JPS61167873A - Shield resistance voltage divider - Google Patents

Shield resistance voltage divider

Info

Publication number
JPS61167873A
JPS61167873A JP60007151A JP715185A JPS61167873A JP S61167873 A JPS61167873 A JP S61167873A JP 60007151 A JP60007151 A JP 60007151A JP 715185 A JP715185 A JP 715185A JP S61167873 A JPS61167873 A JP S61167873A
Authority
JP
Japan
Prior art keywords
voltage
resistor
electrostatic capacity
ring
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60007151A
Other languages
Japanese (ja)
Inventor
Osamu Kawabata
理 川畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP60007151A priority Critical patent/JPS61167873A/en
Publication of JPS61167873A publication Critical patent/JPS61167873A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

PURPOSE:To suppress high-frequency oscillation and to measure an impulse voltage with a sharp waveform without any distortion by providing a shield ring, damping resistor, voltage dividing resistor, etc. CONSTITUTION:The voltage dividing resistor 11 has distributed electrostatic capacity. The shield ring 9 has ground electrostatic capacitor CS and also has coupling electrostatic capacity CC to a voltage application terminal 12 and distributed electrostatic capacity Csg to the resistor 11. Then, the size of the terminal 12 is reduced to reduce the electrostatic capacity CC, and the damping resistor 10 is provided to suppress efficiently the high-frequency oscillation based upon the inductance LS of an application wire 22 and the resonance of the electrostatic capacity CS of the ring 9. The earth potential of the ring 9 is made lower than the terminal voltage across the resistor 11 by the resistor 10 and a charging current which flows to the ground is generated. Accordingly, the size and position of the ring 9 are determined so that the earth distributed electrostatic capacity of the resistor 11 is uniform at respective parts, thereby shortening a response time.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は、雷インパルス電圧、裁断波電圧など波形の立
上シ立下シが急しゅんな高電圧のパルス電圧を測定する
のに用いられるシールド抵抗分圧器の構造に関する。
[Detailed description of the invention] [Technical field to which the invention pertains] The present invention is used to measure high-voltage pulse voltages such as lightning impulse voltages and cutting wave voltages whose waveforms have sharp rises and falls. Concerning the structure of a shielded resistor voltage divider.

〔従来技術とその問題点〕[Prior art and its problems]

この種の分圧器においては、数10001CV にも及
ぶ高電圧パルスを波形観測に好適彦数100v以下の電
圧に分圧するために、高電圧に耐える絶縁構造ならびに
電圧波形を歪みなく検出するための高い高周波応答特性
とが求められる。
In this type of voltage divider, in order to divide high voltage pulses of several tens of thousand CV into voltages of several hundred volts or less suitable for waveform observation, an insulating structure that can withstand high voltages and a high High frequency response characteristics are required.

第3図は従来の抵抗分圧器の原理的説明図であシ、地上
に垂直に支承された分圧抵抗体11は、下端が接地され
るとともに、上端部には電圧印加端子12が、下端部近
傍には測定端子13が設けられ、印加電圧V (t、)
を所定の抵抗分圧比に基づいて測定電圧V!(t)K分
圧して測定端子13に接続された計測回路に出力するよ
う構成されている。
FIG. 3 is a principle explanatory diagram of a conventional resistance voltage divider. A voltage dividing resistor 11 supported vertically on the ground is grounded at its lower end, has a voltage application terminal 12 at its upper end, and has a voltage application terminal 12 at its lower end. A measurement terminal 13 is provided near the section, and the applied voltage V (t,)
The measured voltage V! is based on a predetermined resistor voltage division ratio. (t) It is configured to divide the voltage into K and output it to the measurement circuit connected to the measurement terminal 13.

ところが、分圧抵抗体11は大地に対して単位高さds
あた1)Ct・daなる分布対地静電容量を持ζかつそ
の値が測定端子13側で大きく、電圧印加端子12側で
、小さい不平等分布となるために、分圧抵抗体11の各
部からCf・dgを介して大地側に流れる充電電流によ
り高周波応答特性が低下し、直角波V (t)を印加し
た場合においても測定端子13側では波頭の鈍った電圧
Vd(t)Lか観測できないという問題点がある。
However, the voltage dividing resistor 11 has a unit height ds with respect to the ground.
At 1) Each part of the voltage dividing resistor 11 has a distributed capacitance to ground of Ct・da, and its value is large on the measurement terminal 13 side, and small on the voltage application terminal 12 side, with an unequal distribution. The high frequency response characteristics deteriorate due to the charging current flowing from Cf・dg to the ground side, and even when a right-angle wave V(t) is applied, a voltage Vd(t)L with a blunted wavefront is observed on the measurement terminal 13 side. The problem is that it cannot be done.

