JPH06242148A - Impulse voltage measuring device - Google Patents

Impulse voltage measuring device

Info

Publication number
JPH06242148A
JPH06242148A JP5054687A JP5468793A JPH06242148A JP H06242148 A JPH06242148 A JP H06242148A JP 5054687 A JP5054687 A JP 5054687A JP 5468793 A JP5468793 A JP 5468793A JP H06242148 A JPH06242148 A JP H06242148A
Authority
JP
Japan
Prior art keywords
voltage
resistor
inductive
inductive resistor
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5054687A
Other languages
Japanese (ja)
Inventor
Tatsuya Harada
達哉 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON KOGYO UNIV
Original Assignee
NIPPON KOGYO UNIV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON KOGYO UNIV filed Critical NIPPON KOGYO UNIV
Priority to JP5054687A priority Critical patent/JPH06242148A/en
Publication of JPH06242148A publication Critical patent/JPH06242148A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Relating To Insulation (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

PURPOSE:To suppress an earth capacity in each non-inductive resistor to the extent that can be ignored so as to improve a response characteristic by connecting individual shield rings, which are arranged at equal intervals around the non-inductive resistor, together by a series circuit of the non-inductive resistance and a high voltage capacitor. CONSTITUTION:When a lighting impulse voltage is impressed to a non-inductive resistor 11, a non-inductive resistance 14 and a high voltage capacitor 15 share the voltage equally with each other between individual shield rings 13, so that the voltage is distributed linearly from the top part of the resistor body 11 toward the earth side. Therefore, electric fields between individual rings 13 are generated parallelly with the resistor body 11, and a line of electric force from the resistor body 11 to the earth is almost disappeared, so that an earth capacity of the resistor body 11 is reduced to the extent that can be ignored. Therefore, responsiveness is remarkably improved. On the other hand, a low voltage part compensation circuits 12, 17 constitute a responsiveness characteristic compensation circuit P, so that the responsiveness can be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、雷などによるインパ
ルス電圧およびその波頭截断波電圧を高精度で測定する
のに利用するインパルス電圧測定装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an impulse voltage measuring device used to measure an impulse voltage caused by lightning or the like and a wavefront breaking voltage thereof with high accuracy.

【0002】[0002]

【従来の技術】図6は従来のインパルス電圧測定装置を
示す回路図であり、図において、1は分圧器、Rd は制
動抵抗、RL はこの分圧器1に直列に接続された低圧部
抵抗、2は高圧接続線、RH は制動抵抗としての高圧部
抵抗で、これらは図示のように直列に接続されて、測定
端子A,Dからインパルス電圧が印加される。
2. Description of the Related Art FIG. 6 is a circuit diagram showing a conventional impulse voltage measuring device. In the figure, 1 is a voltage divider, R d is a braking resistor, and R L is a low-voltage section connected in series to this voltage divider 1. A resistor, 2 is a high-voltage connecting line, and R H is a high-voltage portion resistor as a braking resistor, which are connected in series as shown in the drawing and an impulse voltage is applied from the measurement terminals A and D.

【0003】また、R1 ,R2 は整合抵抗、3は測定ケ
ーブル、R3 は分圧抵抗で、これらは測定対象の電圧を
調整して測定器4に供給する。なお、分圧器1におい
て、端子B,C間は高圧部、端子C,E間は低圧部、C
g は高圧部抵抗RH の対地容量である。
Further, R 1 and R 2 are matching resistors, 3 is a measuring cable, and R 3 is a voltage dividing resistor, which adjust the voltage to be measured and supply it to the measuring device 4. In the voltage divider 1, a high voltage portion is provided between the terminals B and C, a low voltage portion is provided between the terminals C and E, and
g is the ground capacity of the high voltage resistance R H.

【0004】かかるインパルス電圧測定装置では、高圧
部抵抗RH および高圧接続線2を通して分圧器1に電圧
が印加されると、これにより分圧された電圧が、低圧部
L端に得られ、これがさらに測定ケーブル3を介して
測定器4に入力されて測定される。
In such an impulse voltage measuring device, when a voltage is applied to the voltage divider 1 through the high voltage section resistance R H and the high voltage connection line 2, the voltage thus divided is obtained at the low voltage section R L end, This is further input to the measuring device 4 via the measuring cable 3 and measured.

