JPS583206B2 - Single mode optical fiber with intermediate layer - Google Patents

Single mode optical fiber with intermediate layer

Info

Publication number
JPS583206B2
JPS583206B2 JP54130452A JP13045279A JPS583206B2 JP S583206 B2 JPS583206 B2 JP S583206B2 JP 54130452 A JP54130452 A JP 54130452A JP 13045279 A JP13045279 A JP 13045279A JP S583206 B2 JPS583206 B2 JP S583206B2
Authority
JP
Japan
Prior art keywords
core
refractive index
intermediate layer
cladding
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54130452A
Other languages
Japanese (ja)
Other versions
JPS5652706A (en
Inventor
岡本勝就
宮哲雄
枝広隆夫
川名明夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP54130452A priority Critical patent/JPS583206B2/en
Priority to CA361,298A priority patent/CA1124119A/en
Priority to US06/192,704 priority patent/US4372647A/en
Priority to EP80106090A priority patent/EP0026937B1/en
Priority to DE8080106090T priority patent/DE3071570D1/en
Publication of JPS5652706A publication Critical patent/JPS5652706A/en
Publication of JPS583206B2 publication Critical patent/JPS583206B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Description

【発明の詳細な説明】 本発明は、広い波長帯域における分散に基づく信号歪が
最少となる単一モード光ファイバに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a single mode optical fiber that minimizes signal distortion due to dispersion over a wide wavelength band.

単一モード光ファイバは、多モート光ファイバに比して
分散が少なく広波長帯域となっているが、材料分散およ
び導波路分散に起因する信号歪のため、自ずから使用可
能な光の波長帯域が制限される0 すなわち、光ファイバのコア内へ投射された光は、コア
とクラツドとの境界による反射を反復してコア内を伝搬
するが、光の伝搬状況を示す伝搬定数は光の角周波数に
対して非直線的に変化し、角周波数が大きくなると光伝
搬モードに高次モードが発生する。
Single mode optical fiber has less dispersion than multimode optical fiber and has a wider wavelength band, but due to signal distortion caused by material dispersion and waveguide dispersion, the usable wavelength band is naturally limited. In other words, light projected into the core of an optical fiber propagates within the core by repeating reflections at the boundary between the core and cladding, but the propagation constant that indicates the state of light propagation is determined by the angular frequency of the light. When the angular frequency increases, higher-order modes occur in the optical propagation mode.

したがって、光ファイバを単一モードとして使用する場
合には、高次モードが発生する角周波数をωCとしたと
き、0〜ωcの角周波数により使用しなければならない
Therefore, when using an optical fiber as a single mode, it must be used at an angular frequency of 0 to ωc, where ωC is the angular frequency at which a higher-order mode occurs.

また、材料分散は光ファイバを構成するガラスの屈折率
が光の波長に対し非直線的な変化を呈することにより発
生し、コアの屈折率をn1、光の波長をλ、真空中の光
速をCとするとき、単一モード光ファイバの材料分散σ
Mは次式により示される。
In addition, material dispersion occurs because the refractive index of the glass that makes up the optical fiber exhibits a nonlinear change with respect to the wavelength of light. When C, material dispersion σ of a single mode optical fiber
M is represented by the following formula.

一方、導波路分散は、伝搬定数βと光の角周波数ωとの
関係によって定まり、単一モード光ファイバの場合、導
波路分散σWは次式によって与えられる。
On the other hand, the waveguide dispersion is determined by the relationship between the propagation constant β and the angular frequency ω of light, and in the case of a single mode optical fiber, the waveguide dispersion σW is given by the following equation.

たゞし、(1),(2)式のdは微分記号である。However, d in equations (1) and (2) is a differential symbol.

なお、材料分散σMと導波路分散σWとの和が全分散σ
Tであり、伝搬の可能な光の周波数帯域幅fは次式によ
って与えられる。
Note that the sum of the material dispersion σM and the waveguide dispersion σW is the total dispersion σ
T, and the frequency bandwidth f of light that can be propagated is given by the following equation.

こゝで、コアとクラツドとの屈折率差が小さく、かつ、
両者の屈折率がステップ状に変化する従来のステップ形
単一モード光ファイバにおける分散σと光の波長λとの
関係を示せば第1図のとおりである。
Here, the refractive index difference between the core and the cladding is small, and
FIG. 1 shows the relationship between the dispersion σ and the wavelength λ of light in a conventional step type single mode optical fiber in which the refractive index of both fibers changes in a step manner.