第4図は従来のシールド抵抗分圧器の原理的な説明図で
あシ、自立形のシールド抵抗分圧器の一例を示したもの
である6図において、分圧抵抗体11は筒状の絶縁容器
1に収納されておシ、絶縁容器1は架台2により垂直に
支持されるとともへその上端部には電圧印加端子12を
備えた大き々頭部金具3′が設けられておシ、頭部金具
3から放射状に突設された金j!製の支持アー14を介
してシールドリンク5が絶縁容器1にほぼ同心状に支持
されるよう構成されている。上述のように構成されたシ
ールド抵抗分圧器においては、シールドリンク5と分圧
抵抗体11との間に分布静電容量Ca−dzが形成され
、CM @ d#  を介して分圧抵抗体11に供給さ
れる充電電流により第3図における対地分布静電容量C
f・dsを介して大地に流れる充を電流が補償されると
ともに、シールドリング50対地静電容量C1を介して
流れる充電電流により分圧抵抗体11近傍の電位分布が
準平等電界化されることにより、分圧抵抗体11に対す
る対地分布静電容量Cf・daの影響が低減され、分圧
器の高周波応答特性を改善することができる。ところが
、このシールド抵抗分圧器全印加線22を介してインパ
ルス電圧発生器21に接続し、発生器210発生インパ
ルス電圧を測定しようとする場合、印加線22の持つイ
ンダクタンスL#とシールドリング50対地静電容量C
8およびインパルス電圧発生器21とからなる共振回路
が形成され、測定端子13から出力される測定インパル
ス電圧波形に高周波振動電圧が重畳するという問題が発
生し、電圧波形の観測に支障を及ぼすという欠点がある
Figure 4 is an explanatory diagram of the principle of a conventional shielded resistor voltage divider. In Figure 6, which shows an example of a self-supporting shielded resistor voltage divider, the voltage dividing resistor 11 is a cylindrical insulating container. 1, the insulating container 1 is vertically supported by a stand 2, and a large head fitting 3' equipped with a voltage application terminal 12 is provided at the upper end of the umbilicus. Metal j protrudes radially from the metal fitting 3! The shield link 5 is supported substantially concentrically with the insulating container 1 via a support arm 14 made of a metal. In the shield resistance voltage divider configured as described above, a distributed capacitance Ca-dz is formed between the shield link 5 and the voltage dividing resistor 11, and the voltage dividing resistor 11 is connected to the voltage dividing resistor 11 via CM@d#. Due to the charging current supplied to the ground distribution capacitance C in Figure 3,
The current is compensated for the charge flowing to the ground via f・ds, and the potential distribution near the voltage dividing resistor 11 is made into a quasi-equal electric field due to the charging current flowing via the ground capacitance C1 of the shield ring 50. As a result, the influence of the ground distributed capacitance Cf·da on the voltage dividing resistor 11 is reduced, and the high frequency response characteristics of the voltage divider can be improved. However, when connecting the shielded resistance voltage divider to the impulse voltage generator 21 through the entire application line 22 and measuring the impulse voltage generated by the generator 210, the inductance L# of the application line 22 and the shield ring 50 relative to the ground Capacity C
8 and the impulse voltage generator 21, a problem arises in that a high frequency oscillating voltage is superimposed on the measurement impulse voltage waveform output from the measurement terminal 13, which impedes observation of the voltage waveform. There is.

〔発明の目的〕[Purpose of the invention]

本発明は前述の状況に鑑みて々されたもので、高周波振
動が抑制され、急しゅんな波形のインパルス電圧を歪な
く測定できるシールド抵抗分圧器を提供することを目的
とする。
The present invention was devised in view of the above-mentioned situation, and an object of the present invention is to provide a shielded resistance voltage divider that suppresses high-frequency vibrations and can measure impulse voltages with steep waveforms without distortion.

