JPH0669132A - Vapor phase epitaxial growth system - Google Patents

Vapor phase epitaxial growth system

Info

Publication number
JPH0669132A
JPH0669132A JP21884092A JP21884092A JPH0669132A JP H0669132 A JPH0669132 A JP H0669132A JP 21884092 A JP21884092 A JP 21884092A JP 21884092 A JP21884092 A JP 21884092A JP H0669132 A JPH0669132 A JP H0669132A
Authority
JP
Japan
Prior art keywords
gas
raw material
gas introduction
vapor phase
reaction vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP21884092A
Other languages
Japanese (ja)
Inventor
Toru Okamoto
徹 岡本
Satoshi Murakami
聡 村上
Kenji Maruyama
研二 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP21884092A priority Critical patent/JPH0669132A/en
Publication of JPH0669132A publication Critical patent/JPH0669132A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To realize MOCVD in which material gas is decomposed efficiently on a substrate and consumption of material gas is reduced. CONSTITUTION:In a vapor phase epitaxial growth system comprising a reaction tube 1 in which a substrate 3 is placed and a plurality of gas introduction pipes 4A, 4B, 4C, 4D for feeding material gases having different decomposition temperatures, each of the plurality of gas introduction pipes 4A, 4B, 4C, 4D is provided with a temperature control means 11 for heating or cooling thus controlling the temperature of material gas in each gas introduction pipe 4A, 4B, 4C, 4D.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は気相成長装置、特にMO
CVD(Metal Organic Chemical Vapor Deposition; 有
機金属気相成長)装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vapor phase growth apparatus, especially MO
The present invention relates to a CVD (Metal Organic Chemical Vapor Deposition) apparatus.

【0002】ジメチルカドミウム、或いはジイソプロピ
ルテルル等の有機金属化合物を原料ガスとして用いる有
機金属気相成長法は、ガリウム砒素、サファイア等の異
種基板上に該基板と構成元素の異なる水銀・カドミウム
・テルル(Hg1-x Cdx Te)のような化合物半導体結晶の
エピタキシャル成長が可能であり、然も大面積のエピタ
キシャル結晶を安価に成長して供給することが可能であ
る。
The metal-organic vapor phase epitaxy method using an organic metal compound such as dimethyl cadmium or diisopropyl tellurium as a source gas is performed on a heterogeneous substrate such as gallium arsenide or sapphire on which mercury, cadmium, tellurium () whose constituent elements are different from those of the substrate. Epitaxial growth of compound semiconductor crystals such as Hg 1-x Cd x Te) is possible, and it is also possible to grow and supply large-area epitaxial crystals at low cost.

【0003】また特性の異なった結晶を連続して成膜す
ることが可能で、半導体素子形成に極めて有効な方法で
ある。
Further, crystals having different characteristics can be continuously formed, which is an extremely effective method for forming a semiconductor element.

【0004】[0004]

【従来の技術】このようなMOCVD装置でp型のHg
1-x Cdx Te結晶を成長する従来のMOCVD装置につい
て説明する。
2. Description of the Related Art In such a MOCVD apparatus, p-type Hg is used.
A conventional MOCVD apparatus for growing a 1-x Cd x Te crystal will be described.

【0005】図3に示すように石英より成る反応容器1
内にカーボンより成る基板設置台2が設置され、その上
にはエピタキシャル成長用のカドミウムテルル(CdT
e)、或いはガリウム砒素(GaAs)等の基板3が載置さ
れている。
As shown in FIG. 3, a reaction vessel 1 made of quartz is used.
A substrate mounting table 2 made of carbon is installed in the inside, and cadmium tellurium (CdT) for epitaxial growth is mounted thereon.
A substrate 3 such as e) or gallium arsenide (GaAs) is placed.

【0006】上記反応容器1の上部にはキャリアガスの
水素ガスで担持されたジメチルカドミウムを反応容器1
内に導入するガス導入管4A、水素ガスで担持されたジイ
ソプロピルテルルを反応容器1内に導入するガス導入管
4B、水素ガスで担持された水銀を反応容器1内に導入す
るガス導入管4C、水素ガスで担持され、ドーピングガス
としてのターシャリーブチルアルシンを反応容器1内に
導入するガス導入管4Dがそれぞれ設けられ、その各々の
ガス導入管4A,4B,4C,4D は反応容器1に到達する以前に
結合されている。
Dimethyl cadmium supported by hydrogen gas as a carrier gas is provided on the upper portion of the reaction container 1 in the reaction container 1.
4A for introducing gas into the reaction vessel, gas introduction tube for introducing diisopropyl tellurium supported by hydrogen gas into the reaction vessel 1
4B, a gas introducing pipe 4C for introducing mercury supported by hydrogen gas into the reaction vessel 1, and a gas introducing pipe 4D for introducing tertiary butylarsine as a doping gas into the reaction vessel 1 which is carried by hydrogen gas. Each of the gas introduction pipes 4A, 4B, 4C, 4D is provided and connected before reaching the reaction vessel 1.

