JPH0121213B2 - - Google Patents

Info

Publication number
JPH0121213B2
JPH0121213B2 JP60004906A JP490685A JPH0121213B2 JP H0121213 B2 JPH0121213 B2 JP H0121213B2 JP 60004906 A JP60004906 A JP 60004906A JP 490685 A JP490685 A JP 490685A JP H0121213 B2 JPH0121213 B2 JP H0121213B2
Authority
JP
Japan
Prior art keywords
powder
alloy
particles
heat treatment
maximum diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP60004906A
Other languages
Japanese (ja)
Other versions
JPS61166931A (en
Inventor
Shigenori Yamauchi
Susumu Inumaru
Kazuhisa Shibue
Hideo Sano
Kyobumi Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP60004906A priority Critical patent/JPS61166931A/en
Publication of JPS61166931A publication Critical patent/JPS61166931A/en
Publication of JPH0121213B2 publication Critical patent/JPH0121213B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 この発明は、Al―Si系粉末合金の成形方法、
特に急冷凝固粉末冶金を利用したAl―Si系合金
の耐摩耗性を更に改善した粉末合金の成形方法に
関する。 従来の技術 内燃機関のシリンダーブロツク、シリンダーラ
イナ、シリンダースリーブ、ピストンや動弁部品
(バルブリフター、バルブスプリングリテイナー、
バルブシートリング、ロツカーアーム等)、自動
車のシンクロナイザリング、コンプレツサーのベ
ーン、VTRシリンダなどにおいては摺動部にお
ける耐摩耗性、低熱膨脹性、耐熱性などの特性が
必要とされる。 これらの特性を有する合金として過共晶Al―
Si合金が提案されているが、この合金の場合Siが
多くなると耐摩耗性は向上するが、Si粒子径が大
きくなるために切削性、加工性等が劣る。 これを解決するために合金中にPを添加してSi
粒子の細粒化をはかつても30〜40μm以下にする
ことができず、上記問題を解決していなかつた。 発明が解決しようとする問題点 最近、急冷凝固法によつた粉末合金が用いられ
ているが、この粉末を常法によつて成形すると初
晶Siの粒子径が小さいために耐摩耗性がやや劣る
のが問題であつた。 問題点を解決するための手段 結局、耐摩耗性を優れたものとするには、Si粒
子の平均径を5〜15μm、最大径を11〜30μmと
する必要があることを見出し、この発明は、粉末
合金を用いて、Siの粒子径をある程度大きくする
ような加熱方法を見出したものである。すなわ
ち、Al―Si系合金粉末を成形する場合に、Al―
Si系合金を下記の式、すなわち、 T+40 logt≧520 ……………(1) (ただし、T:温度℃、t:時間Hr)を満たす
温度(ただし固相線未満の温度)および時間、す
なわち第1図に示す条件で加熱することを包含す
る工程によつて、Si粒子の平均粒径を5〜15μm、
最大径を11〜30μmにするAl―Si系粉末合金の成
形方法である。 粉末冶金法では通常、次のような工程で成形さ
れる。 (A) 粉末の製造―冷間圧縮―焼結 (B) 粉末の製造―冷間圧縮―缶封入―真空脱ガス
―HIP(Hot Isostatic Pressing) (C) 粉末の製造―缶封入―真空脱ガス―HFP (D) 粉末の製造―冷間圧縮―缶封入―真空脱ガス
―押出 (E) 粉末の製造―冷間圧縮―缶封入―真空脱ガス
―ホツトプレス―脱缶―押出(または鍜造、圧
延)。 これらのいずれかの工程で、この発明は材料を
上記の(1)式の条件で加熱し、Si粒子を成長させて
平均粒径を5〜15μm、最大径を11〜30μmとす
る。 これに対して、上記(1)式を満足しない条件で加
熱処理を行なうとSi粒子の成長が十分ではなく、
耐摩耗性が改善されない。 また融点(固相線)以上の温度に加熱するとSi
粒子が大きくなりすぎるので、この発明では温度
を固相線未満にする必要がある。 なお、加熱時間は上記(1)式にに従うものである
が、経済性の理由から最大100Hr程度にするのが
通常である。 上記加熱処理は原料粉末または冷間圧縮物に対
して行なつてもよく、また、焼結、真空脱ガス、
HIP、押出、ホツトプレス等の工程で加熱する際
に所定の上記条件にあう加熱処理を行なつてもよ
い。 更に、成形体にしてから加熱処理をしてもよ
く、成形体の熱処理(溶体化処理)の際に行つて
もよい。 なお、粉末またはその冷間圧縮物について加熱
処理を行う場合は、粉末表面の酸化を避けるため
に非酸化性雰囲気で行うことが望ましい。 この発明の成形方法に適する合金は、過共晶
Al―Si系合金であり、Siを15〜35重量%含むも
のである。更に時効硬化性を付与するためのCu、
Mg、Znなど、耐熱性を付与するためのFe、Mn、
Niなどを含んでもさしつかえない。 急冷凝固法による粉末製造方法としては、通
常、アトマイズ法、ロール法(シングルロール
法、ツインロール法)、およびこれらを組合せた
アトマイズロール法、遠心噴霧法などが用いられ
る。 実施例 以下、実施例およびそれに対する比較例によつ
て、この発明を具体的に説明する。 実施例 1 Al―20Si―2.5Cu―1Mg合金のアトイブ粉末を
用い、上記(A)の工程により成形した。 焼結条件を(1)式に従つて540℃、1Hrとした例
では添付図面第2―a図に示すように、Si粒子の
平均径は5.8μm、最大径15μmとなる。 比較例 1 実施例1と同じ原料を同じ工程により成形し
た。ただし焼結条件は500℃、1Hrにした。 その結果は第2―b図に示すようにSiの平均径
は1.8μm、最大径は8.5μmであり、小さすぎる状
態であつた。 上記実施例1と比較例1の方法によつて製造し
た各試料の試験結果を下記表1に示す。
Industrial Application Field This invention relates to a method for forming an Al--Si powder alloy,
In particular, it relates to a method for forming powder alloys that further improves the wear resistance of Al--Si alloys using rapid solidification powder metallurgy. Conventional technology Internal combustion engine cylinder blocks, cylinder liners, cylinder sleeves, pistons and valve train parts (valve lifters, valve spring retainers,
Valve seat rings, rocker arms, etc.), automobile synchronizer rings, compressor vanes, VTR cylinders, etc. require properties such as wear resistance, low thermal expansion, and heat resistance in sliding parts. Hypereutectic Al is an alloy with these properties.
A Si alloy has been proposed, but in the case of this alloy, the wear resistance improves as the Si content increases, but the machinability, workability, etc. become inferior due to the increased Si particle size. To solve this problem, P is added to the alloy and Si