〔発明の要点〕[Key points of the invention]

本発明は、分圧抵抗体を収納した筒状の絶縁容器の絶縁
材からなる上部蓋板のほぼ中央部に前記分圧抵抗体に導
電接続された小形の電圧印加端子を設けるとともに、絶
縁容器の上端部分から放射状に突設された筒状の絶縁ア
ームにより−ルドリンクを絶縁容器にほぼ同心状に絶縁
支持し、前記絶縁アームに内設され両端が分圧抵抗体の
電圧印加端側およびシールドリングに導電接続された制
動抵抗体を設けるよう構成したことkよシ、印加線のイ
ンダクタンスとシールドリングの対地静電容量との間に
制動抵抗体が挿入されかつ電圧印加端子を小形化して制
動抵抗体の並列静容量を低減したことにより印加電圧の
高周波振動を効果的に抑制できるようkしたものである
The present invention provides a small voltage application terminal conductively connected to the voltage dividing resistor at approximately the center of an upper cover plate made of an insulating material of a cylindrical insulating container housing a voltage dividing resistor, A cylindrical insulating arm projecting radially from the upper end portion supports the lead link in an almost concentric manner insulatingly in the insulating container. In addition to the structure in which a braking resistor is conductively connected to the shield ring, the braking resistor is inserted between the inductance of the application line and the ground capacitance of the shield ring, and the voltage application terminal is miniaturized. By reducing the parallel static capacitance of the braking resistor, high frequency vibrations of the applied voltage can be effectively suppressed.

〔発明の実施例〕[Embodiments of the invention]

以下本発明を一実施例に基づいて説明する。 The present invention will be explained below based on one embodiment.

第1図は本発明のシールド抵抗分圧器の実施例を示す概
略側断面図である0図において、1は合成樹脂パイプあ
るいは繊維強化プラスチツクパイプなどからなる筒状の
絶縁容器であシ、底部は架台2に固定されて垂直に支持
され、上端部は中央部に電圧印加端子12を備えた絶縁
材からカる蓋板6VCよって閉鎖されている。11は絶
縁容器1のほぼ中央部に収納された無誘導形巻線抵抗、
炭素皮膜抵抗などからなる分圧抵抗体であり、上端部は
電圧印加端子12に、下端部は接地端子14にそれぞれ
導電接続されるとともに、所定の分圧比が得られるよう
高圧側11A、検出側11BK区分された抵抗体の所定
位置Aが測定端子13に導電接続されるととKよシ抵抗
分圧器の本体が形成されている。また7は絶縁容器1の
上端部近傍から放射状に突設された筒状の絶縁アームで
あシ、複数の絶縁アームの先端部はシールドリンク9に
連結されてシールドリンク9を絶縁容器1にほぼ同心状
Kl!!!縁支持するよう形成されている。 7Fi一
つの絶縁アーム71に収納された制動抵抗体であシ、−
万端は電圧印加端子12に、他方端はシールドリング9
にそれぞれ導電接続されている。
FIG. 1 is a schematic side sectional view showing an embodiment of the shielded resistance voltage divider of the present invention. In FIG. It is fixed to the pedestal 2 and supported vertically, and its upper end is closed by a cover plate 6VC made of an insulating material and provided with a voltage application terminal 12 in the center. 11 is a non-inductive wire-wound resistor housed approximately in the center of the insulating container 1;
It is a voltage dividing resistor made of a carbon film resistor, etc., and its upper end is conductively connected to the voltage application terminal 12, and its lower end is conductively connected to the ground terminal 14, and is connected to the high voltage side 11A and the detection side so as to obtain a predetermined voltage division ratio. When a predetermined position A of the resistor divided into 11BK is conductively connected to the measurement terminal 13, the main body of a resistance voltage divider is formed. Reference numeral 7 designates cylindrical insulating arms that protrude radially from near the upper end of the insulating container 1. The tips of the plurality of insulating arms are connected to the shield link 9, and the shield link 9 is attached to the insulating container 1 approximately. Concentric Kl! ! ! Configured for edge support. 7Fi A braking resistor housed in one insulating arm 71, -
One end is connected to the voltage application terminal 12, and the other end is connected to the shield ring 9.
are conductively connected to each other.