【0007】上記水素ガスで担持された水銀を反応容器
1内に導入するガス導入管4Cの周囲は水銀の凝結を防止
するための加熱ヒータ6が備えられている。そして各々
のガス導入管4A,4B,4C,4D 内のそれぞれの原料ガスは互
いに混合した状態で反応容器1内に導入する。そしてこ
れら混合した原料ガスは、基板設置台2を高周波誘導コ
イル5で加熱することで、基板3を加熱し、基板3上に
到達した混合せる原料ガスを熱分解してp 型のHg1-x Cd
x Te結晶をエピタキシャル成長している。
A heater 6 for preventing the condensation of mercury is provided around the gas introducing pipe 4C for introducing the mercury carried by the hydrogen gas into the reaction vessel 1. Then, the respective raw material gases in the respective gas introduction pipes 4A, 4B, 4C, 4D are introduced into the reaction vessel 1 in a mixed state. Then, the mixed raw material gases are heated by heating the substrate installation table 2 by the high frequency induction coil 5 to heat the substrate 3, and the raw material gas reaching the substrate 3 to be mixed is thermally decomposed to generate p-type Hg 1- x Cd
x Te crystals are grown epitaxially.

【0008】然し、上記した水銀は単体の金属元素で、
ジメチルカドミウム、ジイソプロピルテルル等の有機金
属ガスが金属原子と有機ガスに分解する分解温度が異な
っており、特にp型のドーパントとして用いるターシャ
リーブチルアルシンはC4H9AsH2の分子式を有し、前記し
た分解温度が360 ℃のジメチルカドミウム、分解温度が
400 ℃のジイソプロピルテルル等の有機金属ガスに比較
して分解温度が500 ℃と高く、これら4種類のガスを原
料ガスとして混合し、CdTe等の基板3上にp型のHg1-x
Cdx Te結晶を気相成長する場合、基板3の加熱温度の設
定に問題を生じている。
However, the above-mentioned mercury is a simple metal element,
The decomposition temperature at which an organometallic gas such as dimethylcadmium or diisopropyl tellurium decomposes into a metal atom and an organic gas is different, and in particular tertiary butylarsine used as a p-type dopant has a molecular formula of C 4 H 9 AsH 2 , Dimethyl cadmium with a decomposition temperature of 360 ℃
The decomposition temperature is as high as 500 ° C as compared with organic metal gas such as diisopropyl tellurium at 400 ° C, and these four kinds of gases are mixed as raw material gas, and p-type Hg 1-x is formed on the substrate 3 such as CdTe.
When vapor-depositing a Cd x Te crystal, there is a problem in setting the heating temperature of the substrate 3.

【0009】つまりCdTeの基板3の加熱温度を高くする
と分解温度の低いジメチルカドミウムや、ジイソプロピ
ルテテルの分解割合が、ターシャリーブチルアルシンよ
り大であるので、キャリア濃度の低い高抵抗なp型のHg
1-x Cdx Te結晶となる傾向がある。
In other words, when the heating temperature of the CdTe substrate 3 is increased, the decomposition rate of dimethylcadmium and diisopropyltetel, which have a low decomposition temperature, is higher than that of tertiary-butylarsine, so that the carrier concentration is low and the resistance of the p-type Hg is high.
It tends to be 1-x Cd x Te crystals.

【0010】これと反対にCdTeの基板3の加熱温度を低
くすると、分解温度の低いジメチルカドミウムや、ジイ
ソプロピルテテルが基板表面に到達する以前に基板の輻
射熱で分解し、HgCdTe結晶が成長しない問題がある。
On the contrary, when the heating temperature of the CdTe substrate 3 is lowered, dimethylcadmium, which has a low decomposition temperature, and diisopropyl tether are decomposed by the radiant heat of the substrate before reaching the surface of the substrate, so that the HgCdTe crystal does not grow. is there.

