JPH01213577A - Voltage measuring instrument - Google Patents

Voltage measuring instrument

Info

Publication number
JPH01213577A
JPH01213577A JP3742688A JP3742688A JPH01213577A JP H01213577 A JPH01213577 A JP H01213577A JP 3742688 A JP3742688 A JP 3742688A JP 3742688 A JP3742688 A JP 3742688A JP H01213577 A JPH01213577 A JP H01213577A
Authority
JP
Japan
Prior art keywords
electrode
conductor
conical
voltage
coaxial cable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3742688A
Other languages
Japanese (ja)
Inventor
Hiroshi Murase
洋 村瀬
Hirokuni Aoyanagi
青柳 浩邦
Hitoshi Okubo
仁 大久保
Satoru Yagiu
悟 柳父
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3742688A priority Critical patent/JPH01213577A/en
Publication of JPH01213577A publication Critical patent/JPH01213577A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Current Or Voltage (AREA)

Abstract

PURPOSE:To certainly measure a surge waveform by coaxially setting a conductor having an almost conical shape at the center of an almost conical chamber and connecting the bottom surface of the conductor with one face of an electrode. CONSTITUTION:A discoidal electrode 1 is disposed by pinching earthing potential metal 2 and an insulating substance sheet 3 and a floating capacity C2 is formed between the electrode 1 and metal 2. Moreover, a conical conductor 4 is connected with the electrode 1 by its bottom surface. At the outer periphery of the conductor 4 an earthing potential metal 5 having a conical space which is larther than the conical body of the conductor 4 is provided coaxially on the conductor 4. Since the potential is detected by means of the conductor 4 in the wide area of the electrode 1 in such capacity of voltage divider 20, internal resonance is detected after averaging the resonance even if the internal resonance is produced inside the floating capacity C2. Therefore, the influences of a self-resonance mode can be eliminated and surge waveforms can be measured correctly.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、高電圧装置の電圧を計測する装置に関し、特
にガス絶縁開閉装置(以下GISと称す)内に発生する
高周波サージ電圧を計測するための電圧測定装置に関す
る。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a device for measuring the voltage of a high-voltage device, and in particular, the present invention relates to a device for measuring the voltage of a high-voltage device. The present invention relates to a voltage measuring device for measuring surge voltage.

(従来の技術) 従来、GISなどの高電圧装置の電圧を計測する装置と
しては、巻線型計器用変圧器や、抵抗分圧器などが多く
使用されてきたが、最近になって、50H7若しくは6
0H7の商用周波数の電圧のみならず、断路器を操作し
たときに発生する数MH7から数十MH2の高周波断路
器サージ電圧を同時に計測する必要性が高まっている。
(Prior Art) Traditionally, wire-wound instrument transformers and resistor voltage dividers have been widely used as devices to measure the voltage of high-voltage devices such as GIS, but recently, 50H7 or 6
There is an increasing need to simultaneously measure not only the commercial frequency voltage of 0H7 but also the high frequency disconnector surge voltage of several MH7 to several tens of MH2 generated when the disconnector is operated.

これは、運転電圧の上昇に伴い、外部から浸入する雷サ
ージより、GIS内部で発生する断路器サージの方が大
きくなるためで、この断路器サージに対する絶縁構造が
機器の大きざを決定する要因となっている。また、最近
レーザーや核融合研究の分野で、電圧の立ち上がり時間
がナノ秒オーダーの非常に短い急峻波パルスが必要とさ
れており、この波形の観測の重要性も増大している。こ
のような電圧波形を観測する手段としては、容量分圧器
が用いられている。
This is because as the operating voltage increases, the disconnector surge generated inside the GIS becomes larger than the lightning surge that enters from the outside, and the insulation structure for this disconnector surge is a factor that determines the size of the equipment. It becomes. Furthermore, in the field of laser and nuclear fusion research, very short steep wave pulses with voltage rise times on the order of nanoseconds have recently become necessary, and the importance of observing these waveforms is increasing. A capacitive voltage divider is used as a means for observing such voltage waveforms.