It has not been possible to refine the particles to 30 to 40 μm or less, and the above problem has not been solved. Problems to be Solved by the Invention Recently, powder alloys produced by the rapid solidification method have been used, but when this powder is molded by the conventional method, the wear resistance is somewhat poor due to the small particle size of the primary Si. The problem was that it was inferior. Means for Solving the Problems In the end, it was discovered that in order to achieve excellent wear resistance, the average diameter of Si particles should be 5 to 15 μm, and the maximum diameter should be 11 to 30 μm. , discovered a heating method that increases the particle size of Si to a certain extent using a powder alloy. In other words, when molding Al-Si alloy powder, Al-
The temperature (temperature below the solidus line) and time that satisfies the Si-based alloy according to the following formula: T+40 logt≧520 ……………(1) (T: temperature °C, t: time Hr), That is, by a process including heating under the conditions shown in FIG.
This is a method for forming an Al--Si powder alloy with a maximum diameter of 11 to 30 μm. In the powder metallurgy method, molding is usually performed in the following steps. (A) Powder production - cold compaction - sintering (B) Powder production - cold compaction - can encapsulation - vacuum degassing - HIP (Hot Isostatic Pressing) (C) Powder production - can encapsulation - vacuum degassing - HFP (D) Powder production - cold compression - can encapsulation - vacuum degassing - extrusion (E) Powder production - cold compression - can encapsulation - vacuum degassing - hot pressing - canning - extrusion (or forging, rolling). In any of these steps, the present invention heats the material under the conditions of equation (1) above to grow Si particles to have an average particle diameter of 5 to 15 μm and a maximum diameter of 11 to 30 μm. On the other hand, if heat treatment is performed under conditions that do not satisfy equation (1) above, the growth of Si particles will not be sufficient;
Wear resistance is not improved. Also, when heated to a temperature above the melting point (solidus line), Si
This invention requires the temperature to be below the solidus because the particles will become too large. Note that the heating time follows the above equation (1), but for economical reasons it is usually set to a maximum of about 100 hours. The above heat treatment may be performed on raw material powder or cold compressed material, and may also be performed on sintering, vacuum degassing,
When heating in a process such as HIP, extrusion, hot pressing, etc., heat treatment that meets the above predetermined conditions may be performed. Furthermore, the heat treatment may be performed after forming the molded product, or it may be performed during the heat treatment (solution treatment) of the molded product. In addition, when performing heat treatment on the powder or its cold compressed product, it is desirable to perform the heat treatment in a non-oxidizing atmosphere to avoid oxidation of the powder surface. Alloys suitable for the forming method of this invention include hypereutectic
It is an Al-Si alloy containing 15 to 35% by weight of Si. Cu to further impart age hardenability,
Fe, Mn, etc. to impart heat resistance, such as Mg, Zn, etc.
There is no problem even if it contains Ni etc. As a powder manufacturing method using the rapid solidification method, the atomization method, the roll method (single roll method, twin roll method), the atomization roll method in combination thereof, the centrifugal spray method, etc. are usually used. EXAMPLES The present invention will be specifically described below with reference to Examples and comparative examples thereof. Example 1 Atoib powder of Al-20Si-2.5Cu-1Mg alloy was used and molded according to the step (A) above. In an example in which the sintering conditions were set to 540°C and 1 hour according to equation (1), the average diameter of the Si particles was 5.8 μm and the maximum diameter was 15 μm, as shown in Figure 2-a of the attached drawing. Comparative Example 1 The same raw material as in Example 1 was molded by the same process. However, the sintering conditions were 500°C and 1 hour. As shown in Figure 2-b, the results were that the average diameter of Si was 1.8 μm and the maximum diameter was 8.5 μm, which were too small. The test results of each sample produced by the methods of Example 1 and Comparative Example 1 are shown in Table 1 below.

