JPS61165201A - Rough rolling method of bar steel and wire rod - Google Patents

Rough rolling method of bar steel and wire rod

Info

Publication number
JPS61165201A
JPS61165201A JP416285A JP416285A JPS61165201A JP S61165201 A JPS61165201 A JP S61165201A JP 416285 A JP416285 A JP 416285A JP 416285 A JP416285 A JP 416285A JP S61165201 A JPS61165201 A JP S61165201A
Authority
JP
Japan
Prior art keywords
rolling
driven
vertical
friction coefficient
rolling mill
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP416285A
Other languages
Japanese (ja)
Other versions
JPH0142761B2 (en
Inventor
Sadakazu Masuda
升田 貞和
Takeshi Hirasawa
平沢 猛志
Giichi Matsuo
松尾 義一
Shin Masuda
伸 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP416285A priority Critical patent/JPS61165201A/en
Publication of JPS61165201A publication Critical patent/JPS61165201A/en
Publication of JPH0142761B2 publication Critical patent/JPH0142761B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/16Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling wire rods, bars, merchant bars, rounds wire or material of like small cross-section
    • B21B1/18Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling wire rods, bars, merchant bars, rounds wire or material of like small cross-section in a continuous process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2267/00Roll parameters
    • B21B2267/10Roughness of roll surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B35/00Drives for metal-rolling mills, e.g. hydraulic drives
    • B21B35/10Driving arrangements for rolls which have only a low-power drive; Driving arrangements for rolls which receive power from the shaft of another roll

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metal Rolling (AREA)

Abstract

PURPOSE:To increase a reduction rate of area in vertical rolling and to perform efficiently the rolling with a small number of stands, by arranging a motor- driving horizontal mill having the roll surface of large friction coefficient and a non-driving vertical mill having the roll surface of small friction coefficient in series. CONSTITUTION:For increasing the friction coefficient muH of the rolls of motor- driving horizontal mills 1, 3, the roll surfaces are worked by knurling or shot blasting. For decreasing the friction coefficient muV of the rolls of non-driving vertical mills 2, 4, on the other hand, the rolls of small surface roughness are used or hot lubrication is performed. As a result, the muH is made to about >=0.5, and the muV is made to about <=0.3. Therefore, the rolling reduction in the non- driving vertical rolling is remarkably increased, and the reduction rate of area is increased into about 0.2-0.4. Accordingly, the number of stands can be reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は条鋼、線材の粗圧延の効率化に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to improving the efficiency of rough rolling of long steel and wire rods.

〔従来の技術〕[Conventional technology]

条鋼や線材の圧延において、電動機駆動の水平圧延機と
それに連設した非駆動の垂直圧延機とを利用して圧延を
行々う方法は、これまでの電動機駆動の垂直圧延機を用
いる方法や、水平圧延機のみを連設して被圧延材料を9
0°転回させて圧延を打力う方法に比較して、設備費用
、設備スペース、ロールガイド組替えの作業性あるいは
製品の品質面においてはるかに勝れた方法である。第2
図は上記非駆動の垂直圧延を利用する方法を示す構成図
で、図中(1)は電動機駆動のA1水平圧延機、(2)
は非駆動の&1垂直圧延機、(3)は駆動の扁2水平圧
延機、(4)は非駆動の/111&2垂直圧延材、(5
)は圧延材である。
When rolling steel bars and wire rods, the method of rolling using an electric motor-driven horizontal rolling mill and a non-driving vertical rolling mill connected to it is different from the conventional method using an electric motor-driven vertical rolling mill. , only horizontal rolling mills are installed in series to roll the material 9 times.
This method is far superior in terms of equipment cost, equipment space, workability for rearranging roll guides, and product quality compared to the method of turning the roll by 0° and hitting the rolling force. Second
The figure is a block diagram showing a method using the above-mentioned non-driven vertical rolling. In the figure, (1) is an electric motor-driven A1 horizontal rolling mill, (2)
is a non-driven &1 vertical rolling mill, (3) is a driven flat 2 horizontal rolling mill, (4) is a non-driven /111 &2 vertical rolling mill, (5
) is a rolled material.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで上記圧延方法においては、扁1非駆動垂直圧延
機(2)の前段の駆動水平圧延機(1)によって圧延材
に生じる排出力及び後段のA2水平圧延材(3)によっ
て圧延材に生じる引込み力が、夫々41垂直圧延機(2
)の非駆動圧延に必要な押し込み力及び引抜き力よシ大
きくないと圧延は不可能である。
By the way, in the above rolling method, the ejection force generated on the rolled material by the driving horizontal rolling mill (1) in the preceding stage of the flat 1 non-driving vertical rolling mill (2) and the pulling force generated in the rolled material by the A2 horizontal rolling material (3) in the succeeding stage. The force is 41 vertical rolling mills (2
) Rolling is impossible unless the push-in and pull-out forces are greater than those required for non-driven rolling.