【0005】ところで、この測定系の応答特性である周
波数特性は、一般に直角波応答によって示され、端子A
に直角波電圧を印加したとき、測定器4にあらわれる電
圧波形の最終値を1として正規化して表わされる。
By the way, the frequency characteristic which is the response characteristic of this measuring system is generally represented by a quadrature wave response, and
When a quadrature wave voltage is applied to, the final value of the voltage waveform appearing in the measuring device 4 is normalized and expressed as 1.

【0006】図7はその直角波電圧の応答波形g(t)
を示す。ここでは、波頭における接線が横軸(時間軸)
と交わる点O1 が原点となり、斜線部分の面積(時間の
単位を有する)で応答特性が示される。また、同図にお
いて、T0 は初期歪み時間、Tαは部分応答時間、TN
(Tα−Tβ+Tγ−Tδ+・・・)は実験的応答時間
である。
FIG. 7 shows the response waveform g (t) of the quadrature wave voltage.
Indicates. Here, the tangent at the wave front is the horizontal axis (time axis)
The point O 1 that intersects with becomes the origin, and the response characteristic is shown by the area of the shaded area (having a unit of time). Further, in the figure, T 0 is the initial distortion time, T α is the partial response time, and T N is
(Tα-Tβ + Tγ-Tδ + ...) Is the experimental response time.

【0007】また、原点O1 より時刻tまでの斜線部分
を積分した値T(t)は安定時間であり、下記のように
表わされる。
The value T (t) obtained by integrating the shaded area from the origin O 1 to the time t is the stable time and is expressed as follows.

【0008】[0008]

【数1】 [Equation 1]

【0009】そして、このT(t)は図8に示すような
波形となり、これの最終値Tを基準として、T+`O
´.02t,T−0.02tの直線を描き、T(t)と
の最終交点の時間をtS とすれば、このtS が安定時間
となる。
Then, this T (t) has a waveform as shown in FIG. 8, and with the final value T of this as a reference, T + 'O
´. If a straight line of 02t, T-0.02t is drawn and the time of the final intersection with T (t) is set to t S , this t S becomes a stable time.

【0010】さらに、抵抗分圧器では、g(t)が振動
性とならず、TN は略RHg /6で与えられる。そし
て、TN が小さいほど応答特性は良好となるので、Cg
を小さくして応答特性の向上をはかるため、図9に示す
ように、分圧器1の頭部に大形のシールドリング5を取
り付ける方法が従来から採用されている。
Further, in a resistive voltage divider, g (t) is not oscillatory and T N is given by approximately R H C g / 6. Since the smaller T N is, the better the response characteristic is, C g
In order to improve the response characteristics by reducing the value of, the method of attaching a large shield ring 5 to the head of the voltage divider 1 has been conventionally used as shown in FIG.

【0011】[0011]

【発明が解決しようとする課題】従来のインパルス電圧
測定装置は以上のように構成されているので、上記分圧
器1の端子B,C間の高圧部では、インパルス電圧が印
加されたときには、各部での電圧分担が不均一であり、
かつ各部からの対地容量が大きく、かつ不均等であるた
め、抵抗体より大地に向う電気力線が大きく、応答特性
の改善には限界があるなどの問題点があった。
Since the conventional impulse voltage measuring device is constructed as described above, in the high voltage portion between the terminals B and C of the voltage divider 1, when the impulse voltage is applied, each portion is The voltage sharing in the
Moreover, since the ground capacitances from the respective parts are large and uneven, the lines of electric force directed to the ground are larger than those of the resistor, and there is a problem that there is a limit in improving the response characteristics.

【0012】また、図9に示すものでは、1個のシール
ドリング5を用いるので、抵抗RHの対地容量Cg を完
全に打消すことが困難であること、シールドリング5が
大形となり、これの対地容量が大きくなり、この対地容
量,制動抵抗Rd および高圧接続線2のインダクタンス
Lにより分圧器1の頭部に加わる電圧波形がゆるやかと
なり、応答特性を悪くするなどの問題点があった。
Further, in the structure shown in FIG. 9, since one shield ring 5 is used, it is difficult to completely cancel the ground capacitance C g of the resistance R H , and the shield ring 5 becomes large, The capacitance to ground becomes large, and due to the capacitance to ground, the braking resistance R d, and the inductance L of the high-voltage connection line 2, the voltage waveform applied to the head of the voltage divider 1 becomes gentle, and there is a problem that the response characteristics deteriorate. It was

【0013】さらに、シールドリング5は分圧器1の頭
部よりかなり下方に取り付けるので、大地への距離が短
くなり、分圧器1の耐電圧を低下することとなり、場合
によっては、耐電圧が2/3程度となることもあるなど
の問題点があった。
Furthermore, since the shield ring 5 is mounted considerably below the head of the voltage divider 1, the distance to the ground is shortened and the withstand voltage of the voltage divider 1 is lowered. There was a problem that it could be about / 3.