GISの断路器サージ測定用の容量分圧器として、例え
ば、IEEE  l”’ransacj!0rls  
on  EIectrical  In5ulatio
n  Vol、EI−19No、2.  A1)ril
  1984  P、87〜92に、第5図に示すよう
な構造の容量分圧器が提案されている。
As a capacitive voltage divider for GIS disconnector surge measurement, for example, IEEE l"'ransacj!0rls
on Electrical In5lation
n Vol, EI-19No, 2. A1) ril
In 1984 P., 87-92, a capacitive voltage divider having a structure as shown in FIG. 5 was proposed.

第5図において、円板状の電極1と接地電位金属2の間
には、絶縁物からなるフィルム3が挟まれ、固定される
ことで電極1と接地電位金属2間に浮遊容量C2が形成
されている。この場合、電極1は、図示されていない高
圧導体との間に浮遊容量C+を有しており、これらの浮
遊容量Ct 、 C2により、容量分圧器が形成されて
いる。電極1は、抵抗11を介してリード線4−に接続
され、リード線4−の他端は同軸ケーブルのコネクタ6
に接続されている。接地電位金属2には、電極1側の面
から反対側の面に貫通するように断面円形の空隙が形成
されており、抵抗11及びリード線4−は、この空隙の
内部に挿入されている。また、コネクタ6は、空隙にあ
ける電極1と反対側の開口部に取付けられている。一方
、電極1と抵抗11の接続部分には、電界緩和のための
カバー1aが設置されている。なお、図中8は、図示さ
れていないGISのフランジに固定されるフランジであ
る。
In FIG. 5, a film 3 made of an insulating material is sandwiched between the disc-shaped electrode 1 and the ground potential metal 2, and is fixed to form a stray capacitance C2 between the electrode 1 and the ground potential metal 2. has been done. In this case, the electrode 1 has a stray capacitance C+ between it and a high voltage conductor (not shown), and these stray capacitances Ct and C2 form a capacitive voltage divider. The electrode 1 is connected to a lead wire 4- through a resistor 11, and the other end of the lead wire 4- is connected to a coaxial cable connector 6.
It is connected to the. A gap with a circular cross section is formed in the ground potential metal 2 so as to penetrate from the surface on the electrode 1 side to the opposite side, and the resistor 11 and the lead wire 4- are inserted into this gap. . Further, the connector 6 is attached to an opening on the opposite side of the electrode 1 in the gap. On the other hand, a cover 1a is provided at the connection portion between the electrode 1 and the resistor 11 to alleviate the electric field. Note that 8 in the figure is a flange fixed to a flange of a GIS (not shown).

以上のように、従来の容量分圧器において、電極1と同
軸ケーブルとはリード線4−を介して1点のみで接続さ
れているため、電極1の電位は、1点のみで検出される
As described above, in the conventional capacitive voltage divider, the electrode 1 and the coaxial cable are connected at only one point via the lead wire 4-, so the potential of the electrode 1 is detected only at one point.

(発明が解決しようとする課題) ところで、第5図に示される容量分圧器において、電極
1と接地電位金属2の対向面を完全に平行状態とし、浮
遊容量C2の分布を完全に一様にすることは不可能であ
る。従って、浮遊容量C2の分布は一様ではないため、
この容量に立ち上がり時間の非常に早い急峻波が印加さ
れたとき、電極1の電位は一様にはならす、局部的に電
位の大小を有する状態が瞬間的に生ずる。この結果、電
極1において、電位を一様にするように電流か流れ、こ
の電流により、浮遊容量C2の内部で共(辰を発生する
ことが判明している。そして、前述したような、電極1
の電位を1点のみで検出する方法の容量分圧器において
は、このような内部共振の影響を受け、本来のサージ波
形に内部共振による波形が重ね合わされるため、正確な
波形観測か困難であることが判明している。
(Problem to be Solved by the Invention) By the way, in the capacitive voltage divider shown in FIG. 5, the facing surfaces of the electrode 1 and the ground potential metal 2 are made completely parallel, so that the distribution of the stray capacitance C2 is completely uniform. It is impossible to do so. Therefore, since the distribution of stray capacitance C2 is not uniform,
When a steep wave with a very quick rise time is applied to this capacitor, the potential of the electrode 1 becomes uniform, but a state in which the potential locally varies in magnitude occurs instantaneously. As a result, a current flows in the electrode 1 to make the potential uniform, and it has been found that this current generates a voltage inside the stray capacitance C2. 1
Capacitive voltage dividers that detect the potential at only one point are affected by such internal resonance, and the waveform due to internal resonance is superimposed on the original surge waveform, making it difficult to observe the waveform accurately. It turns out that.