【0011】そのため、従来はジメチルカドミウム、ジ
イソプロピルテルル等の有機金属ガスと水銀とが最も効
率良く分解する温度に基板3を加熱し、分解効率の悪い
ターシャリーブチルアルシンは、反応容器1に導入する
ガス量を多くして分解効率の悪い点を補っていた。
Therefore, conventionally, the substrate 3 is heated to a temperature at which the organometallic gas such as dimethyl cadmium or diisopropyl tellurium and mercury are most efficiently decomposed, and tertiary butyl arsine having poor decomposition efficiency is introduced into the reaction vessel 1. The amount of gas was increased to compensate for the poor decomposition efficiency.

【0012】[0012]

【発明が解決しようとする課題】然し、上記したターシ
ャリーブチルアルシンは、高価でこのような有機金属ガ
スを大量に使用すると形成されるHg1-x Cdx Te結晶の製
造コストが大となる問題がある。
However, the above-mentioned tertiary butyl arsine is expensive, and the production cost of the Hg 1-x Cd x Te crystal formed when a large amount of such an organometallic gas is used increases. There's a problem.

【0013】またHg1-x Cdx Te結晶のn型のドーパント
として用いるイソプロピル沃素は(CH3)CHI の分子式を
有し、分解温度が40℃と低いが、ジメチルカドミウム、
ジイソプロピルテルルを混合して分解する際に分解を促
進する触媒のような働きを有するが、イソプロピル沃素
自体の分解を防ぐために、ガス導入管を冷却する必要が
ある。
Isopropyl iodine used as an n-type dopant for Hg 1-x Cd x Te crystals has a molecular formula of (CH 3 ) CHI and has a decomposition temperature as low as 40 ° C., but dimethylcadmium,
It functions as a catalyst for promoting decomposition when diisopropyl tellurium is mixed and decomposed, but it is necessary to cool the gas introduction pipe in order to prevent decomposition of isopropyl iodine itself.

【0014】このような現状から分解温度のそれぞれ異
なるガスを反応容器内に導入する以前に混合すると、こ
れらの混合されたガス同士が反応容器内に導入される以
前に相互に反応し、形成されるHg1-x Cdx Te結晶の組成
や、抵抗値等の電気的特性が不安定となる問題がある。
Under the above circumstances, when gases having different decomposition temperatures are mixed before being introduced into the reaction vessel, these mixed gases react with each other before being introduced into the reaction vessel and are formed. There is a problem that the electrical characteristics such as the composition of Hg 1-x Cd x Te crystal and the resistance value become unstable.

【0015】本発明は、上記した問題点を解決し、分解
温度が互いに異なる複数の有機金属ガスを用いることに
よって生じる有機金属ガス同士の反応を抑制、或いは促
進することで収率の向上した、かつ不純物ドーピングが
確実に行い得るようにした気相成長装置の提供を目的と
する。
The present invention solves the above-mentioned problems and suppresses or accelerates the reaction between organometallic gases caused by using a plurality of organometallic gases having different decomposition temperatures, thereby improving the yield. Moreover, it is an object of the present invention to provide a vapor phase growth apparatus capable of surely performing impurity doping.

【0016】[0016]

【課題を解決するための手段】本発明の気相成長装置
は、請求項1に示すように、基板を設置した反応容器
と、該反応容器に接続し、分解温度がそれぞれ異なる原
料ガスを導入する複数のガス導入管を備えた気相成長装
置に於いて、前記複数のガス導入管の各々に加熱、或い
は冷却手段を備え、前記各々のガス導入管内の原料ガス
の温度を制御可能としたことを特徴とする。
According to the vapor phase growth apparatus of the present invention, as shown in claim 1, a reaction vessel having a substrate and a source gas connected to the reaction vessel and having different decomposition temperatures are introduced. In a vapor phase growth apparatus having a plurality of gas introduction pipes, each of the plurality of gas introduction pipes is provided with heating or cooling means, and the temperature of the raw material gas in each of the gas introduction pipes can be controlled. It is characterized by

【0017】また請求項2に示すように、前記複数のガ
ス導入管が反応容器より所定のガス通路を隔てた箇所で
結合するか、或いは反応容器の直前で結合するように
し、結合後のガス導入管に更に温度制御手段を設け、前
記結合したガス導入管で合流した原料ガス同士の反応の
促進、或いは抑制を行うようにしたことを特徴とするも
のである。
Further, as described in claim 2, the plurality of gas introducing pipes are connected to each other at a position separated from the reaction container by a predetermined gas passage, or are connected immediately before the reaction container, and the combined gas is connected. It is characterized in that the introduction pipe is further provided with a temperature control means so as to accelerate or suppress the reaction between the raw material gases joined by the combined gas introduction pipe.