【0014】この発明は上記のような問題点を解消する
ためになされたものであり、無誘導抵抗体各部における
対地容量を無視できる程度に抑えることで応答特性を大
きく向上できるインパルス電圧測定装置を得ることを目
的とする。
The present invention has been made to solve the above problems, and provides an impulse voltage measuring apparatus capable of greatly improving the response characteristics by suppressing the ground capacitance in each part of the non-inductive resistor to a negligible level. The purpose is to get.

【0015】[0015]

【課題を解決するための手段】この発明に係るインパル
ス電圧測定装置は、高圧接続線を通して、インパルス電
圧が印加される電圧分圧用の円筒状の無誘導抵抗体と、
該無誘導抵抗体の周囲に同心的かつ等間隔に配置され、
最上部のものが上記誘導抵抗体の頂部に、最下部のもの
が接地側にそれぞれ接続された複数のシールドリング
と、該シールドリングの隣り合うものどうしを接続する
無誘導抵抗および高圧用コンデンサからなる直列回路と
を設けて、上記無誘導抵抗体の低圧部に応答特性補償回
路を接続したものである。
An impulse voltage measuring device according to the present invention comprises a cylindrical non-inductive resistor for voltage division, to which an impulse voltage is applied through a high voltage connecting line,
Arranged concentrically and at equal intervals around the non-inductive resistor,
From a non-inductive resistance and a high-voltage capacitor that connect a plurality of shield rings, the top one being connected to the top of the inductive resistor and the bottom one being connected to the ground side, and adjacent ones of the shield rings. And a response characteristic compensation circuit is connected to the low voltage portion of the non-inductive resistor.

【0016】[0016]

【作用】この発明におけるインパルス電圧測定装置は、
シールドリング間を小容量の高電圧用のコンデンサと無
誘導抵抗との直列回路で接続したものであり、インパル
ス電圧が電圧分圧用の無誘導抵抗体に印加されたとき、
各シールドリング間には均等の電圧を分担させ、その無
誘導抵抗体の頂部より接地側に向って電圧を直線的に分
布させ、シールドリング間の電界を無誘導抵抗体に平行
に発生させ、その無誘導抵抗体から大地に向う電気力線
を略零にするように機能する。
The impulse voltage measuring device according to the present invention comprises:
The shield rings are connected in series with a small-capacity high-voltage capacitor and a non-inductive resistor, and when the impulse voltage is applied to the non-inductive resistor for voltage division,
An even voltage is shared between each shield ring, the voltage is linearly distributed from the top of the non-inductive resistor toward the ground side, and an electric field between the shield rings is generated in parallel with the non-inductive resistor. It functions to make the line of electric force from the non-inductive resistor to the ground almost zero.

【0017】[0017]

【実施例】【Example】

実施例1.以下に、この発明の一実施例を図について説
明する。図1において、11は垂直に立てられた円筒状
の電圧分圧用の無誘導抵抗体であり、例えば全長が23
20mm、抵抗値が10Ωとされ、これの頂部には高圧
接続線を通して雷などによるインパルス電圧が印加され
るようになっている。12は無誘導抵抗体11の下端と
接地との間に接続された低圧部補償回路である。
Example 1. An embodiment of the present invention will be described below with reference to the drawings. In FIG. 1, 11 is a vertically standing cylindrical non-inductive resistor for voltage division, for example, the total length is 23
The resistance value is set to 20 mm and the resistance value is set to 10Ω, and an impulse voltage due to lightning or the like is applied to the top of the resistance value through a high-voltage connection line. Reference numeral 12 is a low voltage compensating circuit connected between the lower end of the non-inductive resistor 11 and the ground.

