JPS61167495A - Production of potable water - Google Patents

Production of potable water

Info

Publication number
JPS61167495A
JPS61167495A JP839485A JP839485A JPS61167495A JP S61167495 A JPS61167495 A JP S61167495A JP 839485 A JP839485 A JP 839485A JP 839485 A JP839485 A JP 839485A JP S61167495 A JPS61167495 A JP S61167495A
Authority
JP
Japan
Prior art keywords
water
fresh water
carbon dioxide
filter
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP839485A
Other languages
Japanese (ja)
Other versions
JPH0461714B2 (en
Inventor
Naohiko Ugawa
直彦 鵜川
Tsumoru Nakamura
中村 積
Masami Kondo
正實 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP839485A priority Critical patent/JPS61167495A/en
Publication of JPS61167495A publication Critical patent/JPS61167495A/en
Publication of JPH0461714B2 publication Critical patent/JPH0461714B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To eliminate entirely the need for an alkaline agent which is hereto fore required or to require just a small amt. thereof even when said agent is necessary by passing a gas contg. no carbon dioxide into fresh water after passage through a filter consisting of limestone, etc., to maintain the pH of said fresh water at a prescribed value. CONSTITUTION:This method produces potable water by blowing the gas contg. the carbon dioxide generated form a desalting device 1 for sea water by an evaporation method to the fresh water formed by said device 1 in a CO2 absorption column 2 to form the carbonic acid-contg. water then passing the water through the filter 3 packed with the granular limestone and/or dolomite. The gas contg. no carbon dioxide is passed from a blower 5 to the fresh water in a water storage tank 4 after the passage through the filter 3 to maintain the pH of the fresh water in the tank 4 at the prescribed value in the above- mentioned method. The need for the alkaline agent which is heretofore required for pH adjustment is eliminated entirely or the amt. thereof to be used is considerably decreased, by which the running cost is considerably reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は蒸発法による海水の淡水化装置で生成した淡水
に硬度成分を冷加して飲料水を得る方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for obtaining drinking water by cooling a hardness component to fresh water produced in a seawater desalination apparatus using an evaporation method.

〔技術背景〕[Technical background]

蒸発式海水淡水化装置で得られる淡水は蒸留水でおるた
め各種のイオン及び溶存ガス類を殆んど含まず、カルシ
ウムやマグネシウムの硬度成分も殆んど無い。このため
上記淡水全そのまま汎用の送水設備を使用して送水した
場合には、送水設備に使用されている鋼管の腐食、コン
ク17− ト材の溶出現象が起こり、送水設備の機能を
損う恐れがある。一方飲料水として使用した場合には前
述理由により無味であり飲料水とし゛ての飲み味が悪い
ばかりでなく心臓病の原因となり得ることが指摘されて
いる。
Since the fresh water obtained by the evaporative seawater desalination equipment is distilled water, it contains almost no various ions and dissolved gases, and almost no hardness components such as calcium or magnesium. For this reason, if all of the fresh water mentioned above is used for water transmission using general-purpose water transmission equipment, corrosion of the steel pipes used in the water transmission equipment and elution of the concrete material may occur, which may impair the functionality of the water transmission equipment. There is. On the other hand, when used as drinking water, it has been pointed out that for the reasons mentioned above, it is tasteless and not only tastes bad as drinking water, but can also cause heart disease.

〔従来の技術〕[Conventional technology]

このため従来より例えば文献「Desalinatio
n。
For this reason, for example, the document ``Desalination''
n.

39(1981)505−520Jに紹介されているよ
うに硬度増加剤として生石灰、消石灰、石灰石、ドロマ
イト等が使用され、これらを淡水に溶解させる方法が行
なわれてきたが、このうち石灰石及び/又はドロマイト
ラ用いる場合、これ等を粒状にして充填したフィルター
(飲料水化装置では石灰石及び/又はドロマイトの充填
層ft通常フィルターと呼称]にめら〃・じめ炭酸ガス
を吹き込んだ淡水音導き、カルシウムあるいはマグネシ
ウムを重炭酸塩として溶出させて水の硬度金増す方法が
一般的である。
39 (1981) 505-520J, quicklime, slaked lime, limestone, dolomite, etc. have been used as hardness increasing agents, and a method of dissolving these in fresh water has been carried out, but among these, limestone and/or When using dolomite, carbon dioxide gas is blown into a filter filled with granules of dolomite (in drinking water production equipment, it is called a packed bed of limestone and/or dolomite ft filter), and fresh water is introduced. A common method is to increase the hardness of water by eluting calcium or magnesium as bicarbonate.