【0018】また請求項3に示すように、前記複数のガ
ス導入管、該ガス導入管の結合部に於いて、該ガス導入
管内、該ガス導入管の結合部を流れる原料ガスに、該原
料ガスのガスプラズマ、或いは原料ガス中間生成物が形
成可能となる手段を設けたことを特徴とする。
Further, as described in claim 3, in the plurality of gas introduction pipes and the joint portion of the gas introduction pipes, the raw material gas is flowed in the gas introduction pipe and the joint portion of the gas introduction pipe to the raw material gas. A means for forming a gas plasma of gas or an intermediate product of the raw material gas is provided.

【0019】また請求項4に示すように、前記複数のガ
ス導入管と結合部を光透過材で形成し、該ガス導入管内
と結合部内の原料ガスに光照射が可能となる光照射手段
を設けたことを特徴とする。
Further, as described in claim 4, a light irradiating means for forming the plurality of gas introducing pipes and the connecting portion with a light transmitting material and capable of irradiating the raw material gas in the gas introducing pipe and the connecting portion with light. It is characterized by being provided.

【0020】また請求項5に示すように、前記ガス導入
管に流入する原料ガスが、亜鉛、カドミウム、セレン、
テルル、アルミニウム、インジウム、ガリウム、砒素、
アンチモンの有機金属化合物ガスか、硫黄、塩素、沃
素、燐の水素化合物ガスか、水銀の単体元素のガスの何
れかであることを特徴とするものである。
Further, as described in claim 5, the source gas flowing into the gas introduction pipe is zinc, cadmium, selenium,
Tellurium, aluminum, indium, gallium, arsenic,
It is characterized in that it is either an organometallic compound gas of antimony, a hydrogen compound gas of sulfur, chlorine, iodine or phosphorus, or a gas of elemental element of mercury.

【0021】[0021]

【作用】本発明の気相成長装置は、分解温度が異なる複
数の原料ガスを各々導入するガス導入管の各々に加熱ヒ
ータ等の温度制御手段を設け、各々のガス導入管内の原
料ガスの温度が別個に制御できるようにする。
In the vapor phase growth apparatus of the present invention, temperature control means such as a heater is provided in each of the gas introduction pipes for introducing a plurality of raw material gases having different decomposition temperatures, and the temperature of the raw material gas in each gas introduction pipe is increased. Can be controlled separately.

【0022】また上記したガス導入管を反応容器の直前
で結合するようにして、原料ガス同士が混合した後、混
合したガス同士が相互に反応するのを防止する。また上
記したガス導入管を反応容器より所定の距離を隔てた位
置で結合するようにして、原料ガス同士が混合した後、
混合したガス同士が互いに反応を促進するようにする。
Further, by connecting the above-mentioned gas introducing pipe immediately before the reaction vessel, it is possible to prevent the mixed gases from reacting with each other after the raw material gases are mixed with each other. Further, the above-mentioned gas introduction pipe is connected at a position separated from the reaction vessel by a predetermined distance, and after the raw material gases are mixed,
Allow the mixed gases to promote reaction with each other.

【0023】図1では、ガス導入管4A,4B,4C,4D の結合
を反応容器1の直前で行った場合を示す。このように原
料ガス同士の混合を反応容器1の直前で行うことで、有
機金属ガス同士の反応を抑制し、反応の結果、誘起され
る有機金属ガスの分解を抑える働きを有する。
FIG. 1 shows a case where the gas introduction pipes 4A, 4B, 4C and 4D are connected to each other just before the reaction vessel 1. By mixing the raw material gases with each other just before the reaction vessel 1 as described above, the reaction between the organometallic gases is suppressed, and the decomposition of the organometallic gas induced as a result of the reaction is suppressed.

【0024】また図2では、ガス導入管4A,4B,4C,4E を
反応容器1より所定の距離を隔てた位置で結合させ、結
合させた位置より反応容器1 内に到達する迄の配管に加
熱手段を設けて反応を促進させるようにする。
Further, in FIG. 2, the gas introducing pipes 4A, 4B, 4C and 4E are connected at a position separated from the reaction container 1 by a predetermined distance, and the pipes from the connected position to the inside of the reaction container 1 are connected. A heating means is provided to accelerate the reaction.

【0025】このようにすると、有機金属ガス同士の反
応が促進し、中間生成物の生成が誘起される。得られた
中間生成物は、温度調整器11により所定の温度に保持さ
れ、中間生成物が効率良く分解するように図られる。
By doing so, the reaction between the organometallic gases is promoted, and the production of intermediate products is induced. The obtained intermediate product is kept at a predetermined temperature by the temperature controller 11 so that the intermediate product is efficiently decomposed.

