JPS61166125A - Organic metal vapor-phase growing method - Google Patents

Organic metal vapor-phase growing method

Info

Publication number
JPS61166125A
JPS61166125A JP718585A JP718585A JPS61166125A JP S61166125 A JPS61166125 A JP S61166125A JP 718585 A JP718585 A JP 718585A JP 718585 A JP718585 A JP 718585A JP S61166125 A JPS61166125 A JP S61166125A
Authority
JP
Japan
Prior art keywords
reaction
decomposed
light
reaction tube
organic metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP718585A
Other languages
Japanese (ja)
Inventor
Takeshi Kamijo
健 上條
Takeshi Takamori
高森 毅
Akihiro Hashimoto
明弘 橋本
Masao Kobayashi
正男 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP718585A priority Critical patent/JPS61166125A/en
Publication of JPS61166125A publication Critical patent/JPS61166125A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02543Phosphides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02546Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)

Abstract

PURPOSE:To enable to remove the intermediate reaction induced when the temperature of PH3 rises by a method wherein the PH3 is decomposed by photochemical reaction without heating the PH3. CONSTITUTION:As PH3 absorbs the light of 200-220nm, the PH3 can be decomposed without generating temperature rise when a photochemical reaction is performed utilizing said light. Accordingly, the PH3 is separated from other raw gas and introduced into a reaction pipe 11, a light is made to irradiate on the PH3 flowing the PH3 introducing pipe 12 from a light source 18 before the PH3 is introduced to the reaction pipe 11, and the PH3 can be decomposed much quicker than before. As the temperature rise is not generated at the PH3 introducing pipe 12 when the above-mentioned photochemical reaction is performed, there is no possibility of having the intermediate reaction which is generated in the past.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明はホスフィン(PH3)ガスを用いてリン化合
物半導体を成長させる有機金属気相成長法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to an organometallic vapor phase epitaxy method for growing a phosphorus compound semiconductor using phosphine (PH3) gas.

(従来の技術) 従来から、リン化合物はオプトエレクトロニ・ンク及び
高速度デバイス用の半導体材料として注目され、研究さ
れている(文献: Journal ofCrysta
l Growth LJ、(1984)、p 144〜
14B)。このリン化合物の成長に用いる従来の典型的
な装置を第2図に概略的に示す。第2図において、11
は反応管、12はこの反応管へのホスフィン(PH3)
ガスを導入するためのPH3導入管、13はPH3以外
の原料ガスを反応管11に導入するための原料ガス導入
管、14は反応管11の外周囲に設けた高周波加熱用コ
イル、15は反応管11内に設けたグラファイトサセプ
タ、1Bはこのサセプタ15上に設置した基板である。
(Prior Art) Phosphorus compounds have been attracting attention and research as semiconductor materials for optoelectronic and high-speed devices (Reference: Journal of Crysta
l Growth LJ, (1984), p 144~
14B). A typical conventional apparatus used for growing this phosphorus compound is schematically shown in FIG. In Figure 2, 11
is a reaction tube, 12 is phosphine (PH3) to this reaction tube
13 is a raw material gas introduction pipe for introducing raw material gases other than PH3 into the reaction tube 11; 14 is a high-frequency heating coil provided around the outer periphery of the reaction tube 11; 15 is a reaction tube A graphite susceptor 1B provided inside the tube 11 is a substrate placed on this susceptor 15.