本発明は、このような従来技術の問題点を解決するため
に提案されたものであり、その課題は、容量分圧器内部
に発生する自己共振モードの影響を受けることなく、G
IS内部に発生する立ち上がりがナノ秒のオーダーの急
峻波サージや、レーザや核融合に用いられる急峻波パル
スの電圧波形を正確に観測できるような、優れた電圧測
定装置を提供することである。
The present invention was proposed in order to solve the problems of the prior art, and its object is to provide a G
It is an object of the present invention to provide an excellent voltage measurement device that can accurately observe the voltage waveform of a steep wave surge whose rise is on the order of nanoseconds generated inside an IS and a steep wave pulse used in lasers and nuclear fusion.

[発明の構成] (課題を解決するための手段) 本発明の電圧測定装置は、接地電位金属及び高電圧導体
のそれぞれに対して浮遊容量を有する電極を、同軸ケー
ブルのコネクタに接続するに当たって、 前記接地電位金属の同軸ケーブル側に、接地電位金属電
極を接続し、この接地電位金属電極に、電極側を底面と
する略円錐状の空間を形成し、この略円錐状の空間内に
は、略円錐状の導体を同軸となるように設置し、この略
円錐状の導体の底面と電極の片面とを面で接続し、且つ
略円錐状の導体の頂部と前記同軸ケーブルのコネクタと
を接続することを特徴としている。
[Structure of the Invention] (Means for Solving the Problems) The voltage measuring device of the present invention includes the following steps when connecting electrodes having stray capacitance to each of a ground potential metal and a high voltage conductor to a connector of a coaxial cable. A ground potential metal electrode is connected to the coaxial cable side of the ground potential metal, a substantially conical space with the electrode side as the bottom surface is formed in the ground potential metal electrode, and within this substantially conical space, A substantially conical conductor is installed coaxially, the bottom surface of the substantially conical conductor is connected to one surface of the electrode, and the top of the substantially conical conductor is connected to the connector of the coaxial cable. It is characterized by

(作用) 以上のような構成を有する本発明においては、略円錐状
の導体を使用することにより、その底面に相当する広い
面積で電極の電位を検出できるため、接地電位金属と電
極との間の浮遊容量C2に発生する内部共振モードが平
均化される。従って、自己共振モードによる影響を除去
でき、正確なサージ波形の観測が可能となる。
(Function) In the present invention having the above configuration, by using a substantially conical conductor, the potential of the electrode can be detected over a wide area corresponding to the bottom surface of the conductor. The internal resonance modes generated in the stray capacitance C2 are averaged. Therefore, the influence of the self-resonant mode can be removed, making it possible to accurately observe the surge waveform.

(実施例) 以下本発明による電圧測定装置の一実施例を第1図及び
第2図に示す。なお、第5図に示した従来技1ホiと同
一部分には同一符号を付している。
(Example) An example of a voltage measuring device according to the present invention is shown in FIGS. 1 and 2 below. Note that the same parts as in the conventional technique 1 shown in FIG. 5 are given the same reference numerals.

