JPS61166931A - Method for molding al-si alloy powder - Google Patents

Method for molding al-si alloy powder

Info

Publication number
JPS61166931A
JPS61166931A JP60004906A JP490685A JPS61166931A JP S61166931 A JPS61166931 A JP S61166931A JP 60004906 A JP60004906 A JP 60004906A JP 490685 A JP490685 A JP 490685A JP S61166931 A JPS61166931 A JP S61166931A
Authority
JP
Japan
Prior art keywords
powder
alloy
time
temp
molded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60004906A
Other languages
Japanese (ja)
Other versions
JPH0121213B2 (en
Inventor
Shigenori Yamauchi
重徳 山内
Susumu Inumaru
犬丸 晋
Kazuhisa Shibue
渋江 和久
Hideo Sano
秀男 佐野
Kiyobumi Ito
清文 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP60004906A priority Critical patent/JPS61166931A/en
Publication of JPS61166931A publication Critical patent/JPS61166931A/en
Publication of JPH0121213B2 publication Critical patent/JPH0121213B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To obtain an alloy having improved wear resistance, superior workability and machinability by heating Al-Si alloy powder with a specified relation between temp. and time when the powder is molded by powder metallurgical processing followed by solidification by rapid cooling. CONSTITUTION:When Al-Si alloy powder is molded by powder metallurgical processing followed by solidification by rapid cooling, the powder is heated at a temp. T ( deg.C) below the solidus line temp. for a time (t) (hr) in one of stages. At this time, the temp. and time satisfy the equation. The average grain size of the Si grains is regulated to 5-15mum and the maximum grain size to 10-30mum, so the wear resistance can be improved.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、Al−Si系粉末合金の成形方法、特に急
冷凝固粉末冶金を利用したA1−Si系合金の耐摩耗性
を更に改善した粉末合金の成形方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a method for forming an Al-Si powder alloy, particularly a powder alloy that further improves the wear resistance of an Al-Si alloy using rapid solidification powder metallurgy. Regarding the molding method.

従来の技術 内燃機関のシリンダーブロック、シリンダーライナ、シ
リンダースリーブ、ピストンや動弁部品(バルブリフタ
ー、バルブスプリングリティナー、バルブシートリング
、ロッカーアーム等)、自動車のシンクロナイザリング
、コンプレッサーのベーン、VTRシリンダなどにおい
ては摺動部における耐摩耗性、低熱膨張性、耐熱性など
の特性が必要とされる。
Conventional technology Internal combustion engine cylinder blocks, cylinder liners, cylinder sleeves, pistons and valve train parts (valve lifters, valve spring retainers, valve seat rings, rocker arms, etc.), automobile synchronizer rings, compressor vanes, VTR cylinders, etc. In this case, properties such as wear resistance, low thermal expansion, and heat resistance are required in sliding parts.

これらの特性を有する合金として過共晶A+−Si合金
が提案されているが、この合金の場合Siが多くなると
耐摩耗性は向上するが、Si粒子径が大きくなるために
切削性、加工性等が劣る。
A hypereutectic A+-Si alloy has been proposed as an alloy with these properties.In this alloy, the wear resistance improves as the Si content increases, but the machinability and workability increase due to the increased Si particle size. etc. are inferior.

これを解決するために合金中にPを添加してSi粒子の
細粒化をはかつても30〜40μm・以下にすることが
できず、上記問題を解決していなかった。
In order to solve this problem, it has not been possible to refine the Si particles to 30 to 40 μm or less by adding P to the alloy, and the above problem has not been solved.

発明が解決しようとする問題点 最近、急冷凝固法によった粉末合金が用いられているが
、この粉末を常法によって成形すると初晶Siの粒子径
が小さいために#411!耗性がやや劣るのが問題であ
った。
Problems to be Solved by the Invention Recently, powder alloys produced by the rapid solidification method have been used, but when this powder is molded by a conventional method, the particle size of the primary Si crystals is small, resulting in #411! The problem was that the abrasion resistance was somewhat poor.