たゞし、同図は屈折率差Δ=0.32%、コアの直径2
a=6.0μm、コアの屈折率n1=1.46319の
例であるが、同図から明らかなとおり、特定の波長にお
いて全分散σTが零となっても、他の波長においては全
分散σTが急速に増大し、(3)式に基づく周波数帯域
幅fが低下する。
However, the figure shows a refractive index difference Δ=0.32% and a core diameter of 2.
In this example, a = 6.0 μm and the refractive index of the core n1 = 1.46319, but as is clear from the figure, even if the total dispersion σT is zero at a specific wavelength, the total dispersion σT is zero at other wavelengths. increases rapidly, and the frequency bandwidth f based on equation (3) decreases.

一方 光の伝送損失がλ=1.5〜1.6μmにおいて最少と
なることが理論的、実験的に明らかとなされており(宮
、他著:EIectronLett.Vol15、pl
06、1979参照)、この波長域での全分散σTを最
少にできれば、超広帯域かつ超長距離の光伝送が実現す
る。
On the other hand, it has been theoretically and experimentally clarified that the transmission loss of light is the minimum at λ = 1.5 to 1.6 μm (Miya, et al.: EIectron Lett. Vol. 15, pl.
06, 1979), if the total dispersion σT in this wavelength range can be minimized, ultra-wideband and ultra-long distance optical transmission will be realized.

したがって、従来の単一モード光ファイバに関するこの
種の研究は、全分散σTが零となる波長λoをλ=1.
5〜1.6μmの間へ移動させることに主眼が置かれて
おり(土屋、他著:ElectronLett。
Therefore, this type of research on conventional single-mode optical fibers has focused on the wavelength λo at which the total dispersion σT is zero at λ=1.
The main focus is on moving the thickness between 5 and 1.6 μm (Tsuchiya, et al.: Electron Lett).

Vol15、p476、1979参照)、種々の成果が
示されてはいるもの5、伝送すべき波長がλ0から外れ
ると全分散σTが急激に大となり、これによって伝送可
能な光の帯域幅が制限される欠点を生ずるものであった
Vol. 15, p. 476, 1979), various results have been shown.5 However, when the wavelength to be transmitted deviates from λ0, the total dispersion σT increases rapidly, which limits the bandwidth of the light that can be transmitted. This resulted in some drawbacks.

本発明は従来のかゝる欠点を一挙に排除する目的を有し
、コアとクラッドとの間にコアおよびクラッドよりも屈
折率の小さい中間層を設け、これら相互間の屈折率差を
特定すると共に、コアの外径および中間層の厚さとコア
の半径との比を特定することにより、極めて広帯域な伝
送特性を実現した中間層付単一モード光ファイバを提供
するものである。
The present invention has the purpose of eliminating such drawbacks of the conventional technology at once, by providing an intermediate layer between the core and the cladding with a refractive index lower than that of the core and the cladding, specifying the refractive index difference between them, and By specifying the ratio of the outer diameter of the core and the thickness of the intermediate layer to the radius of the core, the present invention provides a single mode optical fiber with an intermediate layer that achieves extremely broadband transmission characteristics.

以下、実施例を示す第2図以降により本発明の詳細を説
明する。
The details of the present invention will be explained below with reference to FIG. 2 and subsequent figures showing embodiments.

第2図は断面図および各部の屈折率分布を示し、石英ガ
ラスを主成分としたコア1を包囲する同様のクラツド2
と、コア1との間にこれも石英ガラスを主成分とした中
間層3が設けてあり、コア1の屈折率をn4 層3の屈折率を03としたとき、同図下方に屈折率をn
1コア1の中心から外方への半径をrとして示すとおり
、n1よりもn2が小さく、n3はn2よりも更に小さ
く、中間層3の屈折率n3がコア1およびクラツド2の
屈折率n1,n2よりも小さいものとなっている。
Figure 2 shows a cross-sectional view and the refractive index distribution of each part.
An intermediate layer 3, which is also mainly composed of silica glass, is provided between the core 1 and the core 1, and assuming that the refractive index of the core 1 is n4 and the refractive index of the layer 3 is 03, the refractive index is shown in the lower part of the figure. n
As shown by the outward radius from the center of one core 1 as r, n2 is smaller than n1, n3 is even smaller than n2, and the refractive index n3 of the intermediate layer 3 is the refractive index n1 of the core 1 and the cladding 2. It is smaller than n2.