【0026】このような図1と図2に示すガス導入管4
A,4B,4C,4D,4Eの反応容器1に対する配置の状態を適宜
組み合わせて、最も原料ガスが基板上で効率良く分解し
やすい条件を得るようにする。
The gas introduction pipe 4 shown in FIGS. 1 and 2 as described above.
By appropriately combining the arrangement states of A, 4B, 4C, 4D, and 4E with respect to the reaction container 1, it is possible to obtain a condition in which the source gas is most efficiently decomposed on the substrate.

【0027】[0027]

【実施例】以下、図面を用いて本発明の実施例に付き詳
細に説明する。p 型のHg1-x CdxTe結晶の気相成長の場
合について述べる。
Embodiments of the present invention will be described in detail below with reference to the drawings. The case of vapor phase growth of p-type Hg 1-x Cd x Te crystal is described.

【0028】図1のガス導入管4Aより水素ガスに担持さ
れたジメチルカドミウムが、ガス導入管4Bより水素ガス
に担持されたジイソプロピルテルルが、ガス導入管4Cよ
り水素ガスに担持された金属水銀が供給され、ガス導入
管4Dより水素ガスに担持されたp 型の不純物ガスのター
シャリーブチルアルシンが反応容器1内に供給される。
Dimethyl cadmium carried by hydrogen gas from the gas introducing pipe 4A of FIG. 1, diisopropyl tellurium carried by hydrogen gas by the gas introducing pipe 4B, and metallic mercury carried by hydrogen gas by the gas introducing pipe 4C. The supplied tertiary butylarsine, which is a p-type impurity gas supported by hydrogen gas, is supplied into the reaction vessel 1 through the gas introduction pipe 4D.

【0029】上記した金属水銀のガス導入管4Cは300
℃、ジメチルカドミウムガス導入管4Aとジイソプロピル
テルルガス導入管4Bは400 ℃の温度に、ターシャリーブ
チルアルシンのガス導入管4Dは360 ℃の温度になるよう
に温度調整器11で加熱されている。
The above-mentioned metal mercury gas introduction tube 4C is 300
The temperature of the dimethyl cadmium gas introducing pipe 4A and the diisopropyl tellurium gas introducing pipe 4B are heated to 400 ° C., and the temperature of the tertiary butyl arsine gas introducing pipe 4D is heated to 360 ° C. by the temperature controller 11.

【0030】このようにしたガス各々のガス導入管4A,4
B,4C,4D の結合位置は、反応容器1より所定の距離のガ
ス通路12を隔てた位置で結合され、前記した原料ガスの
うち、ジメチルカドミウムガスとターシャリーブチルア
ルシンガスとが反応し、両者のガスの反応による中間生
成物が形成される。
The gas introduction pipes 4A, 4 for the respective gases thus formed
B, 4C, 4D are bonded at a position separated from the reaction vessel 1 by a gas passage 12 at a predetermined distance, and among the above-mentioned source gases, dimethylcadmium gas and tertiary butylarsine gas react with each other, An intermediate product is formed by the reaction of both gases.

【0031】このような中間生成物は、更に分解を促進
させるために、反応容器1とガス導入管4A,4B,4C,4D の
結合部13の間に加熱ヒータよりなる温度調整器11を設け
て、加熱することで、原料ガスが互いに混合して反応し
た状態で反応容器1内の基板3上に供給されるので、不
純物のドーピング効率も向上する。
In order to further promote the decomposition of such an intermediate product, a temperature controller 11 composed of a heater is provided between the reaction vessel 1 and the joint portion 13 of the gas introduction pipes 4A, 4B, 4C and 4D. Then, by heating, the source gases are supplied to the substrate 3 in the reaction container 1 in a state of being mixed with each other and reacted, so that the doping efficiency of impurities is also improved.

【0032】また他の実施例として、前記したガス導入
管4A,4B,4Cより前記した原料ガスを導入し、ガス導入管
4Eよりイソプロピル沃素を導入してn 型のHg1-x Cdx Te
結晶を形成する場合には、該ガス導入管4Eの温度を、温
度調整器11により40℃の低温に保って反応が促進しない
ようにすると共に、ガス導入管4A,4B,4C,4E の結合部13
と反応容器1との間の距離が殆ど無い程度に短く保つと
ともに、図示しないが、反応容器1と結合部13を加熱し
て混合ガス同士の凝結を防止する。
As another embodiment, the above-mentioned raw material gas is introduced through the gas introduction pipes 4A, 4B and 4C described above, and the gas introduction pipes are introduced.
N-type Hg 1-x Cd x Te by introducing isopropyl iodine from 4E
When forming a crystal, the temperature of the gas introduction pipe 4E is kept at a low temperature of 40 ° C. by the temperature controller 11 so as not to promote the reaction, and the gas introduction pipes 4A, 4B, 4C and 4E are combined. Part 13
Although not shown, the reaction container 1 and the joint 13 are heated to prevent condensation of the mixed gases, while keeping the distance between the reaction container 1 and the reaction container 1 short.