【0018】また、上記無誘導抵抗体11の周囲には、
これに対し同心的に複数の環状のシールドリング13が
上下方向に等間隔に配置され、これらのシールドリング
13は例えば外径が330mm,厚さが30mmとさ
れ、これらのうち、最上部にあるものは無誘導抵抗体1
1の頂部に電気的に接続され、最下部にあるものは無誘
導抵抗および高圧用コンデンサを介して低圧部補償回路
12を収容するケースKなどを介して、接地されてい
る。
Further, around the non-inductive resistor 11,
On the other hand, a plurality of annular shield rings 13 are concentrically arranged at equal intervals in the vertical direction, and these shield rings 13 have, for example, an outer diameter of 330 mm and a thickness of 30 mm, and are located at the uppermost portion of these. Things are non-inductive resistors 1
1 is electrically connected to the top, and the lowermost one is grounded via a case K for housing the low voltage compensating circuit 12 via a non-inductive resistance and a high voltage capacitor.

【0019】さらに、14は例えば抵抗値が数10Ω〜
数100Ωの無誘導抵抗、15はこの無誘導抵抗14に
直列接続された、例えば容量が数10pF〜数1000
pFの高圧用コンデンサであり、これらの直列回路が上
記各シールドリング13間および最下部のシールドリン
グ13と接地との間に接続されている。
Further, 14 has, for example, a resistance value of several tens of Ω.
Non-inductive resistance of several hundred Ω, 15 is connected in series with this non-inductive resistance 14, for example, capacity is several tens pF to several thousand.
This is a pF high-voltage capacitor, and these series circuits are connected between the respective shield rings 13 and between the lowermost shield ring 13 and the ground.

【0020】また、上記無誘導抵抗体11の下端と低下
部補償回路12との接続点には、測定ケーブル16を介
して他の低圧部補償回路17およびディジタルレコー
ダ,オシロスコープなどの測定器18が順次接続されて
いる。なお、上記2つの低圧部補償回路12,17は応
答特性補償回路Pを構成している。
At the connection point between the lower end of the non-inductive resistor 11 and the lowered portion compensation circuit 12, another low voltage portion compensation circuit 17 and a measuring device 18 such as a digital recorder or an oscilloscope are provided via a measurement cable 16. They are connected in sequence. The two low voltage compensating circuits 12 and 17 form a response characteristic compensating circuit P.

【0021】図2はその応答特性補償回路Pを構成す
る、例えば低圧部補償回路17の具体例を示し、抵抗R
a が50ΩおよびインダクタンスLa が1.3μHの直
列回路と、抵抗Rb が10Ω、インダクタンスLb が3
μHおよびキャパシタCが650pFの直列回路とを並
列接続したものからなる。なお、上記低圧部補償回路1
2としては、例えば抵抗50Ωが用いられる。
FIG. 2 shows a concrete example of the low-voltage compensating circuit 17, which constitutes the response characteristic compensating circuit P, and a resistor R
A series circuit in which a is 50 Ω and inductance L a is 1.3 μH, and resistance R b is 10 Ω and inductance L b is 3
The μH and the capacitor C consist of a 650 pF series circuit connected in parallel. The low-voltage compensating circuit 1
For example, a resistance of 50Ω is used as 2.

【0022】次に動作について説明する。かかる構成に
なるインパルス電圧測定装置は、雷インパルス電圧が無
誘導抵抗体11に印加されると、各シールドリング13
間では無誘導抵抗14および高圧用コンデンサ15によ
って互いに等しい電圧を分担することとなり、その無誘
導抵抗体11の頂部より接地側に向って、電圧が直線的
に分布する。
Next, the operation will be described. With the impulse voltage measuring device having such a configuration, when the lightning impulse voltage is applied to the non-inductive resistor 11, each shield ring 13
In the meantime, the non-inductive resistor 14 and the high-voltage capacitor 15 share the same voltage, and the voltage is linearly distributed from the top of the non-inductive resistor 11 toward the ground side.

【0023】従って、各シールドリング13間の電界は
抵抗体と平行に生じ、無誘導抵抗体11より大地に向う
電気力線は殆どなくなり、この無誘導抵抗体11の対地
容量は無視できるほど小さくなるので、応答特性は大き
く向上する。また、この発明では、低圧部補償回路17
の図2に示すような最適の回路定数によって、一段の応
答特性の高性能化を図ることができる。
Therefore, the electric field between the shield rings 13 is generated in parallel with the resistors, and the lines of electric force directed to the ground from the non-inductive resistor 11 almost disappear, and the ground capacitance of the non-inductive resistor 11 is so small that it can be ignored. Therefore, the response characteristics are greatly improved. Further, according to the present invention, the low voltage compensating circuit 17
By using the optimum circuit constants as shown in FIG. 2, it is possible to improve the performance of the response characteristic in one step.

