 4 is a diagram showing the relationship between dispersion and core radius. FIG. 5 is a diagram showing the relationship between the core radius and the relative refractive index difference Δ with respect to the zero dispersion wavelength, and the kayak-off condition. 1... Core, 2... Clad, 3... Quartz jacket.
Claims (1)
りも低いドープガラスを用いたクラッドを含む光ファイ
バにおいて、 コアの屈折率分布はステップ形であり、 コア直径を2a、コアとクラッドとの間の比屈折率差を
Δ、コアの屈折率をn_1、および使用波長をλとする
とき、 V=(2π/λ)n_1a√(2Δ) で与えられる規格化周波数Vが波長1.5μm帯で0.
8〜1.1の間の値をとり、かつ Δ>0.004 以上に設定されたことを特徴とする光ファイバ。 ただし、クラッドの屈折率をn_2とするとき、上記比
屈折率差Δは、 Δ=(n_1−n_2)/n_2 で定義される。(1) In an optical fiber that includes a core made of silica glass and a cladding made of doped glass with a refractive index lower than that of pure silica, the refractive index distribution of the core is step-shaped, with a core diameter of 2a and a distance between the core and the cladding. When the relative refractive index difference of 0.
An optical fiber having a value between 8 and 1.1, and set to Δ>0.004 or more. However, when the refractive index of the cladding is n_2, the relative refractive index difference Δ is defined as Δ=(n_1−n_2)/n_2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60008891A JPS61167906A (en) | 1985-01-21 | 1985-01-21 | Optical fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60008891A JPS61167906A (en) | 1985-01-21 | 1985-01-21 | Optical fiber |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61167906A true JPS61167906A (en) | 1986-07-29 |
Family
ID=11705298
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60008891A Pending JPS61167906A (en) | 1985-01-21 | 1985-01-21 | Optical fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61167906A (en) |
-
1985
- 1985-01-21 JP JP60008891A patent/JPS61167906A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6999667B2 (en) | Dispersion-controlled optical fiber | |
JP4065716B2 (en) | Positive dispersion optical fiber with wide effective area | |
CA2277332C (en) | Dispersion-flattened optical fiber | |
US7043126B2 (en) | Graded-index multimode fiber and manufacturing method therefor | |
JPH0727443Y2 (en) | Silica-based single-mode optical fiber waveguide | |
US4447127A (en) | Low loss single mode fiber | |
US6879764B2 (en) | Dispersion shifted fiber having low dispersion slope | |
US6205279B1 (en) | Single mode optical fiber having multi-step core structure and method of fabricating the same | |
KR20000068867A (en) | Dispersion shift fiber | |
US20200333528A1 (en) | Optical fiber, coated optical fiber, and optical transmission system | |
JPH10501633A (en) | Optical waveguide | |
US6442320B1 (en) | Limited mode dispersion compensating optical fiber | |
JPS583205B2 (en) | Ultra-wideband single mode optical fiber | |
JP2000206355A (en) | Optical fiber with low wave-length dispersion gradient | |
JPS62297808A (en) | Dispersion shift optical fiber | |
JPH1164666A (en) | Waveguide fiber having high zero dispersion | |
JPS583206B2 (en) | Single mode optical fiber with intermediate layer | |
JPS61167906A (en) | Optical fiber | |
JP4568485B2 (en) | Single mode optical fiber and optical communication system | |
US7209620B2 (en) | Dispersion optimized fiber having higher spot area | |
JPS62116902A (en) | Wide-band low dispersion optical fiber | |
JP2003270469A (en) | Dispersion-correction fiber with high figure of merit | |
JP2002071996A (en) | Dispersion compensating optical fiber and optical fiber composite transmission line | |
JPH04362603A (en) | Low-loss optical fiber | |
JPS61264303A (en) | Single mode optical fiber for 1.5mu band |