【表】【table】

【表】【table】

【表】 実施例 2 Al―25Si―3Cu―0.5Mg―2Mn―1Fe―2Ni合
金のアトマイズ粉末を上記(B)の工程により成形し
た。その際、真空脱ガスを(1)式に合うように、
500℃、10Hr行なつたときには第3―a図に示す
ように、成形物のSi粒子の平均径は5.3μm、最大
径は15μmになつた。 比較例 2 上記実施例2の方法において、真空脱ガス処理
の際の熱処理条件を500℃、2Hr行なつたときは、
第3―b図に示すようにSi粒子の平均径は2.3μ
m、最大径は9.6μmであつた。 上記実施例2と比較例2方法によつて製造した
各試料の試験結果を下記表2に示す。
[Table] Example 2 Atomized powder of Al-25Si-3Cu-0.5Mg-2Mn-1Fe-2Ni alloy was molded by the process (B) above. At that time, adjust the vacuum degassing to match equation (1),
When the molding was carried out at 500°C for 10 hours, the average diameter of the Si particles in the molded product was 5.3 μm and the maximum diameter was 15 μm, as shown in Figure 3-a. Comparative Example 2 In the method of Example 2 above, when the heat treatment conditions during vacuum degassing treatment were performed at 500°C for 2 hours,
As shown in Figure 3-b, the average diameter of Si particles is 2.3μ
m, and the maximum diameter was 9.6 μm. The test results of each sample manufactured by the methods of Example 2 and Comparative Example 2 are shown in Table 2 below.