【0024】なお、上記の低圧部補償回路12,17と
して、図3(a)に示すように、インダクタンスl1
よび抵抗r1 の直列回路を用いてもよいし、図3(b)
に示すように、インダクタンスl1 および抵抗r1 の直
列回路とインダクタンスl2,キャパシタCおよび抵抗
2 の直列回路とを並列接続したものを用いてもよく、
さらに、上記低圧部補償回路12,17の一方を図3
(a)または図3(b)の各回路とし、他方を無誘導抵
抗としてもよい。
As the low-voltage compensating circuits 12 and 17, a series circuit of an inductance l 1 and a resistance r 1 may be used as shown in FIG. 3 (a), or FIG. 3 (b).
As shown in, a series circuit of an inductance l 1 and a resistance r 1 and a series circuit of an inductance l 2 , a capacitor C and a resistance r 2 may be connected in parallel,
In addition, one of the low-voltage compensating circuits 12 and 17 is provided in FIG.
(A) or FIG. 3 (b), and the other may be a non-inductive resistor.

【0025】現在改訂中のIEC規格(国際規格)案の
ハイ ボルテージ テスト テクニクス,パート2:メ
ージュアリング システムズ(high voltag
etest techniques,part2:me
asuring systems)1992では、全波
雷インパルスならびに波頭截断波雷インパルス電圧測定
用の標準分圧器の応答条件を、図4の表図に示すように
規定している。
High Voltage Test Technics of the IEC (International Standard) draft that is currently being revised, Part 2: Measuring System (high voltag)
estettechniques, part2: me
1992, the response conditions of the standard voltage divider for measuring the full-wave lightning impulse and the wavefront cut-off lightning impulse voltage are specified as shown in the table of FIG.

【0026】そして、この発明により1000KV用の
高圧部抵抗(抵抗値10KΩ)を持った無誘導抵抗体1
1を試作して、応答性能を測定したところ、TN ≒0、
S≦100〜150ns、Tα<10ns、T0
0.05nsのように、極めて優れた特性を得た。この
性能は現在のところ、内外で最高水準である。
According to the present invention, the non-inductive resistor 1 having a high voltage portion resistance (resistance value 10 KΩ) for 1000 KV.
1 was prototyped and the response performance was measured. T N ≈0,
t S ≦ 100 to 150 ns, Tα <10 ns, T 0
Very good characteristics were obtained, such as 0.05 ns. At present, this performance is at the highest level inside and outside.

【0027】このように、この発明の誘導抵抗体11は
本質的に抵抗分圧器であり、分圧比は高圧部,低圧部の
抵抗値によって定まり、抵抗はマンガニン・カマーロイ
などの抵抗線を用いるので、温度変化,経年変化が極め
て小さく、分圧比への影響は無視できる。
As described above, the inductive resistor 11 of the present invention is essentially a resistance voltage divider, and the voltage division ratio is determined by the resistance values of the high-voltage part and the low-voltage part, and the resistance uses a resistance wire such as manganin-camalloy. , Temperature change and secular change are extremely small, and the influence on the partial pressure ratio can be ignored.

【0028】また、各シールドリング13間を連結する
高電圧用コンデンサ15の容量の温度変化,経年変化は
1〜2%はあるが、仮に10%変化しても、応答パラメ
ータへの影響は殆どないことが実測により確かめられ
た。
Further, although there is a 1% to 2% change in the capacity of the high-voltage capacitor 15 connecting the shield rings 13 with temperature and aging, even if it changes by 10%, the influence on the response parameter is almost eliminated. It was confirmed by actual measurement that there was not.

【0029】そして、低圧部補償回路12,17に用い
られるキャパシタCは使用電圧が低く(数100V以
下)、容量も小さいので、特性の良好なものが容易かつ
安価に得られ、容量値を監視し、容易に一定に保持でき
る。
Since the capacitor C used in the low-voltage compensating circuits 12 and 17 has a low operating voltage (several hundreds of V or less) and a small capacitance, it is possible to easily and inexpensively obtain good characteristics and monitor the capacitance value. And can be easily held constant.