第2図は第1図で示されるシールド抵抗分圧器の機能を
説明するための接続図であシ、各部の漂遊静電容量を集
中定数として併記したものである。
FIG. 2 is a connection diagram for explaining the function of the shielded resistance voltage divider shown in FIG. 1, and also shows the stray capacitance of each part as a lumped constant.

図において、21はインパルス電圧発生器であシ、印加
11122によりミ圧印加端子12に接続され、測定端
子側は整合抵抗を備えた測定ケーブル23を介して波形
観測装置24に接続されている。このように構成された
インパルス電圧測定回路において、分圧抵抗体11は第
1図についてずでに説明した分布静電容量Cy@(lt
xを有しておシ、抵抗体11の全抵抗値をRis全分布
静電容量をCtとした場合その直角波応答時間TはT=
−fRf−Cfで表わされるようが特性を有している。
In the figure, reference numeral 21 denotes an impulse voltage generator, which is connected to the voltage application terminal 12 through an application 11122, and whose measurement terminal side is connected to a waveform observation device 24 via a measurement cable 23 equipped with a matching resistor. In the impulse voltage measuring circuit configured in this way, the voltage dividing resistor 11 has the distributed capacitance Cy@(lt
x, the total resistance value of the resistor 11 is Ri, and the total distributed capacitance is Ct, then the square wave response time T is T=
It has a characteristic as expressed by -fRf-Cf.

一方絶縁アーム7によって支持され制動抵抗体10を介
して電圧印加端子に導電接続されたシールドリンク9は
、対地静電容量Cmを有するとともに、電圧印加端子に
対するCaなる結合静電容器と分圧抵抗体11に対する
Cap々る分布静電容量を有する。
On the other hand, the shield link 9 supported by the insulating arm 7 and conductively connected to the voltage application terminal via the braking resistor 10 has a ground capacitance Cm, and has a coupling capacitance container Ca and a voltage dividing resistor to the voltage application terminal. The capacitance has a distributed capacitance of 11.

゛ 前述の実施例においては、第3図で示される従来の
シールド哲抗分圧器における頭部金具3や支持アーム4
などの大きな高電圧充電部を排除して電圧印加端子12
を小形に形成したことにより、電圧印加端子12を含む
電圧印加端子部分とシールドリンク9との間の結合静電
容量CC1いい替えれば制動抵抗体10の並列静電容量
を大幅に低減することができ、したがって数10〜数1
00Ω程度の抵抗値の制動抵抗体10を設けることによ
り印加線22のインダクタンスLm及びシールドリング
9の対地静電容量C#の共振に基づく高周波振動を効率
よく抑制することができる。
゛ In the above-mentioned embodiment, the head fitting 3 and the support arm 4 of the conventional shield voltage divider shown in FIG.
By eliminating large high-voltage charging parts such as the voltage application terminal 12,
By making it small, it is possible to significantly reduce the coupling capacitance CC1 between the voltage application terminal portion including the voltage application terminal 12 and the shield link 9, in other words, the parallel capacitance of the braking resistor 10. Therefore, number 10 to number 1
By providing the braking resistor 10 with a resistance value of approximately 00Ω, high frequency vibrations due to resonance of the inductance Lm of the application line 22 and the ground capacitance C# of the shield ring 9 can be efficiently suppressed.

一方、制動抵抗体10を設けたことにより、シールドリ
ング90対地電位は電圧印加端子120対地電位すなわ
ち分圧抵抗体11の端子間電圧よシも低くなり、この電
位差に基づいて分圧抵抗体11から分布静電容量C1t
およびシールドリング90対地静電容量C#を介して大
地側に流れる充電電流が発生する。この充電電流の大き
さは電圧印加端子12に近づく程大きくなるよう分圧抵
抗体の高さ方向に分布して流れ、分圧抵抗体110対地
分布静電容量Cp@dmを介して流れる充電電流とは逆
の分布に々る。シ九がって、r4の分布とCafの分布
との相補作用を利用して分圧抵抗体11の対地分布静電
容量が各部均等に表る。ようシールドリンク9の大きさ
あるいは位置を決めるようKすれば、応答時間の短かい
シールド抵抗分圧器を形成することができる。
On the other hand, by providing the braking resistor 10, the potential of the shield ring 90 to the ground becomes lower than the potential of the voltage application terminal 120 to the ground, that is, the voltage between the terminals of the voltage dividing resistor 11. Based on this potential difference, the voltage dividing resistor 11 from distributed capacitance C1t
A charging current is generated that flows to the ground side via the ground capacitance C# of the shield ring 90. The magnitude of this charging current flows distributed in the height direction of the voltage dividing resistor so that it becomes larger as it approaches the voltage application terminal 12, and the charging current flows through the ground distributed capacitance Cp@dm of the voltage dividing resistor 110. The distribution is the opposite. Therefore, by utilizing the complementary effect between the distribution of r4 and the distribution of Caf, the distributed capacitance to ground of the voltage dividing resistor 11 is expressed equally in each part. By determining the size or position of the shield link 9 in such a manner, a shield resistance voltage divider with a short response time can be formed.