第1図は本実施例の容量分圧器を示す断面図であり、従
来の容量分圧器を示す第5図に対応している。第1図に
おいて、円板状の電極1は、接地電位金属2と絶縁物シ
ート3を挟んで設置され、両者間に浮遊容量C2を形成
している。ここで、電極1は図示しない高電圧導体との
間に浮遊容量C1を形成している。また、従来のリード
線4−に相当する円錐状導体4は、その底面にて電%M
 1に接続されている。この円錐状導体4の外周には、
より大きな円錐形状の空間を有する接地電位金属電極5
か設けられ、両円錐の中心軸が一致するように設置され
、両部材4,5にて円錐状構造物21が形成されている
。円錐状導体4の頂部は、同軸ケーブルのコネクタ6の
中心電極に接続され、コネクタ6の外被電極は、接地電
位金属電極5に接続されている。接地電位金属2はその
フランジ8によりGISタンク7のフランジ9に固定さ
れている。ここで、円錐状導体4の外径d4と接地電位
金属電極5の円錐状空間の内径d5とは、全ての点にお
いて、 d5/d4=一定   ・・・ 条件式■となるように
選ぶ。例えば、d5/d+ =2.3となるように選ぶ
と、円錐状導体4と接地電位金属電極5が形成する円錐
状構造物21の線路は、特性インピーダンスが500の
同軸ケーブルとなる。
FIG. 1 is a sectional view showing the capacitive voltage divider of this embodiment, and corresponds to FIG. 5 showing a conventional capacitive voltage divider. In FIG. 1, a disk-shaped electrode 1 is placed across a ground potential metal 2 and an insulating sheet 3, forming a stray capacitance C2 between them. Here, the electrode 1 forms a stray capacitance C1 with a high voltage conductor (not shown). Further, the conical conductor 4, which corresponds to the conventional lead wire 4-, has an electric current of %M on its bottom surface.
Connected to 1. On the outer periphery of this conical conductor 4,
Ground potential metal electrode 5 with a larger conical space
A conical structure 21 is formed by both members 4 and 5, and the central axes of both cones coincide with each other. The top of the conical conductor 4 is connected to the center electrode of a connector 6 of the coaxial cable, and the outer electrode of the connector 6 is connected to the metal electrode 5 at ground potential. The ground potential metal 2 is fixed by its flange 8 to the flange 9 of the GIS tank 7. Here, the outer diameter d4 of the conical conductor 4 and the inner diameter d5 of the conical space of the ground potential metal electrode 5 are selected so as to satisfy the following condition at all points: d5/d4=constant. For example, if d5/d+ is selected to be 2.3, the line of the conical structure 21 formed by the conical conductor 4 and the ground potential metal electrode 5 becomes a coaxial cable with a characteristic impedance of 500.

第2図は、第1図の容量分圧器20をGISタンク7に
設置したときの断面図を図示したものであり、図中10
はGISの高電圧導体である。
FIG. 2 is a cross-sectional view of the capacitance voltage divider 20 shown in FIG. 1 installed in the GIS tank 7.
is a high voltage conductor in GIS.

第3図は、第1図の容量分圧器20とオシロスコープな
どの波形観測装置12との接続回路を示す図である。同
軸ケーブル13の特性インピーダンスZ2  (例えば
50Ω)と、容量分圧器20の円錐状構造物21が有す
る特性インピーダンスZlとは等しくされ、Z1=22
 =Zとなっている。
FIG. 3 is a diagram showing a connection circuit between the capacitive voltage divider 20 of FIG. 1 and the waveform observation device 12 such as an oscilloscope. The characteristic impedance Z2 (for example, 50Ω) of the coaxial cable 13 and the characteristic impedance Zl of the conical structure 21 of the capacitive voltage divider 20 are made equal, and Z1=22
=Z.

第3図(A>では、波形観測装置12の入力インピーダ
ンス14は、同軸ケーブル13の特性インピーダンスZ
2に等しくとっている。
In FIG. 3 (A>), the input impedance 14 of the waveform observation device 12 is the characteristic impedance Z of the coaxial cable 13.
It is taken as equal to 2.