なお、この例では、コア1の半径をaとするとき、その
直径2aは7.2μm、中間層3の厚さtは1.0μm
、クラツド2の外径は125μmであり、クラツド2の
外径がコア1および中間層3に比して極めて太きいため
、クラツド2は破断線により示してある。
In addition, in this example, when the radius of the core 1 is a, the diameter 2a is 7.2 μm, and the thickness t of the intermediate layer 3 is 1.0 μm.
, the outer diameter of the cladding 2 is 125 μm, and since the outer diameter of the cladding 2 is extremely thick compared to the core 1 and the intermediate layer 3, the cladding 2 is shown by a broken line.

また、コア1とクラツド2との屈折率差Δ1および中間
層3とクラツド2との屈折率差Δ2は、次式によって示
される。
Further, the refractive index difference Δ1 between the core 1 and the cladding 2 and the refractive index difference Δ2 between the intermediate layer 3 and the cladding 2 are expressed by the following equation.

こゝで、第2図の場合は、コア1の屈折率n1をクラツ
ド2の屈折率n2よりも大とするため、コア1において
主成分の石英ガラスへゲルマニウムを添加すると共に、
中間層3の屈折率n3をクラツド2の屈折率n2よりも
小とさせるため、中間層3においては主成分の石英ガラ
スへフッ素を添加しているが、コア1における添加物の
ゲルマニウム店してGeO2(酸化ゲルマニウム)を用
い、GeO2のGiO2(石英ガラス)に対する比を1
0mol%とし、中間層3においてはフッ素の添加量を
4.2mol%としており、これによって、(4)式の
Δ1は1%、(5)式のΔ2は−1%となっている。
In the case of FIG. 2, in order to make the refractive index n1 of the core 1 larger than the refractive index n2 of the cladding 2, germanium is added to the quartz glass that is the main component in the core 1, and
In order to make the refractive index n3 of the intermediate layer 3 smaller than the refractive index n2 of the cladding 2, fluorine is added to the quartz glass that is the main component in the intermediate layer 3, but germanium, which is the additive in the core 1, is Using GeO2 (germanium oxide), the ratio of GeO2 to GiO2 (silica glass) is 1.
In the intermediate layer 3, the amount of fluorine added is 4.2 mol%, so that Δ1 in equation (4) is 1% and Δ2 in equation (5) is -1%.

このほか、中間層3を備えない場合および中間層3を備
えた場合の屈折率分布としては、第3図のとおり種々の
ものが考えられ、同図Aのステップ形分布、同図Bの2
乗分布、同図CのM形分布および同図DのW形分布等が
想定されるため、これらについて、伝送すべき光の周波
数と導波路分散との関係につき、単一モード光ファイバ
として検討を行なったところ第4図に示す結果が得られ
た。
In addition, various refractive index distributions can be considered as shown in Fig. 3 when the intermediate layer 3 is not provided and when the intermediate layer 3 is provided.
Since the power law distribution, the M-shaped distribution shown in C in the same figure, and the W-shaped distribution shown in D in the same figure are assumed, the relationship between the frequency of the light to be transmitted and the waveguide dispersion for these should be studied as a single mode optical fiber. When this was carried out, the results shown in FIG. 4 were obtained.

たゞし、同図は導波路分散σWと光速Cとの積による規
格化導波路分散CσWを縦軸に取り、次式によって求め
る規格化周波数Vを横軸に取って示してある。
However, in this figure, the vertical axis represents the normalized waveguide dispersion CσW, which is the product of the waveguide dispersion σW and the speed of light C, and the horizontal axis represents the normalized frequency V determined by the following equation.

また、同図のA−Dは第3図のA−Dと対応し第4図の
Eは第2図に示すΔ1とΔ2とが互に等しく、かつ、反
対極性の中間層3を用いた対称W形分布のものであり、
屈折率差Δ1およびΔ2の値はつぎのとおりである。
In addition, A-D in the same figure corresponds to A-D in FIG. 3, and E in FIG. 4 uses an intermediate layer 3 in which Δ1 and Δ2 shown in FIG. 2 are equal to each other and have opposite polarities. It has a symmetric W-shaped distribution,
The values of the refractive index differences Δ1 and Δ2 are as follows.