炭酸ガス源としては、別途燃料を燃焼させて得た排ガス
中の炭酸ガスを回収する方法、炭酸ガスボンベで搬入す
る方法等が提案されているが中でも最近、淡水化装置自
体から発生する炭酸ガスを有効利用する方法が、経済性
の面からも魅力のあるものとして注目されている。
As a source of carbon dioxide, methods have been proposed, such as recovering carbon dioxide from exhaust gas obtained by separately burning fuel, and transporting carbon dioxide gas in carbon dioxide cylinders. Methods of effective utilization are attracting attention as they are attractive from an economical perspective.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

一般に蒸発法による海水淡水化装置は大規模であり、1
基あたりの淡水製造水量は20 、OOO〜s s、o
 o o トン/日に達しこれが同一場所に数基から数
十基建設される。従って付帯設備である飲料水化装置で
処理する淡水量も美大となり、フィルター通過後の水の
出講重用として使用するアルカリ剤の消費量がかさむこ
とが運転コストの面で問題となっている。アルカリ剤と
しては水酸化す) IJウム又は炭酸ナトリウム等が適
用できるが、これらの入手困難な場所への飲料水化装置
設置の際にはアルカリ剤の確保も問題になる。
Seawater desalination equipment using the evaporation method is generally large-scale, and
The amount of fresh water produced per group is 20, OOO~s s, o
o o tons/day, and several to dozens of units are constructed in the same location. Therefore, the amount of fresh water processed by the drinking water conversion equipment, which is ancillary equipment, is also increased, and the consumption of alkaline agents, which are used for the purpose of water after passing through the filter, increases, which poses a problem in terms of operating costs. . As an alkali agent, IJum (hydroxide) or sodium carbonate can be used, but securing the alkali agent becomes a problem when installing a drinking water conversion device in a place where it is difficult to obtain these agents.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記従来法の問題点を解消するために鋭意研究
の結果見い出されたもので、その骨子とするところはフ
ィルター通過後の淡水に炭酸ガスを含まないガスを通気
して、該淡水の声を所定値とすることt−%徴とする飲
料水の製造方法である。
The present invention was discovered as a result of intensive research in order to solve the problems of the above-mentioned conventional methods. This is a method for producing drinking water in which setting the voice to a predetermined value is a t-% sign.

詳しくは、蒸発法による海水の淡水化装置で生成した淡
水に該淡水化装置より発生する炭酸ガス含有ガス上吹き
込んで炭酸含有水とした後、石灰石及び/又はドロマイ
トの粒状物を充填したフィルターを通過させて飲料水を
得る方法に於いて、フィルター通過後の淡水に炭酸ガス
を含まないガス全通気して該淡水の−を所定値とするこ
とを%命とする飲料水の製造方法全提案するものである
Specifically, fresh water produced in a seawater desalination device using the evaporation method is made into carbonated water by blowing over the carbon dioxide-containing gas generated from the desalination device, and then filtered with limestone and/or dolomite granules. In the method of obtaining drinking water by passing the fresh water through the filter, a complete proposal for a method for producing drinking water that requires completely venting gas that does not contain carbon dioxide to the fresh water after passing through a filter to bring the - of the fresh water to a predetermined value. It is something to do.