問題点を解決するための手段 結局、耐摩耗性を優れたものとするには、Si粒子の平
均径を5〜15μm、最大径を10〜30μmとする必
要があることを見出し、この発明は、粉末合金を用いて
、Siの粒子径をある程度大きくするような加熱方法を
見出したものである。すなわち、Al−Si系合金粉末
を成形する場合に、Al−Si系合金を下記の式、すな
わら、 T + 40  foot≧520・・・・・・・・・
・・・・・・・・・(1)(ただし、T:温度°C,t
 :時間1−1r)を満たす温度(ただし固相線未満の
温度)お・よび時間、すなわち第1図に示す条件で加熱
することを包含する工程によって、Si粒子の平均粒径
を5〜15μm、最大径を10〜30μmにするAl−
Si系粉末合金の成形方法である。
Means for Solving the Problems In the end, it was discovered that in order to achieve excellent wear resistance, the average diameter of Si particles should be 5 to 15 μm and the maximum diameter should be 10 to 30 μm. , discovered a heating method that uses a powder alloy to increase the particle size of Si to a certain extent. That is, when molding an Al-Si alloy powder, the Al-Si alloy is expressed by the following formula, that is, T + 40 foot≧520...
・・・・・・・・・(1) (T: temperature °C, t
The average particle diameter of the Si particles is reduced to 5 to 15 μm by a process including heating at a temperature (but below the solidus line) and a time satisfying (time 1-1r), that is, under the conditions shown in FIG. , Al- with a maximum diameter of 10 to 30 μm
This is a method for forming a Si-based powder alloy.

粉末冶金法では通常、次のような工程で成形される。In the powder metallurgy method, molding is usually performed in the following steps.

(△)粉末の製造−冷間圧縮−焼結 (B)粉末の製造−冷間圧縮一缶封入一真空脱ガスーH
I P (Hot  I sostaticpress
ing> (、C,)粉末の製造−缶封入一真空脱ガスーIP (D)粉末の製造−冷間圧縮一缶封入一真空脱ガスー押
出 (E)粉末の製造−冷間圧縮一缶封入一真空脱ガスーホ
ットブレスー脱缶−押出(または鍛造、圧延)。
(△) Manufacture of powder - cold compression - sintering (B) Manufacture of powder - cold compression - 1 can, 1 vacuum degassing - H
I P (Hot I sostaticpress
ing> (, C,) Production of powder - can encapsulation - vacuum degassing - IP (D) Powder production - cold compression - 1 can inclusion - vacuum degassing - extrusion (E) Powder production - cold compression - 1 can inclusion - Vacuum degassing - hot breath decanning - extrusion (or forging, rolling).

これらのいずれかの工程で、この発明は材料を上記の(
1)式の条件で加熱し、Si粒子を成長させて平均粒径
を5〜15μm、最大径を10〜30μmとする。
In any of these steps, the present invention converts the material into the above (
1) Heat under the conditions of formula to grow Si particles to have an average particle diameter of 5 to 15 μm and a maximum diameter of 10 to 30 μm.

これに対して、上記(1)式を満足しない条件で加熱処
理を行なうと81粒子の成長が十分ではなく、耐摩耗性
が改善されない。
On the other hand, if the heat treatment is performed under conditions that do not satisfy the above formula (1), the growth of the 81 particles will not be sufficient and the wear resistance will not be improved.

また融点(固相線)以上の温度に加熱するとSi粒子が
大きくなりすぎるので、この発明では温度を固相線未満
にする必要がある。
Furthermore, if heated to a temperature above the melting point (solidus line), the Si particles become too large, so in this invention it is necessary to keep the temperature below the solidus line.

なお、加熱時間は上記+13式に従うものであるが、経
済性の理由から最大100Hr程度にするのが通常であ
る。
The heating time is determined according to the above formula +13, but for economical reasons, it is usually set to a maximum of about 100 hours.

上記加熱処理は原料粉末または冷間圧縮物に対して行な
ってもよく、また、焼結、真空脱ガス、HIP、押出、
ホットプレス等の工程で加熱する際に所定の上記条件に
あう加熱処理を行なってもよい。
The above heat treatment may be performed on the raw material powder or cold compressed product, and may also be applied to sintering, vacuum degassing, HIP, extrusion,
When heating in a process such as hot pressing, a heat treatment that meets the above predetermined conditions may be performed.

更に、成形体にしてから加熱処理をしてもよく、成形体
の熱処理(溶体化処理)の際に行ってもよい。・ なお、粉末またはその冷間圧縮物について加熱処理を行
う場合は、粉末表面の酸化を避けるために非酸化性雰囲
気で行うことが望ましい。
Furthermore, the heat treatment may be performed after forming the molded product, or it may be performed during the heat treatment (solution treatment) of the molded product. - When heat-treating the powder or its cold-compressed product, it is desirable to perform the heat treatment in a non-oxidizing atmosphere to avoid oxidation of the powder surface.