第3図(B)、(C)では、同軸ケーブル13と円錐状
構造物21との間に抵抗15(R1)。
In FIGS. 3(B) and 3(C), a resistor 15 (R1) is placed between the coaxial cable 13 and the conical structure 21.

16(R2)及びコンデンサ17(C3)を接続し、同
軸ケーブル13と波形観測装置12との間に抵抗18(
R3)及びコンデンサ19(C41を接続することによ
って、波形観測装置12の入力インピーダンスを、Z2
に比較して充分大きな値(例えば1MΩ)としている。
16 (R2) and capacitor 17 (C3), and a resistor 18 (
By connecting the capacitor 19 (R3) and the capacitor 19 (C41), the input impedance of the waveform observation device 12 can be changed to Z2
It is set to a sufficiently large value (for example, 1 MΩ) compared to .

この場合、第3図(B)、(C)の各回路定数は、次の
条件式を満足するように選ぶ。
In this case, each circuit constant in FIGS. 3(B) and 3(C) is selected so as to satisfy the following conditional expression.

第3図(B)の回路: R1(R2−Z)=Z2.  R3=Z・・・ 条件式
■ C1十C2= (Z/Rt )  (C十〇  十03 十04 )K
I   K2 ・・・ 条件式■ 第3図(C)の回路: R1(R2+Z)=Z2.  R3=Z・・・ 条件式
■ C1十02 = (R2/Z)  (C+C十C3+C4)K1   に
2 ・・・ 条件式■ 但し、CK1は円錐状構造物21が形成する同軸ケーブ
ルの中心導体4が外部電極5に対して有する容量、CK
2は同軸ケーブル13の中心導体が外部電極に対して有
する容量を表す。
Circuit of FIG. 3(B): R1(R2-Z)=Z2. R3=Z... Conditional expression ■ C10C2= (Z/Rt) (C10 103 104) K
I K2 ... Conditional expression ■ Circuit of Fig. 3 (C): R1 (R2 + Z) = Z2. R3=Z... Conditional expression ■ C102 = (R2/Z) (C+C0C3+C4) K1 to 2... Conditional expression ■ However, CK1 is the center conductor 4 of the coaxial cable formed by the conical structure 21 The capacitance that CK has with respect to the external electrode 5, CK
2 represents the capacitance that the center conductor of the coaxial cable 13 has with respect to the external electrode.

以上のような構成を有する本実施例の作用は次の通りで
ある。
The operation of this embodiment having the above configuration is as follows.

即ち、第5図に示したような従来の容量分圧器において
は、電極1と接地電位金属2が形成する浮遊容ff1c
2の端子電圧を同軸ケーブルに導く時、リード線4−に
よって、電極1の1点で電位を検出していたのに対し、
本実施例の容量分圧器20では、円錐状導体4によって
、電極1の広い面積で電位を検出するため、浮遊容量C
2の内部で内部共振が発生しても、この内部共振が平均
化されて検出されることになり、このような内部共振波
形を除去する作用を有する。
That is, in the conventional capacitive voltage divider as shown in FIG.
When leading the terminal voltage of 2 to the coaxial cable, the potential was detected at one point of electrode 1 by lead wire 4-,
In the capacitive voltage divider 20 of this embodiment, since the potential is detected over a wide area of the electrode 1 using the conical conductor 4, the stray capacitance C
Even if internal resonance occurs inside the device 2, this internal resonance is averaged and detected, and has the effect of removing such an internal resonance waveform.

また、円錐状構造物21の特性インピーダンスZ1と同
軸ケーブル13の特性インピーダンスZ2とを等しくし
ているため、第3図(A)に示すように接続し、波形観
測装置12の入力インピーダンスを、同軸ケーブル13
の特性インピーダンスZ2に等しくした場合には、両ケ
ーブル13゜21同士を整合をとって接続することがで
き、従って、ケーブル内での信号の反射をなくすことが
できる。この方法は、単純な回路構成であるため、高周
波特性を良くできる。
Furthermore, since the characteristic impedance Z1 of the conical structure 21 and the characteristic impedance Z2 of the coaxial cable 13 are made equal, they are connected as shown in FIG. cable 13
When the characteristic impedance Z2 is set equal to the characteristic impedance Z2, both cables 13.degree. 21 can be connected with matching, and therefore, signal reflection within the cable can be eliminated. Since this method has a simple circuit configuration, high frequency characteristics can be improved.