〔作用〕[Effect]

本発明方法の大きな長所はフィルター通過後の淡水に、
炭酸ガスを含まないガス全通気して出値を増加させるこ
とにより所定−値とするため、従来必要であったアルカ
リ剤が全く必要ないか、必要な場合も小量で済むことに
ある。石灰石及び/又はドロマイトを充填したフィルタ
ー内を炭酸含有水が通過すると下記Tl1式及び/又は
(21式に従ってカルシウム及び/又はマグネシウムの
硬度成分が溶出してくる。
The great advantage of the method of the present invention is that the fresh water after passing through the filter
Since a predetermined value is achieved by increasing the output value by fully venting gas that does not contain carbon dioxide gas, there is no need for an alkaline agent, which was conventionally required, or even if it is necessary, only a small amount is required. When carbonated water passes through a filter filled with limestone and/or dolomite, hardness components of calcium and/or magnesium are eluted according to the following Tl1 formula and/or (21 formula).

OaG 01 +OO2+ H2O@ ca (HCO
2) 2       (11Ca−Mg(Co ) 
+2GO+2HO#0a(HGO) +Mg(HGO3
)z(2)is222             S 
2+11式及び(21式で示した液相反応は平衡反応で
あることから、フィルター通過後の水中には未反応の炭
酸ガスが残存することとなり、このため一般Vc−値が
低くなる傾向を示す。…値が低い1までは飲料に適さな
いばかりでな((WHOでは7.0〜8.5が適当とし
ている〕、水の腐食傾向を示す指数であるLangel
iar 5azurationIndexが負となり、
飲料水化の本来の目的でら11あ改善と水の腐食傾向の
低減が達成不可能となる。そこで従来は水酸化ナトリウ
ム又は炭酸ナトリウム等のアルカリ剤全使用して次式に
示すように、フィルター出口水中に残存する炭酸ガスを
中和して出値を調整する方法がとられてきた。
OaG 01 +OO2+ H2O@ca (HCO
2) 2 (11Ca-Mg(Co)
+2GO+2HO#0a(HGO) +Mg(HGO3
)z(2)is222S
Since the liquid phase reactions shown in equations 2+11 and (21) are equilibrium reactions, unreacted carbon dioxide remains in the water after passing through the filter, and therefore the general Vc-value tends to be low. ...A value as low as 1 is not only unsuitable for drinking ((WHO considers 7.0 to 8.5 to be appropriate), but also the Langel index, which is an index showing the tendency of water to corrode.
iar 5azurationIndex becomes negative,
It becomes impossible to achieve the original purpose of making water into a potable water by improving the water's tendency to corrode. Therefore, the conventional method has been to use alkaline agents such as sodium hydroxide or sodium carbonate to neutralize the carbon dioxide gas remaining in the filter outlet water and adjust the output value, as shown in the following equation.

Co2+ NaOH−j! NaHCC)g 、   
     (31Go2+ Na2Go、 + H2O
: 2NaHCO,+41本発明者らは上記アルカリ剤
の低減方法について鋭意検討したところ、残存炭酸ガス
を含むフィルター通過後の水に炭酸ガスt−含まないガ
スを通気することにより、残存炭酸ガスが水中より放出
され出値が上昇する事実を見い出し、本発明に至ったも
のである。
Co2+ NaOH-j! NaHCC)g,
(31Go2+ Na2Go, + H2O
: 2NaHCO, +41 The inventors of the present invention have conducted extensive studies on a method for reducing the amount of alkaline agents mentioned above, and have found that by aerating gas that does not contain carbon dioxide into the water that has passed through the filter and contains residual carbon dioxide, the residual carbon dioxide can be removed from the water. The present invention was based on the discovery of the fact that the release value increases due to increased release.