【0030】図5は上記試作した1000KV用プロッ
トタイプについて実測した応答波形を示したものであ
り、補償回路の定数は図1および図2について説明した
値を使用したが、高圧接続線2や制動抵抗Rd の値に従
って、最適値に選ぶ必要がある。なお、この実測例で
は、高圧接続線2を3mとし、制動抵抗Rd を100Ω
とした。これにより、TN ≒0、tS ≒110μs、T
α≒10ns、T0 ≒0.04nsが得られた。
FIG. 5 shows response waveforms actually measured for the above-mentioned prototype plot type for 1000 KV. The constants of the compensating circuit are the same as those explained with reference to FIGS. 1 and 2, but the high voltage connection line 2 and the braking circuit are used. It is necessary to select an optimum value according to the value of the resistance R d . In this measurement example, the high voltage connection line 2 is 3 m, and the braking resistance R d is 100Ω.
And As a result, T N ≈0, t S ≈110 μs, T
α≈10 ns and T 0 ≈0.04 ns were obtained.

【0031】[0031]

【発明の効果】以上のように、この発明によれば、高圧
接続線を通して、インパルス電圧が印加される電圧分圧
用の円筒状の無誘導抵抗体と、該無誘導抵抗体の周囲に
同心的かつ等間隔に配置され、最上部のものが上記誘導
抵抗体の頂部に、最下部のものが接地側にそれぞれ接続
された複数のシールドリングと、該シールドリングの隣
り合うものどうしを接続する無誘導抵抗および高圧用コ
ンデンサからなる直列回路とを設けて、上記無誘導抵抗
体の低圧部に応答特性補償回路を接続するように構成し
たので、高圧部抵抗体である無誘導抵抗体の対地容量を
殆ど零にすることができ、従って、分圧器としての応答
特性を向上できるとともに、さらに低圧部の応答特性補
償回路によって、一段の応答特性の向上を図れるものが
得られる効果がある。
As described above, according to the present invention, a cylindrical non-inductive resistor for voltage division to which an impulse voltage is applied through a high-voltage connecting line, and a concentric ring around the non-inductive resistor. In addition, a plurality of shield rings, which are arranged at equal intervals and whose uppermost one is connected to the top of the inductive resistor and whose lowermost one is connected to the ground side, respectively, and the adjacent ones of the shield rings are not connected to each other. Since a series circuit composed of an inductive resistance and a high voltage capacitor is provided and the response characteristic compensation circuit is connected to the low voltage part of the non-inductive resistor, the ground capacitance of the non-inductive resistor which is the high voltage part resistor is configured. Can be made almost zero, and therefore, the response characteristic as the voltage divider can be improved, and further, the response characteristic compensating circuit of the low voltage section can improve the response characteristic by one step. .

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例によるインパルス電圧測定
装置を示す構成図である。
FIG. 1 is a configuration diagram showing an impulse voltage measuring device according to an embodiment of the present invention.

【図2】図1における低圧部補償回路を具体的に示す回
路図である。
FIG. 2 is a circuit diagram specifically showing a low voltage compensating circuit in FIG.

【図3】図1における低圧部補償回路の他の具体例を示
す回路図である。
3 is a circuit diagram showing another specific example of the low-voltage compensating circuit in FIG.

【図4】改訂中のIEC規格による、標準分圧器に要求
される応答パラメータを示す表図である。
FIG. 4 is a table showing response parameters required for a standard voltage divider according to the IEC standard being revised.

【図5】1000KV用プロトタイプのインパルス電圧
測定装置による実測応答波形を示す波形図である。
FIG. 5 is a waveform diagram showing an actually measured response waveform by a 1000 KV prototype impulse voltage measuring device.

【図6】従来のインパルス電圧測定装置を示す回路図で
ある。
FIG. 6 is a circuit diagram showing a conventional impulse voltage measuring device.

【図7】図6のインパルス電圧測定装置による応答波形
を示す波形図である。
FIG. 7 is a waveform diagram showing a response waveform by the impulse voltage measuring device of FIG.

【図8】図7の応答波形の安定時間を示す特性図であ
る。
8 is a characteristic diagram showing the stabilization time of the response waveform of FIG.

【図9】従来のシールドリングを用いた抵抗分圧器を示
す概念図である。
FIG. 9 is a conceptual diagram showing a conventional resistance voltage divider using a shield ring.