【0033】また他の実施例として、上記したガス導入
管4A,4B,4C,4D,4Eとガス導入管の結合部13にマイクロ波
発振器を用いてマイクロ波を照射して、該ガス導入管と
ガス導入管の結合部内の原料ガスにガスプラズマを形成
してこれらの混合ガスの中間生成物を形成し、反応容器
1内に導入する混合ガスの反応が促進するようにする。
As another embodiment, a microwave is applied to the coupling portion 13 of the gas introduction pipes 4A, 4B, 4C, 4D, 4E and the gas introduction pipe described above by using a microwave oscillator to irradiate the gas introduction pipes. A gas plasma is formed in the raw material gas in the joint portion of the gas introduction pipe to form an intermediate product of these mixed gases, and the reaction of the mixed gas introduced into the reaction vessel 1 is promoted.

【0034】或いは他の実施例として、上記ガス導入管
4A,4B,4C,4D,4Eと該ガス導入管の結合部13に所定の間隔
を隔てて、電極を設置し、この電極間に高電圧を印加し
てガス導入管4A,4B,4C,4D,4E内と結合部13内の原料ガス
に電場を印加して原料ガスを分解して分解生成物を形成
して分解反応を促進する方法を採っても良い。
Alternatively, as another embodiment, the gas introducing pipe
4A, 4B, 4C, 4D, 4E and the coupling portion 13 of the gas introduction pipe with a predetermined interval, electrodes are installed, high voltage is applied between the electrodes gas introduction pipe 4A, 4B, 4C, A method of applying an electric field to the raw material gas in 4D and 4E and the joint portion 13 to decompose the raw material gas to form a decomposition product to accelerate the decomposition reaction may be adopted.

【0035】また他の実施例として、上記したガス導入
管4A,4B,4C,4D,4Eと該ガス導入管の結合部13を石英ガラ
ス等の透明な光透過材で形成し、該ガス導入管とガス導
入管の結合部に紫外線を照射して、光化学反応により原
料ガスを分解して原料ガスの中間生成物を形成して分解
反応を促進する方法を採っても良い。
In another embodiment, the gas introducing pipes 4A, 4B, 4C, 4D, 4E and the connecting portion 13 of the gas introducing pipes are formed of a transparent light transmitting material such as quartz glass, and the gas introducing pipes are formed. A method of irradiating the joint between the pipe and the gas introduction pipe with ultraviolet rays to decompose the raw material gas by a photochemical reaction to form an intermediate product of the raw material gas to accelerate the decomposition reaction may be adopted.

【0036】また、本発明の装置で使用可能な原料ガス
は、本実施例で述べたジメチルカドミウム、ジイソプロ
ピルテルル、水銀、ターシャリーブチルアルシン、イソ
プロピル沃素の他に亜鉛、カドミウム、水銀、硫黄、セ
レン、テルル、アルミニウム、インジウム、ガリウム、
塩素、沃素、燐、砒素、アンチモンの各元素の単体ガス
か、上記各元素の有機金属化合物ガスか、或いは上記各
元素の水素化合物ガスの何れかを用いても差し支えな
い。
The source gases usable in the apparatus of the present invention are dimethylcadmium, diisopropyl tellurium, mercury, tert-butylarsine, isopropyl iodine, zinc, cadmium, mercury, sulfur and selenium as described in this embodiment. , Tellurium, aluminum, indium, gallium,
Either a simple substance gas of each element of chlorine, iodine, phosphorus, arsenic, or antimony, an organometallic compound gas of each of the above elements, or a hydrogen compound gas of each of the above elements may be used.

【0037】また本実施例では反応容器の上部より原料
ガスを導入する方法を採っているが、水平型の反応容器
を用いて基板を水平方向に設置し、原料ガスを基板に水
平方向から導入する横型の気相成長装置にも本発明は適
用可能である。
In this embodiment, the method of introducing the source gas from the upper part of the reaction vessel is adopted. However, the substrate is installed horizontally by using a horizontal reaction vessel, and the source gas is introduced into the substrate from the horizontal direction. The present invention can also be applied to a horizontal vapor phase growth apparatus that performs the above.