通気ガスとしては、窒素ガス等炭酸ガスを全く含まない
ガスが望ましいが、入手の容易な空気での放散も可能で
ある。但し空気中には炭酸ガスが0.05%程度含まれ
ているため気液平衡関係から炭酸ガスの放散限界が生じ
るが、アルカリ剤添加の併用等で対処可能である。した
がって、本発明は使用するガスの種類及び淡水中の出値
などに応じて、ガス通気後、必要ならばアルタリ剤を添
加することも本発明に含まれるものである。ガス通気装
置としては、水処理用汎用設備として実績の多いエアレ
ーションタンク型式のもので充分であり特別の工夫を必
要としない。散気装置としてはエアレーション格子、多
孔性散気管等が適用でき、貯水タンクを有する場合には
、貯水タンクに散気管のみをとりつけガス通気装置と兼
用することも可能である。
As the ventilation gas, a gas containing no carbon dioxide gas such as nitrogen gas is preferable, but it is also possible to use air, which is easily available. However, since air contains about 0.05% carbon dioxide gas, there is a limit to the diffusion of carbon dioxide gas due to vapor-liquid equilibrium, but this can be overcome by adding an alkali agent. Therefore, the present invention also includes adding an altar agent if necessary after gas aeration, depending on the type of gas used and its value in fresh water. As the gas venting device, an aeration tank type device, which has a good track record as a general-purpose facility for water treatment, is sufficient and does not require any special measures. As the aeration device, an aeration grid, a porous aeration pipe, etc. can be used, and if a water storage tank is provided, it is also possible to attach only the aeration pipe to the water storage tank and use it as a gas ventilation device.

…調整後の設定値としては7.5〜8.5の範囲とする
ことが多いが、設定−値が高い場合には、通気のみでは
所定μ値まで上昇させることが不可能な場合もあり、仁
の場合には通気後さらにアルカリ剤を加えて所定−値と
する。もちろんこの場合にも、アルカリ剤単独でμ値を
調整する場合に比較し、アルカリ剤の必用量は大幅に削
減できる。又、気液千両関係から液−〇上昇するほど炭
酸ガスの放散速度が低下しガス通気装置の容量を増大さ
せる必要があり、これに対処するため、アルカリ剤添加
の併用も有効な場合がある。
...The set value after adjustment is often in the range of 7.5 to 8.5, but if the set value is high, it may be impossible to raise it to the specified μ value with ventilation alone. In the case of kernels, an alkaline agent is further added after aeration to obtain a predetermined value. Of course, in this case as well, the amount of alkaline agent required can be significantly reduced compared to when the μ value is adjusted using an alkaline agent alone. In addition, due to the relationship between gas and liquid, the rate of carbon dioxide dissipation decreases as the liquid level rises, making it necessary to increase the capacity of the gas venting device.To deal with this, it may also be effective to add an alkaline agent. .

〔実施態様〕[Embodiment]

次に本発明方法の実施態様を明らかにするため図にもと
づいて説明する。
Next, in order to clarify embodiments of the method of the present invention, a description will be given based on the drawings.

第1図は本発明を海水の多段フラッシュ蒸発法から得ら
れる淡水の飲料化に適用した場合を示す。
FIG. 1 shows the case where the present invention is applied to the drinking of fresh water obtained from a multi-stage flash evaporation method of seawater.

海水の多段フラッシュ蒸発装置1より製造され九淡水は
ラインaより抜き出され、バイパスラインbとライン0
により分岐される。
Nine freshwater produced from the multi-stage flash evaporator 1 of seawater is extracted from line a, bypass line b and line 0.
It is branched by

次にラインCによって分岐された淡水はラインd及びラ
イン0によりさらに分岐され、ラインdt−通った淡水
はCO2吸収塔2に導入される。
Next, the fresh water branched by line C is further branched by line d and line 0, and the fresh water passing through line dt is introduced into the CO2 absorption tower 2.

CO2吸収塔2には多段フラッシュ蒸発装置lt、1よ
り抜き出され、コンプレッサー7により昇圧されたCO
2含有ガスがラインni通って導入される。CO2吸収
塔2内でco2t−吸収して炭酸水となつ良木はライン
ft−通って抜き出され、C02吸収塔2t−バイパス
するラインe1il−遡った淡水と混合後、ラインgt
−通ってフィルター5VC導入される。未吸収のCO2
ガス及び窒素、酸素等のガスはラインOt通って系外に
排出される。
The CO2 absorption tower 2 contains CO extracted from the multi-stage flash evaporator lt, 1 and pressurized by the compressor 7.
2-containing gas is introduced through line ni. The CO2 absorption tower 2 absorbs CO2t and turns it into carbonated water, which is extracted through the line ft-, and after mixing with the fresh water that has gone up through the CO2 absorption tower 2t and the bypassing line e1il, it is transferred to the line gt.
- through which the filter 5VC is introduced. unabsorbed CO2
Gases such as nitrogen and oxygen are discharged to the outside of the system through line Ot.