A−C…………Δ,=1.0% DΔ1=0.7%Δ2=−0.3%t=0.2aEΔ1
=0.5%Δ2−−0.5%t=0.3aたゾし、上述
のとおりtは中間層3の厚さ、aはコア1の半径であり
、A−Cにおいては中間層3を備えないため、Δ1のみ
となっている。
A-C…………Δ,=1.0% DΔ1=0.7%Δ2=-0.3%t=0.2aEΔ1
=0.5%Δ2−−0.5%t=0.3a, and as mentioned above, t is the thickness of the intermediate layer 3, a is the radius of the core 1, and in A-C, the intermediate layer 3 Since it is not provided with, only Δ1 is provided.

こゝで、規格化導波路分散CσWに注目するとき、第4
図のEが最も大きくカリ負方向にも変化しており、全分
散σTを材料分散σMと導波路分散σWとの相殺により
最小とするうえからは、同図Eのものすなわち第2図に
示す対称W形分布が最も有利であることが明らかである
Here, when focusing on the normalized waveguide dispersion CσW, the fourth
E in the figure is the largest and the potency also changes in the negative direction, and since the total dispersion σT is minimized by canceling out the material dispersion σM and the waveguide dispersion σW, the E in the figure is the one shown in Figure 2. It is clear that a symmetrical W-shaped distribution is the most advantageous.

第5図は、対称W形分布の単一モード光ファイバにつき
、伝送すべき光の波長λに対する各分散σの変化を示し
たものであり、λ=1.35〜1.67μmの広波長域
にわたり、全分散σTが±1ps/km/nm以内であ
ることが明らかである。
Figure 5 shows the changes in each dispersion σ with respect to the wavelength λ of the light to be transmitted for a single mode optical fiber with a symmetric W-shaped distribution, and shows the variation of each dispersion σ with respect to the wavelength λ of the light to be transmitted. It is clear that the total dispersion σT is within ±1 ps/km/nm over the entire range.

第6図は、屈折率差Δ1=1%の光ファイバにおける理
論的伝送損失(宮、他著:ElectronLett.
Vol15、p106、1979参照)Lのフオトンエ
ネルギーPEおよび光の波長λに対する変化を示し、λ
−1.32〜1.69μmの範囲では伝送損失Lが0.
5dB/km以下に保たれる。
FIG. 6 shows the theoretical transmission loss in an optical fiber with a refractive index difference Δ1=1% (Miya, et al.: Electron Lett.
Vol 15, p 106, 1979) shows the change in photon energy PE of L and the wavelength λ of light, and λ
In the range of -1.32 to 1.69 μm, the transmission loss L is 0.
It is kept below 5dB/km.

したがって、第2図に示す構成のものが超広帯域かつ超
長距離伝送用として、極めて有効であることが明らかと
なる。
Therefore, it is clear that the configuration shown in FIG. 2 is extremely effective for ultra-wideband and ultra-long distance transmission.

下表は、かゝる事実に基づき、電子計算機を用いたシミ
ュレーションにより、屈折率差Δ1,Δ2の変化に対応
するコア1の直径2a1中間層3の厚さtとコア1の半
径aとの比および全分散σTが±ps/km/nm以下
となる波長範囲λbを求めたものであり、これらの各値
を用いることにより広い波長範囲λbを得ることができ
る。
Based on these facts, the table below shows the relationship between the diameter 2a of the core 1, the thickness t of the intermediate layer 3, and the radius a of the core 1, which correspond to changes in the refractive index differences Δ1 and Δ2. The wavelength range λb in which the ratio and total dispersion σT are ±ps/km/nm or less is determined, and by using these values, a wide wavelength range λb can be obtained.