【0038】[0038]

【発明の効果】以上述べたように、本発明の気相成長装
置によると、分解温度の異なる原料ガスを、反応容器内
で最も効率良く分解できるようにすることが可能とな
り、高価な原料ガスの消費量が低下し、化合物半導体結
晶の製造コストが低下する効果がある。
As described above, according to the vapor phase growth apparatus of the present invention, it becomes possible to most efficiently decompose the raw material gases having different decomposition temperatures in the reaction vessel, and the expensive raw material gas is used. The effect of reducing the consumption amount of the compound semiconductor and the manufacturing cost of the compound semiconductor crystal is reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の気相成長装置の第1実施例の説明図
である。
FIG. 1 is an explanatory diagram of a first embodiment of a vapor phase growth apparatus of the present invention.

【図2】 本発明の気相成長装置の第2実施例の説明図
である。
FIG. 2 is an explanatory view of a second embodiment of the vapor phase growth apparatus of the present invention.

【図3】 従来の気相成長装置の説明図である。FIG. 3 is an explanatory diagram of a conventional vapor phase growth apparatus.

【符号の説明】[Explanation of symbols]

1 反応容器 2 基板設置台 3 基板 4A,4B,4C,4D,4E ガス導入管 5 高周波誘導コイル 11 温度調整器 12 ガス通路 1 Reaction vessel 2 Substrate installation table 3 Substrate 4A, 4B, 4C, 4D, 4E Gas introduction tube 5 High frequency induction coil 11 Temperature controller 12 Gas passage

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 基板(3) を設置した反応容器(1) と、該
反応容器(1) に接続し、分解温度がそれぞれ異なる原料
ガスを導入する複数のガス導入管(4A,4B,4C,4D,4E)を備
えた気相成長装置に於いて、 前記複数のガス導入管(4A,4B,4C,4D,4E)の各々に加熱、
或いは冷却が可能な温度制御手段(11)を備え、前記各々
のガス導入管(4A,4B,4C,4D,4E)内の原料ガスの温度を制
御可能としたことを特徴とする気相成長装置。
1. A reaction vessel (1) having a substrate (3) installed, and a plurality of gas introduction pipes (4A, 4B, 4C) connected to the reaction vessel (1) for introducing raw material gases having different decomposition temperatures. , 4D, 4E) in a vapor phase growth apparatus, the plurality of gas introduction pipes (4A, 4B, 4C, 4D, 4E) each heated,
Alternatively, a vapor phase growth characterized in that the temperature control means (11) capable of cooling is provided, and the temperature of the raw material gas in each of the gas introduction pipes (4A, 4B, 4C, 4D, 4E) can be controlled apparatus.
【請求項2】 請求項1記載の複数のガス導入管(4A,4
B,4C,4D,4E)の結合部(13)が反応容器(1) より所定の距
離を隔てた箇所に位置するか、或いは前記結合部(13)が
反応容器(1) に接近した位置と成るようにし、結合部(1
3)から反応容器(1) に到るガス導入管に更に温度制御手
段(11)を設け、前記結合部(13)で合流した原料ガス同士
の反応の促進、或いは抑制を行うようにしたことを特徴
とする気相成長装置。
2. A plurality of gas introduction pipes (4A, 4) according to claim 1.
B, 4C, 4D, 4E) the joint (13) is located at a predetermined distance from the reaction vessel (1), or the joint (13) is close to the reaction vessel (1) And the joint (1
A temperature control means (11) is further provided in the gas introduction pipe from 3) to the reaction vessel (1) so as to promote or suppress the reaction between the raw material gases joined at the coupling part (13). A vapor phase growth apparatus characterized by:
【請求項3】 請求項1、或いは2に記載の複数のガス
導入管(4A,4B,4C,4D,4E)内、および結合部(13)を流れる
原料ガスに、該原料ガスのガスプラズマ、或いは原料ガ
ス中間生成物が形成可能となる手段を設けたことを特徴
とする気相成長装置。
3. A gas plasma of the raw material gas as a raw material gas flowing through the plurality of gas introduction pipes (4A, 4B, 4C, 4D, 4E) and the joint portion (13) according to claim 1 or 2. Alternatively, the vapor phase growth apparatus is provided with a means capable of forming a raw material gas intermediate product.
【請求項4】 請求項1、或いは2に記載の複数のガス
導入管(4A,4B,4C,4D,4E)および結合部(13)を光透過材で
形成し、該ガス導入管(4A,4B,4C,4D,4E)内、および結合
部(13)の原料ガスに光照射する光照射手段を設けたこと
を特徴とする気相成長装置。
4. The plurality of gas introducing pipes (4A, 4B, 4C, 4D, 4E) and the connecting portion (13) according to claim 1 or 2 are formed of a light transmitting material, and the gas introducing pipes (4A , 4B, 4C, 4D, 4E) and light irradiation means for irradiating the raw material gas of the joint portion (13) with light.
【請求項5】 請求項1〜4の何れかに記載のガス導入
管(4A,4B,4C,4D,4E)に流入する原料ガスが、亜鉛、カド
ミウム、セレン、テルル、アルミニウム、インジウム、
ガリウム、砒素、アンチモンの有機金属化合物ガスか、
硫黄、塩素、沃素、燐の水素化合物ガスか、水銀の単体
元素のガスの何れかであることを特徴とする気相成長装
置。
5. The raw material gas flowing into the gas introduction pipe (4A, 4B, 4C, 4D, 4E) according to any one of claims 1 to 4, is zinc, cadmium, selenium, tellurium, aluminum, indium,
Organometallic compound gas of gallium, arsenic, antimony,
A vapor phase growth apparatus characterized in that it is either a hydrogen compound gas of sulfur, chlorine, iodine or phosphorus or a gas of a single element of mercury.
JP21884092A 1992-08-18 1992-08-18 Vapor phase epitaxial growth system Withdrawn JPH0669132A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21884092A JPH0669132A (en) 1992-08-18 1992-08-18 Vapor phase epitaxial growth system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21884092A JPH0669132A (en) 1992-08-18 1992-08-18 Vapor phase epitaxial growth system