【表】 実施例 3 Al―30Si―0.5Mn―4Fe合金のロール法による
フレークを用い、上記(D)の工程により成形体をつ
くつた。 成形後475℃で50Hr加熱処理をしたところ、第
4―a図に示すように、平均径は9.4μm、最大径
は20μmとなつた。 比較例 3 上記実施例3の方法において、成形後に上記加
熱処理を行なわないときは、第4―b図に示すよ
うにSi粒子の平均径は2.4μm、最大径9.4μmであ
つた。 上記実施例3と比較例3の試料と同じ組成の試
料を上記A乃至Eの何れかの工程で製造した試料
の試験結果を下記表3に示す。
[Table] Example 3 Using flakes of Al-30Si-0.5Mn-4Fe alloy formed by a roll method, a molded body was made according to the step (D) above. After molding, it was heat-treated at 475°C for 50 hours, and as shown in Figure 4-a, the average diameter was 9.4 μm and the maximum diameter was 20 μm. Comparative Example 3 In the method of Example 3, when the heat treatment was not performed after molding, the average diameter of the Si particles was 2.4 μm and the maximum diameter was 9.4 μm, as shown in Figure 4-b. Table 3 below shows the test results of samples having the same composition as the samples of Example 3 and Comparative Example 3, which were produced by any of the steps A to E above.

【表】 摩耗量の試験条件は表1と同じ
発明の効果 この発明の方法によれば、急冷凝固粉末を用い
て成形したAl―Si系合金の耐摩耗性を改善し、
かつ、加工性、被切削性が優れた材料を得ること
ができる。
[Table] Test conditions for wear amount are the same as in Table 1. Effects of the invention According to the method of this invention, the wear resistance of Al-Si alloys formed using rapidly solidified powder is improved,
Moreover, a material with excellent workability and machinability can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明における加熱処理条件を示す
温度、保持時間の関係を示すグラフ、第2―a図
は実施例1の成形体の金属組織を示す顕微鏡写
真、第2―b図は比較例1の成形体の金属組織を
示す顕微鏡写真、第3―a図は実施例2の成形体
の金属組織を示す顕微鏡写真、第3―b図は比較
例2の成形体の金属組織を示す顕微鏡写真、第4
―a図は実施例3の成形体の金属組織を示す顕微
鏡写真、第4―b図は比較例3の成形体の金属組
織を示す顕微鏡写真である。
Fig. 1 is a graph showing the relationship between temperature and holding time showing the heat treatment conditions in this invention, Fig. 2-a is a micrograph showing the metal structure of the compact of Example 1, and Fig. 2-b is a comparative example. Figure 3-a is a micrograph showing the metal structure of the molded body of Example 1, Figure 3-b is a microscope picture showing the metal structure of the molded body of Comparative Example 2. Photo, 4th
Figure 4-a is a microphotograph showing the metallographic structure of the compact of Example 3, and Figure 4-b is a microphotograph showing the metallographic structure of the compact of Comparative Example 3.

Claims (1)

【特許請求の範囲】[Claims] 1 Al―Si系合金粉末を成形する場合に、Al―
Si系合金を、T+40 logt≧520(ただし、T:温
度℃、t:時間Hr)を満たす温度(ただし固相
線未満の温度)および時間で加熱することを包含
する工程によつて、Si粒子の平均粒径を5〜15μ
m、最大径を11〜30μmにすることを特徴とする
Al―Si系粉末合金の成形方法。
1 When molding Al-Si alloy powder, Al-
By a process that includes heating the Si-based alloy at a temperature (but below the solidus line) and for a time that satisfies T+40 logt≧520 (T: temperature °C, t: time Hr), Si particles are heated. The average particle size of
m, characterized by a maximum diameter of 11 to 30 μm
Forming method for Al-Si powder alloy.
JP60004906A 1985-01-17 1985-01-17 Method for molding al-si alloy powder Granted JPS61166931A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60004906A JPS61166931A (en) 1985-01-17 1985-01-17 Method for molding al-si alloy powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60004906A JPS61166931A (en) 1985-01-17 1985-01-17 Method for molding al-si alloy powder

Publications (2)

Publication Number Publication Date
JPS61166931A JPS61166931A (en) 1986-07-28
JPH0121213B2 true JPH0121213B2 (en) 1989-04-20

Family

ID=11596688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60004906A Granted JPS61166931A (en) 1985-01-17 1985-01-17 Method for molding al-si alloy powder

Country Status (1)