この発明の成形方法に適する合金は、過共晶Al−Si
系合金であり、−81を15〜35重量%含むものであ
る。更に時効硬化性を付与するためのCu、Mg、zn
など、耐熱性を付与するためのFe 、Mn 、Niな
どを含んでもさしつかえない。
The alloy suitable for the forming method of this invention is hypereutectic Al-Si
It is a type alloy containing 15 to 35% by weight of -81. Cu, Mg, zn to further impart age hardenability
It may also contain Fe, Mn, Ni, etc. to impart heat resistance.

急冷凝固法による粉末製造方法としては、通常、アトマ
イズ法、ロール法(シングルロール法、ツインロール法
)、オよびこれらを組合せたアトマイズロール法、遠心
噴霧法などが用いられる。
As a powder manufacturing method using the rapid solidification method, the atomizing method, the roll method (single roll method, twin roll method), the atomizing roll method, a combination thereof, the centrifugal spraying method, etc. are usually used.

実施例 以下、実施例およびそれに対する比較例によって、この
発明を具体的に説明する。
EXAMPLES The present invention will be specifically explained below using examples and comparative examples.

実施例1 AI −20Si −2,5Cu −+MO合金のアト
イズ粉末を用い、上記(A)の工程により成形した。
Example 1 Atoize powder of AI-20Si-2,5Cu-+MO alloy was used and molded according to the step (A) above.

焼結条件を(1)式に従って540℃、1)−1rとし
た例では添付図面筒2−a図に示すように、Si粒子の
平均径は5.8μm、最大径+5umとなる。
In an example in which the sintering conditions were set to 540° C. and 1)-1r according to equation (1), the average diameter of the Si particles was 5.8 μm and the maximum diameter + 5 μm, as shown in Figure 2-a of the attached drawing.

比較例1 実施例1と同じ原料を同じ工程により成形した。ただし
焼結条件は500℃、1)−1rにした。
Comparative Example 1 The same raw materials as in Example 1 were molded by the same process. However, the sintering conditions were 500°C and 1)-1r.

その結果は第2−b図に示すように81の平均径は1.
8μm、最大径は8.5μmであり、小さすぎる状態で
あった。
As a result, as shown in Figure 2-b, the average diameter of 81 is 1.
The diameter was 8 μm, and the maximum diameter was 8.5 μm, which was too small.

実施例2 AI −25Si −3Cu −0,5Ma −2μI
−lFe −2Ni合金のアトマイズ粉末を上記(B)
の工程により成形した。その際、真空脱ガスを(1)式
に合うように、500℃、10)−1r行なったときに
は第3−a図に示すように、成形物の81粒子の平均径
は5.3μm、最大径は15μmになった。
Example 2 AI-25Si-3Cu-0,5Ma-2μI
-lFe -2Ni alloy atomized powder (B)
It was molded using the following process. At that time, when vacuum degassing was performed at 500°C and 10)-1r to match equation (1), the average diameter of the 81 particles of the molded product was 5.3 μm, and the maximum The diameter was 15 μm.

比較例2 上記実施例2の方法において、真空脱ガス処理の際の熱
処理条件を500℃、2Hr行なったときは、第3−1
1図に示すようにSi粒子の平均径は2.3μm、最大
径は9.6μmであった。
Comparative Example 2 In the method of Example 2 above, when the heat treatment conditions for vacuum degassing treatment were 500°C and 2 hours, 3-1
As shown in Figure 1, the average diameter of the Si particles was 2.3 μm, and the maximum diameter was 9.6 μm.

実施例3 AI −30Si −0,5μI −4Fe合金のロー
ル法によるフレークを用い、上記(D)の工程により成
形体をつくった。
Example 3 A molded body was made using the roll method flakes of AI-30Si-0,5μI-4Fe alloy according to the step (D) above.

成形後475℃で50Hr加熱処理をしたところ、第4
−a図に示すように、平均径は9.4μI、最大径は2
0μmとなった。
After molding, heat treatment was performed at 475°C for 50 hours.
As shown in figure -a, the average diameter is 9.4μI, and the maximum diameter is 2
It became 0 μm.

比較例3 上記実施例3の方法において、成形後に上記加熱処理を
行なわないときは、第4−11図に示すように81粒子
の平均径は2.4μm、最大径9.4μmであった。
Comparative Example 3 In the method of Example 3, when the heat treatment was not performed after molding, the average diameter of the 81 particles was 2.4 μm and the maximum diameter was 9.4 μm, as shown in FIG. 4-11.