CO2吸収塔2としては充填塔あるいはラインミキサー
等が適当である。
As the CO2 absorption tower 2, a packed tower or a line mixer is suitable.

次にラインgより送入された炭酸含有水はフィルター3
内t−通過する間にフィルター内に充填された石灰石及
び/又はドロマイトの粒状物を溶解し、硬度及び全アル
カリ度を増した後ラインhより抜き出され、散気装置i
ll′ft:1#えた貯水タンク4に供給される。貯水
タンク4には空気ブロワ−5よりラインmt−通して空
気が導入され、水中に小量残存するCO2ガスを放散し
液−値を上昇させる。CO2ガスを含んだ空気はライン
jより糸外に放出される。放出ガス中には水分が含まれ
るが、通常水温は40℃以下であるため蒸気圧が低く製
造水の散逸は少ない。
Next, the carbonated water sent from line g is filtered to filter 3.
During passing through the filter, the limestone and/or dolomite particles are dissolved, increasing the hardness and total alkalinity, and then extracted from the line h and passing through the air diffuser i
ll'ft: 1# is supplied to the water storage tank 4. Air is introduced into the water storage tank 4 from an air blower 5 through a line mt to diffuse a small amount of CO2 gas remaining in the water and increase the liquid value. Air containing CO2 gas is released from line j to the outside of the yarn. The released gas contains moisture, but since the water temperature is usually below 40°C, the vapor pressure is low and there is little dissipation of produced water.

貯水タンク4からライン1により抜き出された水はライ
ンbt−aれる淡水と混合され、所定の硬度に調整後ラ
インjt−通って最終−調整工程に送られる。−調整工
程ではアルカリ剤タンク6よりアルカリ剤溶液がライン
kt−通ってラインj内に注入され、所定−値となるよ
う調整される。設定−値が低くラインj1a−通る水が
既に所定値となっている場合には前述の最終−調整工程
は不要となる。pHi!4整済みの飲料水はライン1よ
り糸外にとり出される。
Water extracted from the water storage tank 4 through line 1 is mixed with fresh water flowing through line bt-a, and after being adjusted to a predetermined hardness, is sent through line jt- to the final conditioning step. In the -adjustment process, an alkali solution is injected from the alkali tank 6 into the line j through the line kt-, and is adjusted to a predetermined value. If the set value is low and the water passing through line j1a has already reached a predetermined value, the final adjustment step described above is not necessary. pHi! 4. The drinking water that has been prepared is taken out from the line 1.

(実施例1] 次に本発明の作用効果を明らかにするため実施例を示す
(Example 1) Next, an example will be shown to clarify the effects of the present invention.

海水の多段フラッシュ蒸発装置より製造された淡水と炭
酸ガス含有ガスを分取し、第1図に示す態様の飲料水製
造方法により処理した。淡水分取量は4001/hであ
り、そのうち200t/h  @分岐してラインCによ
り炭酸ガス吸収工程へ送入し、残りはバイパスラインb
t−流した。
Fresh water and carbon dioxide-containing gas produced by a multi-stage flash evaporation device for seawater were separated and treated according to the drinking water production method shown in FIG. The amount of fresh water extracted is 4001/h, of which 200 t/h is branched and sent to the carbon dioxide absorption process via line C, and the rest is sent to the bypass line B.
T-flowed.

吸収塔2としてはラシヒリング光てん塔を使用し、フィ
ルター5にはふるい径111Iから4謹までの石灰石七
光損した。充填体積は20I3とした。エアレーション
格子tJえた貯水タンク4には空気プロワ−5より空気
を15.3m N/h送入し、脱炭酸した。
As the absorption tower 2, a Raschig ring light filter was used, and for the filter 5, a limestone light filter with a sieve diameter of 111I to 4mm was used. The filling volume was 20I3. 15.3 mN/h of air was fed from an air blower 5 into the water storage tank 4 equipped with an aeration grid for decarbonation.