なお、上述の実施例においては自立形のシールド抵抗分
圧器を例にして説明したが、吊下げ形にしても同様な機
能が得られることは明らかである。
Although the above-described embodiments have been explained using a free-standing shielded resistance voltage divider as an example, it is clear that the same function can be obtained by using a suspended type.

〔発明の効果〕〔Effect of the invention〕

本発明は前述のように、垂直に支承された筒状の絶縁容
器に収納された抵抗分圧器の本体と、絶縁容器の上部か
ら放射状罠突設された筒状の絶縁アームによって支持さ
れ絶縁アームに収納された制動抵抗体を介して小形に形
成された電圧印加端子に導電接続されたシールドリング
とを備えるよう構成した。その結果、電圧印加端とシー
ルドリングとの間の結合静電容量いいかえれば制動抵抗
体の並列静電容量を低減することができ、従来問題とな
った印加線のインダクタンスとシールドリングの対地静
電容量との共振に基づく高周波振動が除去され、急しゅ
んな波形のインノくルス電圧を歪なく測定できるシール
ド抵抗分圧器を提供することができる。
As described above, the present invention includes a main body of a resistive voltage divider housed in a vertically supported cylindrical insulating container, and an insulating arm supported by cylindrical insulating arms projecting radially from the top of the insulating container. The shield ring is electrically conductively connected to a voltage application terminal formed in a small size through a braking resistor housed in the brake resistor. As a result, the coupling capacitance between the voltage application end and the shield ring, in other words, the parallel capacitance of the braking resistor, can be reduced, and the inductance of the voltage application line and the ground static capacitance of the shield ring, which were problems in the past, can be reduced. It is possible to provide a shielded resistance voltage divider that eliminates high-frequency vibrations due to resonance with the capacitance and can measure steep waveform innocuous voltages without distortion.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す概略側断面図、第2図は
第1図で示される実施例の機能を説明するための接続図
、第3図は従来の抵抗分圧器の原理的説明図、第4図は
従来のシールド抵抗分圧器の原理的説明図である。 1・・・絶縁容器、2・・・架台、3・・・頭部金具、
4・・・支持アーム、5.9・・・シールドリング、6
・・・蓋板、7・・・絶縁アーム、10・・・制動抵抗
体、11・・・分圧抵抗体、12・・・電圧印加端子、
13・・・測定端子、22・・・印加線、Of・・・分
圧抵抗体の分布対地静電容量、Ca・・・シールドリン
グの対地静電容量、La・・・印加線のインダクタンス
、co・・・制動抵抗体の並列静電容量。
Fig. 1 is a schematic side sectional view showing an embodiment of the present invention, Fig. 2 is a connection diagram for explaining the function of the embodiment shown in Fig. 1, and Fig. 3 shows the principle of a conventional resistive voltage divider. The explanatory diagram, FIG. 4, is a diagram illustrating the principle of a conventional shielded resistance voltage divider. 1... Insulating container, 2... Frame, 3... Head metal fitting,
4...Support arm, 5.9...Shield ring, 6
... Lid plate, 7... Insulating arm, 10... Braking resistor, 11... Voltage dividing resistor, 12... Voltage application terminal,
13...Measurement terminal, 22...Applying line, Of...Distributed ground capacitance of the voltage dividing resistor, Ca...ground capacitance of the shield ring, La...Inductance of the applying line, co...parallel capacitance of braking resistor.