発明の効果 この発明の方法によれば、急冷凝固粉末を用いて成形し
たAl−$1系合金の耐摩耗性を改善し、かつ、加工性
、被切削性が浸れた材料を得ることができる。
Effects of the Invention According to the method of the present invention, it is possible to improve the wear resistance of an Al-$1 alloy molded using rapidly solidified powder, and to obtain a material with excellent workability and machinability. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明における加熱処理条件を示す温度、保
持時間の関係を示すグラフ、第2−a図は実施例1の成
形体の金属組織を示す顕微鏡写真、 第2−b図は比較例1の成形体の金属組織を示す顕微鏡
写真、 第3−a図は実施例2の成形体の金属組織を示す顕微鏡
写真、 第3−b図は比較例2の成形体の金属組織を示す顕微鏡
写真、 第4−a図は実施例3の成形体の金属組織を示す顕微鏡
写真、 第4−b図は比較例3の成形体の金属組織を示す顕微鏡
写真である。 特許出願人 住友軽金属工業株式会社 代理人 弁理士 小 松 秀 岳 代理人 弁理士 旭     宏 才 1 図 保持時fm(Hr)
Fig. 1 is a graph showing the relationship between temperature and holding time showing the heat treatment conditions in this invention, Fig. 2-a is a micrograph showing the metallographic structure of the compact of Example 1, and Fig. 2-b is a comparative example. Figure 3-a is a micrograph showing the metal structure of the molded body of Example 2; Figure 3-b is a microscope picture showing the metal structure of the molded body of Comparative Example 2. Figure 4-a is a photomicrograph showing the metallographic structure of the molded product of Example 3, and Figure 4-b is a photomicrograph showing the metallographic structure of the molded product of Comparative Example 3. Patent Applicant Sumitomo Light Metal Industries Co., Ltd. Agent Patent Attorney Hide Komatsu Agent Patent Attorney Kosai Asahi 1 fm (Hr) when holding figure

Claims (1)

【特許請求の範囲】 Al−Si系合金粉末を成形する場合に、 Al−Si系合金を、T+40logt≧520(ただ
し、T:温度℃、t:時間Hr) を満たす温度(ただし固相線未満の温度)および時間で
加熱することを包含する工程によって、Si粒子の平均
粒径を5〜15μm、最大径を10〜30μmにするこ
とを特徴とするAl−Si系粉末合金の成形方法。
[Claims] When molding an Al-Si alloy powder, the Al-Si alloy is heated to a temperature that satisfies T+40logt≧520 (T: temperature °C, t: time Hr) (but below the solidus line). A method for forming an Al-Si powder alloy, characterized in that the average particle diameter of Si particles is 5 to 15 μm and the maximum diameter is 10 to 30 μm by a step including heating at a temperature of
JP60004906A 1985-01-17 1985-01-17 Method for molding al-si alloy powder Granted JPS61166931A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60004906A JPS61166931A (en) 1985-01-17 1985-01-17 Method for molding al-si alloy powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60004906A JPS61166931A (en) 1985-01-17 1985-01-17 Method for molding al-si alloy powder

Publications (2)

Publication Number Publication Date
JPS61166931A true JPS61166931A (en) 1986-07-28
JPH0121213B2 JPH0121213B2 (en) 1989-04-20

Family

ID=11596688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60004906A Granted JPS61166931A (en) 1985-01-17 1985-01-17 Method for molding al-si alloy powder

Country Status (1)

Country Link
JP (1) JPS61166931A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61186444A (en) * 1985-02-12 1986-08-20 Alum Funmatsu Yakin Gijutsu Kenkyu Kumiai High strength, heat and wear resistant al alloy
JPS61186443A (en) * 1985-02-12 1986-08-20 Alum Funmatsu Yakin Gijutsu Kenkyu Kumiai High strength, heat and wear resistant al alloy
JPS6210237A (en) * 1985-07-09 1987-01-19 Showa Denko Kk Aluminum alloy for hot forging
JPS62199703A (en) * 1986-02-26 1987-09-03 Sumitomo Light Metal Ind Ltd Hot hydrostatic compression molding method for al-si powder alloy
JPS6342344A (en) * 1986-08-06 1988-02-23 Honda Motor Co Ltd Al alloy for powder metallurgy excellent in high temperature strength characteristic
JPS63219554A (en) * 1987-03-07 1988-09-13 Mazda Motor Corp Production of al-si alloy member having excellent wear resistance
JPH01132734A (en) * 1987-02-10 1989-05-25 Sumitomo Light Metal Ind Ltd Aluminum alloy for vane material
DE4014865A1 (en) * 1989-05-10 1990-11-15 Mazda Motor METHOD FOR PRODUCING A WEAR-RESISTANT ALUMINUM ALLOY PART
EP0589137A1 (en) * 1992-09-29 1994-03-30 Mazda Motor Corporation Wear resistant sliding member and method of manufacturing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5597447A (en) * 1979-01-19 1980-07-24 Sumitomo Electric Ind Ltd Aluminum sintered alloy and production of the same
JPS5959856A (en) * 1982-09-28 1984-04-05 Showa Denko Kk High strength powder moldings of aluminum alloy having excellent lubricity, resistance to heat and wear and its production