第7図乃至第9図は、前表と同様に全分散σT、高次モ
ードの発生する波長λcおよびコア1の直径2a等の相
互関係、ならびに伝送損失が0.5dB/km以下の範
囲を求め、波長λおよびコア1の直径2aを縦軸に取っ
て示した図であり、全分散σTが±1ps/km/nm
以下となる範囲はσTuおよびσTdにより示され、伝
送揃失が0.5dB/kmとなる限界はLuおよびLd
によって示されており、単一モードであると共に全分散
σTが±1ps/km/nm以下かつ伝送損失が0.5
dB/km以下の条件とするには、同図に斜線で示した
範囲内であればよいことが明らかであり、これによって
使用可能な波長λの帯域が示される。
As in the previous table, Figures 7 to 9 show the interrelationships among the total dispersion σT, the wavelength λc where higher-order modes occur, the diameter 2a of the core 1, etc., and the range where the transmission loss is 0.5 dB/km or less. It is a diagram showing the wavelength λ and the diameter 2a of the core 1 on the vertical axis, and the total dispersion σT is ±1 ps/km/nm.
The following range is indicated by σTu and σTd, and the limit where the transmission loss is 0.5 dB/km is Lu and Ld.
It is a single mode, the total dispersion σT is ±1 ps/km/nm or less, and the transmission loss is 0.5.
It is clear that the condition of dB/km or less can be achieved within the shaded range in the figure, which indicates the usable wavelength λ band.

たゞし、第7図はΔ1=1.0%、t/a=0.3に固
定のうえ、Δ2を横軸に取り変数とし、第8図はΔ2=
−1.0%、t/a=0.3に固定のうえ、Δ1を変数
とし、第9図はΔ1=1.0%、Δ2=−1.0%に固
定のうえ、t/aを変数としており、これらの図によっ
て、各条件におけるΔ1、Δ2等が求められると共に、
コア1の直径2aを示す曲線2aから具体的な直径値が
求められる。
However, in Figure 7, Δ1 = 1.0%, t/a = 0.3 are fixed, and Δ2 is taken as a variable on the horizontal axis, and in Figure 8, Δ2 =
-1.0%, t/a = 0.3, and Δ1 is a variable. Figure 9 shows Δ1 = 1.0%, Δ2 = -1.0%, and t/a as a variable. These figures are used to calculate Δ1, Δ2, etc. under each condition, and
A specific diameter value is determined from a curve 2a showing the diameter 2a of the core 1.

したがって、波長λ−1.5μm近傍の光を主として伝
送するには、上表に示したとおりΔ1=1.0〜1.5
%、Δ2=−0.5〜−1.0%が好適となるが、条件
によっては第7図乃至第9図からΔ1,Δ2を求め、こ
れに応じて前表により示されるとおり、波長範囲λbが
少なくとも1.54〜1,55μmの全域において全分
散σTが1ps/km/nm以下となる様に2a、t/
aを定めればよく、これによって超広帯域の単一モード
光ファイバが得られる。
Therefore, in order to mainly transmit light with a wavelength of around λ-1.5 μm, Δ1=1.0 to 1.5 as shown in the table above.
%, Δ2 = -0.5 to -1.0%, but depending on the conditions, Δ1, Δ2 may be obtained from Figures 7 to 9, and the wavelength range determined accordingly as shown in the previous table. 2a, t/ so that the total dispersion σT is 1 ps/km/nm or less over the entire range where λb is at least 1.54 to 1.55 μm.
It is only necessary to determine a, and thereby an ultra-wideband single mode optical fiber can be obtained.

なお、許容全分散σTを±1ps/km/nmより大と
し、かつ、許容伝送損失Lも0.5dB/kmより大と
すれば、より広帯域の光伝送が行なわれることは勿論で
ある。
Note that, of course, if the allowable total dispersion σT is made larger than ±1 ps/km/nm and the allowable transmission loss L is also made larger than 0.5 dB/km, optical transmission over a wider band can be performed.

以上の説明により明らかなとおり本発明によれば、石英
系光ファイバの伝送損失が最低となる1.5μm近傍の
波長を含む広帯域において、全分散を±1ps/km/
nm以下とすることができるため、WDM(波長多重)
により超広帯域かつ超長距離伝送を行なうことができる
As is clear from the above description, according to the present invention, the total dispersion can be reduced to ±1 ps/km/
WDM (wavelength division multiplexing)
This enables ultra-wideband and ultra-long distance transmission.