しかしながら、第3図(A>の回路においては、電極1
と接地電位金属2との間の浮遊容量C2に低抵抗(例え
ば50Ω)が並列接続されているため、低周波は測定で
きない。そこで、第3図(B)、(C)に図示する回路
が考えられる。これらの回路構成においては、条件式■
、■、及び■、■によって、各同軸ケーブルの整合をと
り、且つ低周波成分と高周波成分の分圧比を等しくする
ことかできるため、50Hz、60HzのAC電圧から
、数百MH7の高周波まで、広い周波数帯域を有する測
定器を実現できる。
However, in the circuit shown in FIG. 3 (A>), the electrode 1
Since a low resistance (for example, 50Ω) is connected in parallel to the stray capacitance C2 between the metal 2 and the ground potential metal 2, low frequencies cannot be measured. Therefore, the circuits shown in FIGS. 3(B) and 3(C) can be considered. In these circuit configurations, the conditional expression ■
, ■, and ■, ■, each coaxial cable can be matched and the voltage division ratio of low frequency component and high frequency component can be made equal, so from AC voltage of 50Hz and 60Hz to high frequency of several hundred MH7, A measuring instrument with a wide frequency band can be realized.

以上説明したように、本実施例においては、容量分圧器
の低圧側浮遊容量C2に発生する内部共振による影響を
除去し、高周波特性の良い電圧測定装置を提供できる。
As described above, in this embodiment, the influence of internal resonance generated in the low-voltage side stray capacitance C2 of the capacitive voltage divider can be removed, and a voltage measuring device with good high frequency characteristics can be provided.

また、周波数50H2のACから周波数が数百MH2の
高周波まで、広い周波数帯域を有する電圧測定装置を提
供できる。
Further, it is possible to provide a voltage measuring device having a wide frequency band from AC with a frequency of 50H2 to high frequency with a frequency of several hundred MH2.

なお、前記実施例では、円錐状構造物21が形成する同
軸ケーブルの特性インピーダンスZlと同軸ケーブル1
3の特性インピーダンスZ2を等しくした場合を考えた
が、円錐状構造物21の特性インピーダンスZ1を同軸
ケーブル13の特性インピーダンスZ2に比べて大きく
とる構成も可能である。このような実施例を第4図に示
す。
In the above embodiment, the characteristic impedance Zl of the coaxial cable formed by the conical structure 21 and the coaxial cable 1
Although the case has been considered in which the characteristic impedances Z2 of the coaxial cables 13 and 3 are made equal, a configuration in which the characteristic impedance Z1 of the conical structure 21 is larger than the characteristic impedance Z2 of the coaxial cable 13 is also possible. Such an embodiment is shown in FIG.

第4図において、円錐状構造物21の中心導体と同軸ケ
ーブル13の中心導体との間には、抵抗R1か接続され
、また、同軸ケーブル13と波形観測装置12との間に
は、抵抗R3とコンデンサC4が並列接続されている。
In FIG. 4, a resistor R1 is connected between the center conductor of the conical structure 21 and the center conductor of the coaxial cable 13, and a resistor R3 is connected between the coaxial cable 13 and the waveform observation device 12. and capacitor C4 are connected in parallel.

この場合、各回路定数の値は、次のように選ぶ。In this case, the values of each circuit constant are selected as follows.