ライン1よりとり出される最終処理後の飲料水の全硬度
が炭酸カルシウム基準で60rng/jとなるようライ
ンnより吹き込む炭酸ガス含有ガス量?設定した。又、
最終処理後の飲料水のp)Iは8.4となるようにアル
カリ剤(カセイソーダ)の注入量を調整した。
What is the amount of carbon dioxide-containing gas injected from line n so that the total hardness of the final treated drinking water taken out from line 1 is 60 rng/j based on calcium carbonate? Set. or,
The amount of alkaline agent (caustic soda) injected was adjusted so that the p)I of the drinking water after final treatment was 8.4.

上記条件下で2日間の連続運転全実施し、カセイソーダ
の1日あたりの消費量を測定したところ次の結果を得た
Continuous operation was carried out for two days under the above conditions, and the daily consumption of caustic soda was measured, and the following results were obtained.

カセイソーダの消費量 =191 (実施例2〕 実施例1と同一方法により以下の条件下で淡水を処理し
た。
Consumption amount of caustic soda = 191 (Example 2) Fresh water was treated by the same method as in Example 1 under the following conditions.

淡水分取量は実施例1と同じ400 l / nであり
、そのうち1o o t / h t−分岐してライン
Cにより炭酸ガス吸収工程へ送入し残りはバイパスライ
ンbt−流した。フィルターには実施例1と同一の石灰
石t−106充填した。その他の運転条件は実施例1と
同一とし、2日間の連続運転を実施してカセイソーダの
1日あたりの消費量を測定したところ次の結果を得た。
The amount of fresh water taken was 400 l/n, the same as in Example 1, of which 100 t/h was branched off and sent to the carbon dioxide absorption process through line C, and the rest was passed through bypass line bt. The filter was filled with the same limestone T-106 as in Example 1. Other operating conditions were the same as in Example 1, continuous operation was carried out for two days, and the daily consumption of caustic soda was measured, and the following results were obtained.

カセイソーダの消費量 =77g (比較例1) 貯水タンク4に空気を送入せず、他は実施例1と全く同
一条件下で2日間の連続運転を実施してカセイソーダの
1日あたり消費量を測定したところ次の結果を得た。
Consumption amount of caustic soda = 77 g (Comparative Example 1) Continuous operation was carried out for two days under the same conditions as in Example 1 without introducing air into the water storage tank 4, and the daily consumption amount of caustic soda was calculated. When measured, the following results were obtained.

カセイソーダの消費量 265g (比較例2〕 貯水タンク4に空気を送入せず、他は実施例2と全く同
一条件下で2日間の連続運転全実施してカセイソーダの
1日あたりの消費量を測定したところ次の結果金得た。
Consumption amount of caustic soda: 265 g (Comparative Example 2) Continuous operation was carried out for two days under the same conditions as in Example 2 without introducing air into the water storage tank 4, and the daily consumption amount of caustic soda was calculated. The measurements yielded the following results:

カセイソーダの消費量 =152.9 実施例と比較例を比較すると、フィルター通過後の淡水
に、通気することにより脱炭酸を行うと、最終−調整用
のアルカリ剤消費量全削減出来るという、本発明の適用
による効果が明らかである。
Consumption amount of caustic soda = 152.9 Comparing the example and the comparative example, the present invention shows that if the fresh water after passing through the filter is decarboxylated by aeration, the amount of alkali agent consumed for final adjustment can be completely reduced. The effects of applying this are clear.

〔効果〕〔effect〕

本発明方法によれば、フィルター通過後の淡水の…調整
用に従来必要であったアルカリ剤が全く必要ないか、大
幅に削減できる。飲料水化処理する淡水の量は美大であ
ることからアルカリ剤消費賞も多葉となる。従ってその
削減は運転コスト低減上非常に有効である。
According to the method of the present invention, the alkaline agent conventionally required for conditioning the fresh water after passing through the filter is not required at all or can be significantly reduced. Since the amount of fresh water that is processed to make it into drinking water is the same as that of an art university, the award for alkaline consumption is also high. Therefore, its reduction is very effective in reducing operating costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による飲料水の製造方法を説明するため
のフローシートである。 1・・・多段フラッシュ蒸発装置 2・・・GO□吸収塔 3・・・フィルター 4・・・散気装置付貯水タンク 5・・・空気プロワ− 6・・・アルカリ剤タンク 7・・・コンプレッサー 復代理人  内 1)  明 復代理人  萩 原 亮 −
FIG. 1 is a flow sheet for explaining the method for producing drinking water according to the present invention. 1... Multi-stage flash evaporator 2... GO□ absorption tower 3... Filter 4... Water storage tank with aeration device 5... Air blower 6... Alkali agent tank 7... Compressor Sub-agents 1) Meifuku agent Ryo Hagiwara -