また、クラツドよりも屈折率の小さい中間層を備えてい
るため、クラツド側への光の漏洩が少ないと共に、光フ
ァイバの湾曲による曲げ損失およびマイクロベンデング
損失が減少する等の利点を有し、各種の光伝送用として
顕著な効果を呈する。
In addition, since it has an intermediate layer with a lower refractive index than the cladding, it has the advantage that there is less light leakage to the cladding side, and bending loss and microbending loss due to bending of the optical fiber are reduced. It exhibits remarkable effects for various optical transmission applications.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の単一モード光ファイバにおける分散と光
の波長との関係を示す図、第2図は本発明の実施例を示
す光ファイバの断面図および屈折率分布図、第3図は種
々の屈折率分布を示す図、第4図は第2図および第3図
に示すものの導波路分散と、光の周波数との関係を示す
図、第5図は第2図に示すものゝ各分散と光の波長との
関係を示す図、第6図は計算による伝送損失と光の波長
およびフオトンエネルギーとの関係を示す図、第7図乃
至第9図はシミュレーションによって求めた光の波長に
対する屈折率差、コアの直径および中間層の厚さとコア
の半径との比等の関係を示す図である。 1……コア、2……クラット、3……中間層、n1……
コアの屈折率、n2……クラツドの屈折率、n3……中
間層の屈折率、2a……コアの直径、Δ1,Δ2……屈
折率差。
Fig. 1 is a diagram showing the relationship between dispersion and wavelength of light in a conventional single mode optical fiber, Fig. 2 is a cross-sectional view and refractive index distribution diagram of an optical fiber showing an embodiment of the present invention, and Fig. 3 is a diagram showing the relationship between dispersion and wavelength of light in a conventional single mode optical fiber. Figures showing various refractive index distributions; Figure 4 is a diagram showing the relationship between waveguide dispersion and light frequency for those shown in Figures 2 and 3; Figure 5 is for those shown in Figure 2. Figure 6 is a diagram showing the relationship between dispersion and wavelength of light, Figure 6 is a diagram showing the relationship between calculated transmission loss, wavelength of light, and photon energy, Figures 7 to 9 are wavelengths of light determined by simulation. FIG. 3 is a diagram showing the relationship between the refractive index difference, the core diameter, the ratio of the thickness of the intermediate layer, and the radius of the core. 1...Core, 2...Crat, 3...Middle layer, n1...
refractive index of core, n2... refractive index of cladding, n3... refractive index of intermediate layer, 2a... diameter of core, Δ1, Δ2... refractive index difference.

Claims (1)

【特許請求の範囲】 1 コアとクラツドとの間に該コアおよびクラットより
も屈折率の小さい中間層を設け、前記コアとクラツドと
の屈折率差を1.0〜1.5%とし、かつ、中間層と前
記クラツドとの屈折率差を−0.5〜−1.0%にする
と共に、少なくとも1.54〜1.55μmの波長範囲
において全分散が±1ps/km/nm以下となる様に
前記各屈折率差に応じて定められた前記コアの外径およ
び前記中間層の厚さと前記コアの半径との比を備えたこ
とを特徴とする中間層付単一モード光ファイバ。 2 コアの屈折率をクラツドの屈折率よりも大とするた
め主成分の石英ガラスへゲルマニウムを添加した前記コ
アを用いると共に、中間層の屈折率を前記クラットより
も小さくさせるため主成分の石英ガラスへフッ素を添加
した前記中間層を用いたことを特徴とする特許請求の範
囲第1項記載の中間層付単一モード光ファイバ。
[Scope of Claims] 1. An intermediate layer having a refractive index lower than that of the core and the cladding is provided between the core and the cladding, and the difference in refractive index between the core and the cladding is 1.0 to 1.5%, and , the refractive index difference between the intermediate layer and the cladding is set to -0.5 to -1.0%, and the total dispersion is at most ±1 ps/km/nm in the wavelength range of at least 1.54 to 1.55 μm. A single mode optical fiber with an intermediate layer, characterized in that the outer diameter of the core and the ratio of the thickness of the intermediate layer to the radius of the core are determined according to the respective refractive index differences. 2 In order to make the refractive index of the core larger than the refractive index of the cladding, the core is made by adding germanium to the quartz glass that is the main component, and the quartz glass that is the main component is used to make the refractive index of the intermediate layer smaller than that of the cladding. 2. The single mode optical fiber with an intermediate layer according to claim 1, wherein the intermediate layer is doped with fluorine.
JP54130452A 1979-10-08 1979-10-08 Single mode optical fiber with intermediate layer Expired JPS583206B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP54130452A JPS583206B2 (en) 1979-10-08 1979-10-08 Single mode optical fiber with intermediate layer
CA361,298A CA1124119A (en) 1979-10-08 1980-10-01 Single mode optical fibers
US06/192,704 US4372647A (en) 1979-10-08 1980-10-01 Single mode optical fibers
EP80106090A EP0026937B1 (en) 1979-10-08 1980-10-07 Single mode optical fibers
DE8080106090T DE3071570D1 (en) 1979-10-08 1980-10-07 Single mode optical fibers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54130452A JPS583206B2 (en) 1979-10-08 1979-10-08 Single mode optical fiber with intermediate layer