R1+Z2 =Zt 、  R3=Z2・・・ 条件式
■ C1+02 = (Z2 /Rt )(CK1+CK2+C4)・・・ 
条件式■ ここで、Zl >22としているので、条件式〇を満た
すR1は正の値となり、現実に存在する抵抗を使用でき
る。また、条件式■、■は、前記条件式■、■、もしく
は■、■に相当するため、第4図に示す回路においては
、第3図(B)、(C)に示す回路と全く同様の効果を
得られる。ざらに、第4図の回路は、第3図(B)、(
C)の各回路に比へ、抵抗16とコンデンサ17とを省
略できるため、構造を簡略化でき、高周波特性を向上で
きる利点もある。
R1+Z2 = Zt, R3=Z2... Conditional expression ■ C1+02 = (Z2 /Rt) (CK1+CK2+C4)...
Conditional Expression (2) Here, since Zl >22, R1 that satisfies Conditional Expression (0) has a positive value, and an actually existing resistor can be used. Furthermore, since the conditional expressions ■ and ■ correspond to the conditional expressions ■ and ■ or ■ and ■, the circuit shown in FIG. 4 is exactly the same as the circuit shown in FIGS. 3(B) and (C). You can get the effect of Roughly speaking, the circuit in Figure 4 is as shown in Figure 3 (B), (
Since the resistor 16 and capacitor 17 can be omitted from each circuit in C), the structure can be simplified and the high frequency characteristics can be improved.

[発明の効果] 以上説明したように、本発明においては、電極と同軸ケ
ーブルとの接続に当たって、従来のリード線の代わりに
円錐状導体を使用することで電極の電位を広い面積で検
出して、容量の内部共振モードを平均化できるため、G
IS内に発生する立ち上がり時間がナノ秒のオーダーの
急峻波サージや、レーザーや核融合に用いられる急峻波
パルスの電圧から、50H2或いは60H2の商用周波
電圧まで、電圧波形及び電圧値を正確に観測できるよう
な、優れた電圧測定装置を提供することができる。
[Effects of the Invention] As explained above, in the present invention, the potential of the electrode can be detected over a wide area by using a conical conductor instead of the conventional lead wire when connecting the electrode to the coaxial cable. , since the internal resonance mode of the capacitance can be averaged, G
Accurately observe voltage waveforms and voltage values, from voltages of steep wave surges with rise times on the order of nanoseconds generated in IS and steep wave pulses used in lasers and nuclear fusion to commercial frequency voltages of 50H2 or 60H2. It is possible to provide an excellent voltage measuring device that can perform the following functions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による電圧測定装置の一実施例の容量分
圧器を示す断面図、第2図は第1図の容量分圧器をGI
Sに接続した状態を示す断面図、第3図及び第4図はそ
れぞれ第1図の容量分圧器を波形観測装置に接続した実
施例を示す回路図、第5図は従来の容量分圧器を示す断
面図である。 1・・・電極、1a・・・カバー、2・・・接地電位金
属、3・・・絶縁物シート、4・・・円錐状導体、4−
リード線、5・・・接地電位金属電極、6・・・コネク
タ、7・・・GISタンク、8,9・・・フランジ、1
0・・・高電圧導体、11,15,16,18・・・抵
抗、12・・・波形観測装置、13・・・同軸ケーブル
、14・・・入力インピーダンス、17.19・・・コ
ンデンサ、20・・・容量分圧器、21・・・円錐状構
造物。
FIG. 1 is a sectional view showing a capacitive voltage divider of an embodiment of the voltage measuring device according to the present invention, and FIG. 2 is a sectional view showing the capacitive voltage divider of FIG.
3 and 4 are respectively circuit diagrams showing an example in which the capacitive voltage divider shown in Fig. 1 is connected to a waveform observation device, and Fig. 5 is a circuit diagram showing a conventional capacitive voltage divider connected to FIG. DESCRIPTION OF SYMBOLS 1... Electrode, 1a... Cover, 2... Ground potential metal, 3... Insulator sheet, 4... Conical conductor, 4-
Lead wire, 5... Ground potential metal electrode, 6... Connector, 7... GIS tank, 8, 9... Flange, 1
0... High voltage conductor, 11, 15, 16, 18... Resistor, 12... Waveform observation device, 13... Coaxial cable, 14... Input impedance, 17.19... Capacitor, 20... Capacity voltage divider, 21... Conical structure.