一般に有機金属気相成長法(以下MOCVDと称する)
を用いてリン化合物を成長させる場合、基板16上で原
料であるアルキル金属と、水素化物であるASH3、P
H3が熱分解し、反応して成長が行われる。リンの原料
ガスであるホスフィン(PH3)の熱分解効率がアルシ
ン(ASH3)に比較して低いため、ホスフィンが基板
16上で十分に分解しなかった。このホスフィンの基板
18上での分解を促進するため、従来は第2図に17で
示すようにPH3導入管12の周囲にPH3の熱分解用
加熱炉を設けて反応管11にPH3を導入する前このP
H3の熱分解を行うようにする手法が用いられていた。
Generally metal organic chemical vapor deposition method (hereinafter referred to as MOCVD)
When growing a phosphorus compound using
H3 is thermally decomposed, reacts, and grows. Since the thermal decomposition efficiency of phosphine (PH3), which is a raw material gas for phosphorus, is lower than that of arsine (ASH3), phosphine was not sufficiently decomposed on the substrate 16. In order to promote the decomposition of this phosphine on the substrate 18, conventionally a heating furnace for thermal decomposition of PH3 is provided around the PH3 introduction tube 12, as shown at 17 in FIG. 2, to introduce PH3 into the reaction tube 11. Previously this P
A technique was used in which H3 was thermally decomposed.

この熱分解炉の温度は一般に400〜800°C程度で
ある。
The temperature of this pyrolysis furnace is generally about 400 to 800°C.

(発明が解決しようとする問題点) しかしながら、このfツノ:は、pH3が熱分解される
ことによりガス自身の温1バが−I−’;tするため、
反応管中で他の原料特にアルキル化合物と中間反応を生
じ易くなる。これがため、基板上で本来のアルキル化合
物と水素化物との反応が行われず、良好な成長か行われ
ず、成長層の性質が十分良く得られないといった問題が
あった。
(Problem to be solved by the invention) However, this f-horn: is because the temperature of the gas itself becomes -I-';t due to the thermal decomposition of pH3.
Intermediate reactions are likely to occur with other raw materials, especially alkyl compounds, in the reaction tube. As a result, the reaction between the original alkyl compound and the hydride does not take place on the substrate, leading to problems in that good growth is not achieved and the properties of the grown layer are not sufficiently good.

この発明の目的はに述したPH3を反応管へ導入する前
に行う熱分解により生じるPH3の温度の十Aを防止し
、温度上Hした場合にそれにより誘起される中間反応を
除去するために、PH3を温度に昇させることなく分解
を促進させて反応管に導入するようにした有機金属気相
成長法を提供することにある。
The purpose of this invention is to prevent the temperature of PH3 from exceeding 10 A caused by thermal decomposition before introducing the PH3 into the reaction tube, and to remove the intermediate reaction induced by the above-mentioned temperature. An object of the present invention is to provide an organometallic vapor phase epitaxy method in which the decomposition of PH3 is promoted without raising the temperature and the PH3 is introduced into a reaction tube.

(問題点を解決するための手段) この目的の達成を図るため、この発明によれば、他の原
ネ゛1ガスと分離してホスフィンガスを光化学反応を用
いて単独に分解してから反応管11に導入させるように
したことを特徴とする(第1図)。
(Means for Solving the Problems) In order to achieve this object, according to the present invention, phosphine gas is separated from other raw gases and decomposed individually using a photochemical reaction, and then reacted. It is characterized in that it is introduced into the tube 11 (Fig. 1).

(作用) ホスフィンガスPH3は200〜220nmの光を吸収
するので、この光を利用してこのホスフィンガスPH3
を光化学反応で温度上昇を生じさせずに分解出来る。従
って、PII3を他の原料ガスとは別個に分画して反応
管11に導入するようにし、その反応管11への導入前
に光源からPH3導入管I2を流れるPH3に光を照射
して、光化学反応を行ってP113の分解を従来よりも
遥に促進することが出来る。この光化学反応はこのPH
3導入管12の部分で温度上昇を生じることが無いので
、従来のような中間反応が生じるおそれがない。
(Function) Since phosphine gas PH3 absorbs light of 200 to 220 nm, this light can be used to
can be decomposed by a photochemical reaction without causing a rise in temperature. Therefore, PII3 is fractionated separately from other raw material gases and introduced into the reaction tube 11, and before being introduced into the reaction tube 11, PH3 flowing through the PH3 introduction tube I2 is irradiated with light from a light source, By carrying out a photochemical reaction, the decomposition of P113 can be promoted far more than in the past. This photochemical reaction takes place at this pH
3. Since there is no temperature rise at the introduction pipe 12, there is no risk of intermediate reactions occurring as in the conventional case.