Country Link
JP (1) JPS61166931A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61186443A (en) * 1985-02-12 1986-08-20 Alum Funmatsu Yakin Gijutsu Kenkyu Kumiai High strength, heat and wear resistant al alloy
JPS61186444A (en) * 1985-02-12 1986-08-20 Alum Funmatsu Yakin Gijutsu Kenkyu Kumiai High strength, heat and wear resistant al alloy
JPS6210237A (en) * 1985-07-09 1987-01-19 Showa Denko Kk Aluminum alloy for hot forging
JPS62199703A (en) * 1986-02-26 1987-09-03 Sumitomo Light Metal Ind Ltd Hot hydrostatic compression molding method for al-si powder alloy
JPS6342344A (en) * 1986-08-06 1988-02-23 Honda Motor Co Ltd Al alloy for powder metallurgy excellent in high temperature strength characteristic
JPH01132734A (en) * 1987-02-10 1989-05-25 Sumitomo Light Metal Ind Ltd Aluminum alloy for vane material
JPS63219554A (en) * 1987-03-07 1988-09-13 Mazda Motor Corp Production of al-si alloy member having excellent wear resistance
JPH02294439A (en) * 1989-05-10 1990-12-05 Mazda Motor Corp Manufacture of wear-resistant aluminum alloy parts
JPH06172893A (en) * 1992-09-29 1994-06-21 Matsuda Micron Kk Sliding member excellent in wear resistance and its production

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5597447A (en) * 1979-01-19 1980-07-24 Sumitomo Electric Ind Ltd Aluminum sintered alloy and production of the same
JPS5959856A (en) * 1982-09-28 1984-04-05 Showa Denko Kk High strength powder moldings of aluminum alloy having excellent lubricity, resistance to heat and wear and its production

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5597447A (en) * 1979-01-19 1980-07-24 Sumitomo Electric Ind Ltd Aluminum sintered alloy and production of the same
JPS5959856A (en) * 1982-09-28 1984-04-05 Showa Denko Kk High strength powder moldings of aluminum alloy having excellent lubricity, resistance to heat and wear and its production

Also Published As

Publication number Publication date
JPS61166931A (en) 1986-07-28

Similar Documents

Publication Publication Date Title
KR100696312B1 (en) Sinterable metal powder mixture for the production of sintered components
JP3582795B2 (en) Method of manufacturing cylinder liner for internal combustion engine using hypereutectic AlSi alloy
US4135922A (en) Metal article and powder alloy and method for producing metal article from aluminum base powder alloy containing silicon and manganese
JP3664315B2 (en) Method of manufacturing cylinder liner for internal combustion engine using hypereutectic AlSi alloy
US6117204A (en) Sintered titanium alloy material and process for producing the same
JPH0121213B2 (en)
JPH0350823B2 (en)
US6037067A (en) High temperature abrasion resistant copper alloy
JPH11501990A (en) Manufacturing method of thin pipe
US4537161A (en) Inserts for pistons of diesel engines of aluminum-silicon alloys having an improved thermal resistance and machinability
JPH076026B2 (en) Manufacturing method of ferrous sintered alloy members with excellent wear resistance
JPH0835027A (en) Copper alloy excellent in high temperature wear resistance
JP2000119791A (en) Aluminum alloy for plain bearing and its production
JPH06330263A (en) Production of high toughness al-si series alloy
JPH0121856B2 (en)
JP3696476B2 (en) Assembly camshaft shaft and method of manufacturing assembly camshaft
JP2856251B2 (en) High-strength wear-resistant Al-Si alloy forged member having low coefficient of thermal expansion and method for producing the same
JPS6283453A (en) Manufacture of aluminum alloy ingot for extrusion
JP3399972B2 (en) Sintered high-speed steel with excellent seizure resistance and method for producing the same
JP2605866B2 (en) Manufacturing method of composite compound dispersion type Cu-Zn-A (1) sintered alloy with excellent wear resistance
JP2709097B2 (en) Spring retainer
JP2842868B2 (en) Iron-based sintered alloy for valve seat
JPH0539507A (en) Rotor for oil pump made of aluminum alloy and production thereof
JP7143899B2 (en) Method for producing copper-based sintered body
JPH06228697A (en) Rapidly solidified al alloy excellent in high temperature property