Claims (1)

【特許請求の範囲】  接地電位金属及び高電圧導体のそれぞれに対して浮遊
容量を有する電極を、同軸ケーブルのコネクタに接続す
る電圧測定装置において 前記接地電位金属の同軸ケーブル側には、接地電位金属
電極が接続され、この接地電位金属電極に、電極側を底
面とする略円錐状の空間が形成され、この略円錐状の空
間内には、略円錐状の導体が同軸となるように設置され
、この略円錐状の導体の底面と前記電極の片面とが面で
接続され、略円錐状の導体の頂部と前記同軸ケーブルの
コネクタとが接続されたことを特徴とする電圧測定装置
[Claims] In a voltage measuring device that connects an electrode having stray capacitance to a coaxial cable connector for each of a ground potential metal and a high voltage conductor, a ground potential metal is connected to the coaxial cable side of the ground potential metal. An electrode is connected, and a substantially conical space with the electrode side as the bottom surface is formed in this ground potential metal electrode, and a substantially conical conductor is installed coaxially within this substantially conical space. A voltage measuring device characterized in that the bottom surface of the substantially conical conductor and one surface of the electrode are connected at a surface, and the top of the substantially conical conductor is connected to the connector of the coaxial cable.
JP3742688A 1988-02-22 1988-02-22 Voltage measuring instrument Pending JPH01213577A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3742688A JPH01213577A (en) 1988-02-22 1988-02-22 Voltage measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3742688A JPH01213577A (en) 1988-02-22 1988-02-22 Voltage measuring instrument

Publications (1)

Publication Number Publication Date
JPH01213577A true JPH01213577A (en) 1989-08-28

Family

ID=12497190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3742688A Pending JPH01213577A (en) 1988-02-22 1988-02-22 Voltage measuring instrument

Country Status (1)

Country Link
JP (1) JPH01213577A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2750489A1 (en) * 1996-06-26 1998-01-02 Philips Electronics Nv COMPOSITE CAPACITIVE SENSOR TYPE DEVICE

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2750489A1 (en) * 1996-06-26 1998-01-02 Philips Electronics Nv COMPOSITE CAPACITIVE SENSOR TYPE DEVICE

Similar Documents

Publication Publication Date Title
Boggs et al. Techniques and instrumentation for measurement of transients in gas-insulated switchgear
WO2011103775A1 (en) Generation device and method for nominal voltage
CN110501619B (en) High-frequency response partial pressure measuring device
US5703488A (en) Instrument for measuring plasma excited by high-frequency
US20200088772A1 (en) Systems and methods to measure primary voltage using capacitive coupled test point and grounded sensor circuit
US4473857A (en) Input protection circuit for electronic instrument
Wang et al. Capacitive voltage sensor array for detecting transient voltage distribution in transformer windings
JPH01213577A (en) Voltage measuring instrument
Burow et al. Can ferrite materials or resonant arrangements reduce the amplitudes of VFTO in GIS
US5028863A (en) High voltage measuring device
CN206420938U (en) A kind of coaxial type capacitance-resistance integrator
JP2002022790A (en) Partial discharge detecting device for gas insulating equipment
Burow et al. Measurement system for very fast transient overvoltages in gas insulated switchgear
Wang et al. Measurement method of transient overvoltage distribution in transformer windings
JPS6114576A (en) Alternating current voltage detector
JPH08124753A (en) Shield ring for bushing of electronic equipment
Fowkes et al. Refinements in precision kilovolt pulse measurements
CN214473634U (en) Nanosecond electric field measuring probe based on distributed capacitance voltage division principle
CN211856705U (en) High-precision broadband overvoltage measuring mechanism
JPH11202001A (en) Voltage detector
JPH05256892A (en) Method and instrument for measuring cable impedance
JPH0827325B2 (en) Failure inspection device for power equipment
CN108152554B (en) Capacitive voltage divider for measuring pulse voltage of coaxial cable
Schon et al. High Impulse Voltages
JPH11326394A (en) Isolation measuring apparatus