【符号の説明】[Explanation of symbols]

2 高圧接続線 11 無誘導抵抗体 13 シールドリング 14 無誘導抵抗 15 高圧用コンデンサ P 応答特性補償回路 2 High-voltage connection line 11 Non-inductive resistor 13 Shield ring 14 Non-inductive resistance 15 High-voltage capacitor P Response characteristic compensation circuit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 高圧接続線を通して、インパルス電圧が
印加される電圧分圧用の円筒状の無誘導抵抗体と、該無
誘導抵抗体の周囲に同心的かつ等間隔に配置され、最上
部のものが上記誘導抵抗体の頂部に、最下部のものが接
地側にそれぞれ接続された複数のシールドリングと、該
シールドリングの隣り合うものどうしを接続する無誘導
抵抗および高圧用コンデンサからなる直列回路と、上記
無誘導抵抗体の低圧部に接続された応答特性補償回路と
を備えたインパルス電圧測定装置。
1. A cylindrical non-inductive resistor for voltage division, to which an impulse voltage is applied through a high-voltage connecting line, and concentric and equidistantly arranged around the non-inductive resistor, the uppermost one. Is a series circuit composed of a plurality of shield rings, the bottom one of which is connected to the ground side, and a non-inductive resistor and a high-voltage capacitor that connect adjacent ones of the shield rings to the top of the inductive resistor. An impulse voltage measuring device comprising: a response characteristic compensation circuit connected to the low voltage portion of the non-inductive resistor.
JP5054687A 1993-02-22 1993-02-22 Impulse voltage measuring device Pending JPH06242148A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5054687A JPH06242148A (en) 1993-02-22 1993-02-22 Impulse voltage measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5054687A JPH06242148A (en) 1993-02-22 1993-02-22 Impulse voltage measuring device

Publications (1)

Publication Number Publication Date
JPH06242148A true JPH06242148A (en) 1994-09-02

Family

ID=12977711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5054687A Pending JPH06242148A (en) 1993-02-22 1993-02-22 Impulse voltage measuring device

Country Status (1)

Country Link
JP (1) JPH06242148A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112563030A (en) * 2020-12-01 2021-03-26 上海上电电容器有限公司 Non-inductive voltage-sharing damping voltage-dividing capacitor
CN113884739A (en) * 2021-08-20 2022-01-04 中国电力科学研究院有限公司 Broadband voltage divider device and scale factor calibration method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112563030A (en) * 2020-12-01 2021-03-26 上海上电电容器有限公司 Non-inductive voltage-sharing damping voltage-dividing capacitor
CN112563030B (en) * 2020-12-01 2022-02-15 上海上电电容器有限公司 Non-inductive voltage-sharing damping voltage-dividing capacitor
CN113884739A (en) * 2021-08-20 2022-01-04 中国电力科学研究院有限公司 Broadband voltage divider device and scale factor calibration method
CN113884739B (en) * 2021-08-20 2024-02-13 中国电力科学研究院有限公司 Broadband voltage divider device and scale factor calibration method

Similar Documents

Publication Publication Date Title
US3396339A (en) Capacitive voltage sensing device including coaxially disposed conductive tubes and electrical discharge inhibition means
JP6050309B2 (en) High voltage measurement system
US4067225A (en) Capacitance type non-contact displacement and vibration measuring device and method of maintaining calibration
US20060012382A1 (en) Modular voltage sensor
EP2857848B1 (en) Capacitive voltage measuring apparatus.
US7123032B2 (en) Voltage sensor and dielectric material
US4034283A (en) Compensated voltage divider
US5703488A (en) Instrument for measuring plasma excited by high-frequency
JPS59153176A (en) Device with measuring and damping resistor
JPH06242148A (en) Impulse voltage measuring device
US6930496B2 (en) Range resistors for AC-DC transfer measurements
SE454813B (en) DEVICE FOR SEATING THE VOLTAGE IN A HIGH-VOLTAGE PRESENT PART OF A COVERED PRESSURE-INSULATED HIGH-VOLTAGE PLANT
CN108226602B (en) Method and sensor for measuring the time derivative of an alternating current
US20230135229A1 (en) Very-wide-bandwidth current sensor
RU94012519A (en) Device for testing high-voltage potential transformers
Davis et al. The calibration of sphere-gaps with impulse voltages
US2615091A (en) Screened high-frequency circuit element
US3839695A (en) High voltage shielded divider
JPS58106465A (en) Voltage divider
JPS62245976A (en) Detecting device for abnormality of electric equipment
CN115362374B (en) Ultra-high bandwidth current sensor
JP3460199B2 (en) DC high voltage supply system such as radiation sensor
JPH0113065B2 (en)
JPH01213577A (en) Voltage measuring instrument
JP2778102B2 (en) Voltage divider