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5597447A (en) * 1979-01-19 1980-07-24 Sumitomo Electric Ind Ltd Aluminum sintered alloy and production of the same
JPS5959856A (en) * 1982-09-28 1984-04-05 Showa Denko Kk High strength powder moldings of aluminum alloy having excellent lubricity, resistance to heat and wear and its production

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61186444A (en) * 1985-02-12 1986-08-20 Alum Funmatsu Yakin Gijutsu Kenkyu Kumiai High strength, heat and wear resistant al alloy
JPS61186443A (en) * 1985-02-12 1986-08-20 Alum Funmatsu Yakin Gijutsu Kenkyu Kumiai High strength, heat and wear resistant al alloy
JPS6210237A (en) * 1985-07-09 1987-01-19 Showa Denko Kk Aluminum alloy for hot forging
JPS62199703A (en) * 1986-02-26 1987-09-03 Sumitomo Light Metal Ind Ltd Hot hydrostatic compression molding method for al-si powder alloy
JPS6342344A (en) * 1986-08-06 1988-02-23 Honda Motor Co Ltd Al alloy for powder metallurgy excellent in high temperature strength characteristic
JPH01132734A (en) * 1987-02-10 1989-05-25 Sumitomo Light Metal Ind Ltd Aluminum alloy for vane material
JPS63219554A (en) * 1987-03-07 1988-09-13 Mazda Motor Corp Production of al-si alloy member having excellent wear resistance
DE4014865A1 (en) * 1989-05-10 1990-11-15 Mazda Motor METHOD FOR PRODUCING A WEAR-RESISTANT ALUMINUM ALLOY PART
US4976917A (en) * 1989-05-10 1990-12-11 Mazda Motor Corporation Method of manufacturing hardwearing aluminum alloy part
EP0589137A1 (en) * 1992-09-29 1994-03-30 Mazda Motor Corporation Wear resistant sliding member and method of manufacturing the same

Also Published As

Publication number Publication date
JPH0121213B2 (en) 1989-04-20

Similar Documents

Publication Publication Date Title
JPH11502265A (en) Manufacturing method of thin pipe
JP3664315B2 (en) Method of manufacturing cylinder liner for internal combustion engine using hypereutectic AlSi alloy
JPS61166931A (en) Method for molding al-si alloy powder
JPH0350823B2 (en)
JPH11501990A (en) Manufacturing method of thin pipe
JPS6050138A (en) Heat- and wear-resistant high-strength aluminum alloy member of hard particle dispersion type and its production
JPS6338541B2 (en)
JPH076026B2 (en) Manufacturing method of ferrous sintered alloy members with excellent wear resistance
JP2000119791A (en) Aluminum alloy for plain bearing and its production
US10913992B2 (en) Method of manufacturing a crystalline aluminum-iron-silicon alloy
JPS6050137A (en) Heat- and wear-resistant high-strength aluminum alloy member of hard particle dispersion type and its production
JP2572053B2 (en) Manufacturing method of iron alloy moldings
JP3696476B2 (en) Assembly camshaft shaft and method of manufacturing assembly camshaft
JPH0121856B2 (en)
JPH0539507A (en) Rotor for oil pump made of aluminum alloy and production thereof
JP2856251B2 (en) High-strength wear-resistant Al-Si alloy forged member having low coefficient of thermal expansion and method for producing the same
JP2709097B2 (en) Spring retainer
JPH04131352A (en) Al-si-mg sintered alloy having excellent wear resistance
JPS6056220B2 (en) aluminum bearing alloy
JPH06228697A (en) Rapidly solidified al alloy excellent in high temperature property
JP2605866B2 (en) Manufacturing method of composite compound dispersion type Cu-Zn-A (1) sintered alloy with excellent wear resistance
JPH0525591A (en) Wire for piston ring and its manufacture
CN1360075A (en) Self-lubricating Ni-base alloy
JPH04131346A (en) Sintered al-si based alloy excellent in wear resistance
JPS63243246A (en) Al-si powder metallurgical material combining heat resistance with wear resistance