(実施例) 以下、第1図を参照してこの発明の有機金属気相成長法
を説明する。尚、第1図において第2図に示した構成成
分と同一の構成成分については同一の符合を付して示す
と共に、その詳細な説明は、省略する。
(Example) Hereinafter, the organometallic vapor phase epitaxy method of the present invention will be explained with reference to FIG. Components in FIG. 1 that are the same as those shown in FIG. 2 are denoted by the same reference numerals, and detailed explanation thereof will be omitted.

第1図はこの発明の有機金属気相成長法を実施するため
の装置の概略を説明する線図である。
FIG. 1 is a diagram illustrating the outline of an apparatus for carrying out the metalorganic vapor phase epitaxy method of the present invention.

この発明では従来の熱分解炉の代わりに光源18をPH
3導入管12の周囲に設置する。この光源18はPH3
の吸収波長帯である200〜22Onm域に発光波長を
有する例えば重水素ランプとか、水銀−キャノンランプ
とかの光源とするのが適切である。この光源18からの
光はPH3導入管12のみに照射出来るように設置し、
他のアルキル化合物等の原料ガスに照射しないようにす
る。
In this invention, the light source 18 is used instead of the conventional pyrolysis furnace.
3 installed around the introduction pipe 12. This light source 18 has a pH of 3
It is appropriate to use a light source such as a deuterium lamp or a mercury-cannon lamp, which has an emission wavelength in the 200 to 22 Onm absorption wavelength range. The light from this light source 18 is installed so that it can irradiate only the PH3 introduction tube 12,
Avoid irradiating source gases such as other alkyl compounds.

このようにすれば、PH3導入管12を流れてきたPH
3が反応管11に導入される前にこのPH3に光照射を
行って光化学反応を起させて、温度」1昇を生じること
なくこのPH3を分解することが出来る。
In this way, the PH flowing through the PH3 introduction pipe 12
Before the PH3 is introduced into the reaction tube 11, the PH3 is irradiated with light to cause a photochemical reaction, thereby making it possible to decompose the PH3 without raising the temperature by 1.

このようにして分解させてから反応管11に導入し、他
の原料ガスとともに、加熱された基板1B」二連し、基
板11」−で熱分解及び反応を熱的に生じ、成長層を堆
積することが出来る。
After being decomposed in this way, it is introduced into the reaction tube 11, and together with other raw material gases, thermal decomposition and reaction occur on the heated substrates 1B and 11, and a growth layer is deposited. You can.

尚、この場合、PH3ガスの流速、光照射の時間、その
他の条件は所要に応じて任意適切に設定することが出来
る。
In this case, the flow rate of the PH3 gas, the time of light irradiation, and other conditions can be arbitrarily and appropriately set as required.

(発明の効果) 」二連した説明からも明らかなように、この発明による
有機金属気相成長法によれば、PH3を加熱することな
く光化学反応で分解ぜしめるため、反応管内でアルキル
金属等と中間反応を生じること無く基板に達する。そし
て、この分解されたPH3ガスは基板上で全ての原料間
において反応するため、良好な性質を有する結晶を成長
させることが出来、特に、不純物混入を防ぐことが出来
る。
(Effects of the Invention) As is clear from the two consecutive explanations, according to the organometallic vapor phase growth method according to the present invention, since PH3 is decomposed by a photochemical reaction without heating, alkyl metals, etc. and reaches the substrate without any intermediate reactions. Since this decomposed PH3 gas reacts between all the raw materials on the substrate, it is possible to grow crystals with good properties, and in particular, it is possible to prevent contamination with impurities.