Publications (2)

Publication Number Publication Date
JPS5652706A JPS5652706A (en) 1981-05-12
JPS583206B2 true JPS583206B2 (en) 1983-01-20

Family

ID=15034564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54130452A Expired JPS583206B2 (en) 1979-10-08 1979-10-08 Single mode optical fiber with intermediate layer

Country Status (1)

Country Link
JP (1) JPS583206B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6023321B2 (en) * 1980-07-14 1985-06-07 日本電信電話株式会社 Index grooved single mode optical fiber
US4435040A (en) * 1981-09-03 1984-03-06 Bell Telephone Laboratories, Incorporated Double-clad optical fiberguide
JPS607407A (en) * 1983-06-28 1985-01-16 Sumitomo Electric Ind Ltd Optical fiber and its manufacture
JP3409935B2 (en) * 1995-01-13 2003-05-26 富士通株式会社 Single mode optical fiber, method of manufacturing the same, and optical fiber transmission line
FR2788138B1 (en) * 1999-01-04 2001-03-30 Cit Alcatel OPTICAL FIBER WITH LOW CHROMATIC DISPERSION SLOPE
CA2680395C (en) * 2007-03-15 2015-06-02 Liekki Oy Optical fiber structure and a method of producing thereof
JP5867076B2 (en) * 2011-12-28 2016-02-24 住友電気工業株式会社 Multi-core optical fiber

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4976538A (en) * 1972-11-25 1974-07-24
JPS4990145A (en) * 1972-12-27 1974-08-28
JPS5015565A (en) * 1973-06-07 1975-02-19
JPS50131535A (en) * 1974-04-03 1975-10-17

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4976538A (en) * 1972-11-25 1974-07-24
JPS4990145A (en) * 1972-12-27 1974-08-28
JPS5015565A (en) * 1973-06-07 1975-02-19
JPS50131535A (en) * 1974-04-03 1975-10-17

Also Published As

Publication number Publication date
JPS5652706A (en) 1981-05-12

Similar Documents

Publication Publication Date Title
JP3320745B2 (en) Dispersion flat optical fiber
US6999667B2 (en) Dispersion-controlled optical fiber
JP3760557B2 (en) Dispersion compensating fiber and optical transmission system including the same
US6275638B1 (en) Dispersion-shifted fiber
US4402570A (en) Triple minimum dispersion wavelengths for a high NA single-mode step-index fiber
US5732178A (en) Single-mode optical fiber
JPS6252508A (en) Optical fiber
US6603913B1 (en) Single-mode optical fiber having multiple cladding regions for dispersion compensation
KR20010101071A (en) Optical fiber and optical transmission system including the same
EP1037074A1 (en) Dispersion-shifted optical fiber
JPS583205B2 (en) Ultra-wideband single mode optical fiber
JPS583206B2 (en) Single mode optical fiber with intermediate layer
JP2001264568A (en) Mono-mode optical fiber for optical fiber transmission network provided with wavelength division multiplexing
JP2004530938A (en) Optical fiber
JP2001296444A (en) Dispersion compensating optical fiber, optical transmission line and dispersion compensating module
KR20040034588A (en) Fiber profile for achieving very high dispersion slope
JP2002082250A (en) Low non-linear single mode optical fiber
JPH10228040A (en) Optical fiber for light source
JP2005196231A (en) Optical transmission system
US5031989A (en) Optical filter coupler
JPS5831566B2 (en) low-order mode optical fiber
US7209620B2 (en) Dispersion optimized fiber having higher spot area
JPH09258054A (en) Dispersion shift fiber
JP2003255170A (en) Dispersion compensating optical fiber and dispersion compensating optical fiber module
KR19990057673A (en) Single mode fiber