Claims (1)

【特許請求の範囲】[Claims] 蒸発法による海水の淡水化装置で生成した淡水に、該淡
水化装置より発生する炭酸ガス含有ガスを吹き込んで炭
酸含有水としたのち、石灰石及び/又はドロマイトの粒
状物を充填したフィルターを通過させて飲料水を得る方
法に於いて、フィルター通過後の淡水に炭酸ガスを含ま
ないガスを通気して該淡水のpHを所定値とすることを
特徴とする飲料水の製造方法。
Fresh water produced by a seawater desalination device using the evaporation method is made into carbonated water by blowing carbon dioxide-containing gas generated from the desalination device, and then passed through a filter filled with limestone and/or dolomite granules. A method for producing drinking water, which comprises aerating gas not containing carbon dioxide gas into the fresh water after it has passed through a filter to bring the pH of the fresh water to a predetermined value.
JP839485A 1985-01-22 1985-01-22 Production of potable water Granted JPS61167495A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP839485A JPS61167495A (en) 1985-01-22 1985-01-22 Production of potable water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP839485A JPS61167495A (en) 1985-01-22 1985-01-22 Production of potable water

Publications (2)

Publication Number Publication Date
JPS61167495A true JPS61167495A (en) 1986-07-29
JPH0461714B2 JPH0461714B2 (en) 1992-10-01

Family

ID=11691971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP839485A Granted JPS61167495A (en) 1985-01-22 1985-01-22 Production of potable water

Country Status (1)

Country Link
JP (1) JPS61167495A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010042982A1 (en) * 2008-10-14 2010-04-22 Armtech Holdings Pty Ltd Treatment of water containing dissolved mineral species

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010042982A1 (en) * 2008-10-14 2010-04-22 Armtech Holdings Pty Ltd Treatment of water containing dissolved mineral species

Also Published As

Publication number Publication date
JPH0461714B2 (en) 1992-10-01

Similar Documents

Publication Publication Date Title
CA1048231A (en) Process for the removal of oxides of sulfur from a gaseous stream
US5525224A (en) Apparatus for improving city water
GB1586250A (en) Process and an installation for the treatment of water
JPS61167495A (en) Production of potable water
JP2003047950A (en) Deoxygenation and decarboxylation treatment apparatus and treatment method
CN105692856B (en) A kind of modification dolomite quenched for desalination water
JPH0344319Y2 (en)
Khawaji et al. Potabilization of desalinated water at Madinat Yanbu Al-Sinaiyah
JPS6197098A (en) Manufacture of potable water
JPS62121694A (en) Method for controlling drinking water making apparatus using carbon dioxide
JPS6245396A (en) Method of making drinking water using carbon dioxide
JPS6034791A (en) Process for improving quality of water
CA1204886A (en) Method and flow sheet for adapting waste water, being rich in calcium, for an anaerobic fermentation
JPH0362478B2 (en)
JPH0361518B2 (en)
CN107311475A (en) A kind of modification dolomite and preparation method thereof
CN218811116U (en) Industrial wastewater treatment system
JPS6291287A (en) Apparatus for making pure water
JPS58159892A (en) Treatment of fresh water
JPS61114792A (en) Method for making drinking water from fresh water
JP3104253B2 (en) Method of treating water containing ammonia or nitrite nitrogen
JPH05269474A (en) Filter agent for rainwater purifying device
US1927148A (en) Water treatment
JPS6054784A (en) Treatment of organic waste water containing fluorine
Lauter De-chlorination at the Washington Aqueduct

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term