さらに、この発明を実施するための成長装置に熱的なス
トレスを生じることが無く、また、危険ガスを用いるM
OCVD法の装置の設計の簡便化を図ることが出来る。
Furthermore, there is no thermal stress in the growth apparatus for carrying out the present invention, and the growth apparatus uses hazardous gas.
It is possible to simplify the design of the OCVD method equipment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の有機金属気相成長法を説明するため
、この方法を実施するための装置を概略的に示す線図、 第2図は従来の方法を説明するための装置の線図である
。 11・・・反応管、     12・・・PH3導入管
13・・・原料ガス導入管、 14・・・高周波加熱コ
イル15・・・グラファイトサセプタ 16・・・基板、       18・・・光源。 特許出願人     沖電気工業株式会社手続補正書 昭和61年4月18日
FIG. 1 is a diagram schematically showing an apparatus for carrying out the metal-organic vapor phase epitaxy method of the present invention, and FIG. 2 is a diagram of an apparatus for explaining a conventional method. It is. DESCRIPTION OF SYMBOLS 11... Reaction tube, 12... PH3 introduction tube 13... Raw material gas introduction tube, 14... High frequency heating coil 15... Graphite susceptor 16... Substrate, 18... Light source. Patent applicant Oki Electric Industry Co., Ltd. Procedural amendment April 18, 1986

Claims (1)

【特許請求の範囲】[Claims] 反応管中でホスフィンガスを用いてリン化合物半導体を
成長させる有機金属気相成長法において、他の原料ガス
と分離してホスフィンガスを光化学反応を用いて単独に
分解してから反応管に導入させるようにしたことを特徴
とする有機金属気相成長法。
In the organometallic vapor phase epitaxy method in which phosphorus compound semiconductors are grown using phosphine gas in a reaction tube, the phosphine gas is separated from other source gases and decomposed individually using a photochemical reaction before being introduced into the reaction tube. An organometallic vapor phase epitaxy method characterized by:
JP718585A 1985-01-18 1985-01-18 Organic metal vapor-phase growing method Pending JPS61166125A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP718585A JPS61166125A (en) 1985-01-18 1985-01-18 Organic metal vapor-phase growing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP718585A JPS61166125A (en) 1985-01-18 1985-01-18 Organic metal vapor-phase growing method

Publications (1)

Publication Number Publication Date
JPS61166125A true JPS61166125A (en) 1986-07-26

Family

ID=11658998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP718585A Pending JPS61166125A (en) 1985-01-18 1985-01-18 Organic metal vapor-phase growing method

Country Status (1)

Country Link
JP (1) JPS61166125A (en)

Similar Documents

Publication Publication Date Title
JPS61166125A (en) Organic metal vapor-phase growing method
JPS59223294A (en) Vapor phase growth device
JPS62214616A (en) Organo metallic vapor phase epitaxy equipment
JPH01280323A (en) Vapor phase epitaxial growth system
JPH04202091A (en) Vapor growth device of compound semiconductor
JPS61132595A (en) Apparatus for vapor-phase crystal growth by thermal decomposition of organic metal compound
JPS6353918A (en) Semiconductor crystal growth apparatus
JPH01224295A (en) Gas source molecular beam crystal growing apparatus
JP2714824B2 (en) Molecular beam epitaxial growth method and apparatus for implementing the method
JP2830629B2 (en) Vapor phase growth equipment
JPH0669132A (en) Vapor phase epitaxial growth system
JPS63318733A (en) Vapor-growth reaction pipe
JPS61150323A (en) Manufacture of semiconductor material
JPH0574712A (en) Organic metal vapor-growth device
JPS59164697A (en) Vapor growth method
JPS61161710A (en) Manufacture of compound semiconductor thin film
JPS63100736A (en) Manufacture of impurity doped znse compound semiconductor
JPS61220420A (en) Vapor growth apparatus
JPH02246321A (en) Vapor phase crystal growth equipment
JPS6389491A (en) Vapor growth device
JPH01230495A (en) Method for growing semiconductor crystal
JPS62155511A (en) Vapor growth device
JPH0532482A (en) Molecular beam epitaxy method and compound semiconductor film
JPH0536397B2 (en)
JPS6131393A (en) Vapor phase growth device