Publications (1)

Publication Number Publication Date
JPH0669132A true JPH0669132A (en) 1994-03-11

Family

ID=16726165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21884092A Withdrawn JPH0669132A (en) 1992-08-18 1992-08-18 Vapor phase epitaxial growth system

Country Status (1)

Country Link
JP (1) JPH0669132A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07273036A (en) * 1994-03-30 1995-10-20 Uchu Kankyo Riyou Kenkyusho:Kk Formation of compound semiconductor crystal
JP2012501067A (en) * 2008-08-22 2012-01-12 アプライド マテリアルズ インコーポレイテッド Process gas delivery in semiconductor process chambers

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07273036A (en) * 1994-03-30 1995-10-20 Uchu Kankyo Riyou Kenkyusho:Kk Formation of compound semiconductor crystal
JP2012501067A (en) * 2008-08-22 2012-01-12 アプライド マテリアルズ インコーポレイテッド Process gas delivery in semiconductor process chambers

Similar Documents

Publication Publication Date Title
KR940001249B1 (en) SILICON-GaAs EPITAXIAL COMPOSITIONS AND PROCESS FOR MAKING THE SAME
JPS6134928A (en) Growing process of element semiconductor single crystal thin film
EP0277597B1 (en) Gallium nitride group semiconductor light emitting diode and the process of producing the same
US4773355A (en) Growth of epitaxial films by chemical vapor deposition
US6334901B1 (en) Apparatus for forming semiconductor crystal
JPH0331678B2 (en)
JPH0669132A (en) Vapor phase epitaxial growth system
CN110616456B (en) Preparation method of high-quality kappa-phase gallium oxide epitaxial film
JPH0754802B2 (en) Vapor growth method of GaAs thin film
JP2687371B2 (en) Vapor growth of compound semiconductors
JPH0629228A (en) Crystal growth method
JPH0527598B2 (en)
JP2714824B2 (en) Molecular beam epitaxial growth method and apparatus for implementing the method
JPH0322519A (en) Manufacture of compound semiconductor mixed crystal
JP2830629B2 (en) Vapor phase growth equipment
CN115679441A (en) Method and equipment for growing III-V compound single crystal by hydride vapor phase epitaxy method
JPS58184721A (en) Vapor phase epitaxial growth of p type 3-5 family compound semiconductor
JPH01184835A (en) Epitaxial growth for ii-vi compound semiconductor
JPH01224295A (en) Gas source molecular beam crystal growing apparatus
JPS62139319A (en) Compound semiconductor crystal growth method
JPH0346440B2 (en)
JPH0369879B2 (en)
JPH0695580B2 (en) Manufacturing method of semiconductor light emitting device
Al-Hamidi Photo-Metal Organic Vapour Phase Epitaxy of II-VI Semiconductors
JPH10177957A (en) Organic metal vapor growth method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19991102