Claims (1)

【特許請求の範囲】[Claims] 1)垂直に支承され絶縁材よりなる上部蓋板のほぼ中央
部に小形の電圧印加端子を有する筒状の絶縁容器、なら
びにこの絶縁容器内にほぼ同心状に収納され上端部が前
記電圧印加端子に導電接続された分圧抵抗体と、前記絶
縁容器の上端部近傍から放射状に突設された筒状の複数
の絶縁アーム、ならびにこの絶縁アームにより前記絶縁
容器にほぼ同軸状に支持されたシールドリングと、前記
絶縁アーム内に収納され両端部が前記分圧抵抗体の電圧
印加端子およびシールドリングに導電接続された制動抵
抗体とを備えたことを特徴とするシールド抵抗分圧器。
1) A cylindrical insulating container that is vertically supported and has a small voltage application terminal approximately in the center of an upper cover plate made of an insulating material, and a cylindrical insulating container that is housed approximately concentrically within this insulating container and has the voltage application terminal at its upper end. a plurality of cylindrical insulating arms projecting radially from near the upper end of the insulating container, and a shield supported substantially coaxially with the insulating container by the insulating arms. A shielded resistance voltage divider comprising: a ring; and a braking resistor housed in the insulating arm and having both ends conductively connected to the voltage application terminal of the voltage dividing resistor and the shield ring.
JP60007151A 1985-01-18 1985-01-18 Shield resistance voltage divider Pending JPS61167873A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60007151A JPS61167873A (en) 1985-01-18 1985-01-18 Shield resistance voltage divider

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60007151A JPS61167873A (en) 1985-01-18 1985-01-18 Shield resistance voltage divider

Publications (1)

Publication Number Publication Date
JPS61167873A true JPS61167873A (en) 1986-07-29

Family

ID=11658066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60007151A Pending JPS61167873A (en) 1985-01-18 1985-01-18 Shield resistance voltage divider

Country Status (1)

Country Link
JP (1) JPS61167873A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103513081A (en) * 2012-10-15 2014-01-15 上海市计量测试技术研究院 High-precision rapid-responding electric resistor type impulse voltage divider

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103513081A (en) * 2012-10-15 2014-01-15 上海市计量测试技术研究院 High-precision rapid-responding electric resistor type impulse voltage divider
CN103513081B (en) * 2012-10-15 2016-05-18 上海市计量测试技术研究院 A kind of resistor-type impulse voltage divider of high accuracy fast-response

Similar Documents

Publication Publication Date Title
US3396339A (en) Capacitive voltage sensing device including coaxially disposed conductive tubes and electrical discharge inhibition means
JP3158063B2 (en) Non-contact voltage measurement method and device
US5408236A (en) High-voltage unit comprising a measuring divider/resistor arrangement
JPS59153176A (en) Device with measuring and damping resistor
KR850002326A (en) Electrostatic breakdown test method and apparatus for semiconductor devices
JPS61167873A (en) Shield resistance voltage divider
US3274483A (en) Parallel resistance-capacitance voltage divider
RU94012519A (en) Device for testing high-voltage potential transformers
US3431493A (en) Reflection-free voltage divider for high surge voltages
Gratton et al. Simple capacitive probe for high‐voltage nanosecond pulses
SU1167509A1 (en) Method of manufacturing voltage divider
JPH06242148A (en) Impulse voltage measuring device
JP3687420B2 (en) Voltage measuring device for Schenkel type DC high voltage power supply
SU736192A1 (en) High-voltage vacuum capacitor of capacitive voltage divider
JPH05256892A (en) Method and instrument for measuring cable impedance
JPS636901B2 (en)
SU1120247A1 (en) Direct voltage-to-pulse signal converter
SU1233248A1 (en) Voltage divider
White A tripping circuit for a multi-stage surge generator
SU1145349A1 (en) Active scale transformer
JPH02134573A (en) Voltage measuring apparatus
RU53650U1 (en) INSTALLATION FOR TESTING OF ELECTRICAL TECHNICAL EQUIPMENT OF AIRCRAFT ON LIGHT RESISTANCE
SU926516A1 (en) Apparatus for measuring diameter of electrically conductive filaments
Carroll et al. Sphere-Gap and Point-Gap Arc-Over Voltage As Determined by Direct Measurement
Mesecar Radio noise characteristics of direct current point-to-plane corona