従って非駆動の垂直圧延材を水平圧延機の近傍に配設し
ただけでは、圧延の効果は上らず、上記駆動水平圧延材
と非駆動垂直圧延機とを連設し、垂直圧延機による圧延
材の断面縮少率を大きくして圧延の効率化を図るために
は、非駆動垂直圧延機の前段及び後段の水平圧延機によ
シ圧延材に与えられる排出力及び引込み力は充分大きく
せねば々らない。さもなければ所望の断面減少率を得る
ためには、スタンド数を増さねばならず設備費用や設備
スペースの点で却って従来の方法よシネ利となることが
ある。また垂直圧延機における断面縮少率が水平圧延機
のそれよシ常に小さい状態では、水平圧延による全圧下
量が垂直圧延による全圧下量よシ著しく大きくなって、
一般的に使用されるプルーム素材よシ圧延可能な寸法は
、高さに対し゛て幅の著しく大きい寸法のものに限られ
ることと1L実用的には上記方法は使えないこととなる
Therefore, simply placing a non-driven vertically rolled material near a horizontal rolling mill will not improve the rolling effect. In order to increase the cross-sectional reduction ratio of the material and improve the efficiency of rolling, the ejection force and retraction force applied to the rolled material by the horizontal rolling mills before and after the non-driven vertical rolling mill must be sufficiently large. Not sticky. Otherwise, in order to obtain the desired cross-sectional reduction rate, the number of stands must be increased, which may result in less advantages than the conventional method in terms of equipment costs and equipment space. In addition, when the cross-sectional reduction ratio in the vertical rolling mill is much smaller than that in the horizontal rolling mill, the total rolling reduction due to horizontal rolling becomes significantly larger than the total rolling reduction due to vertical rolling.
The dimensions that can be rolled with commonly used plume materials are limited to those with a width that is significantly larger than the height, and the above method cannot be used practically for 1L.

本発明は従来装置の上記欠点を解消し、非駆動の垂直圧
延機の断面縮少率を高くして装置全体の圧延効率を高め
た条鋼、線材の粗圧延方法を提供しようとするものであ
る。
The present invention aims to eliminate the above-mentioned drawbacks of conventional equipment and provide a rough rolling method for long steel and wire rods that increases the cross-sectional reduction ratio of a non-driven vertical rolling mill and improves the rolling efficiency of the entire equipment. .

〔問題点を解決するための手段と作用〕一般如電動機駆
動圧延機における圧延材の排出力FH及び非駆動圧延に
必要な押し込み力rvは、次の(1)及び(2)式で示
される。
[Means and effects for solving the problem] The ejection force FH of the rolled material in a general electric motor-driven rolling mill and the pushing force rv required for non-drive rolling are expressed by the following equations (1) and (2). .

ここでP:圧延荷重 μ:ロールと圧延材との摩擦係数 R:ロール半径 td:圧延接触弧長=(i=五− Δh:圧下量 添字 H:駆動水平圧延 V:非駆動垂直圧延 なお該排出力FH及び押し込み力FWを実験で求めた結
果と、計算による値とを第3図、第4図に示している。
Here, P: Rolling load μ: Coefficient of friction between the roll and the rolled material R: Roll radius td: Rolling contact arc length = (i = 5 - Δh: Reduction amount subscript H: Drive horizontal rolling V: Non-drive vertical rolling The experimental results of the ejection force FH and the pushing force FW and the calculated values are shown in FIGS. 3 and 4.

実験に使用されたロール径は120■φで、圧延材は3
0+a幅×30W高の純鉛である。第S図に示す実験に
おいては、摩擦係数μ■が0.3及び0.5の場合の結
果を示しておシ、6点は実験値、実線のカーブはμw 
= 0.3 、破線はμm−0,5の場合の計算値であ
る。又第4図の0点は実験値、カーブは計算値である。
The roll diameter used in the experiment was 120 φ, and the rolled material was 3.
It is pure lead with a width of 0+a and a height of 30W. In the experiment shown in Figure S, the results are shown when the friction coefficient μ■ is 0.3 and 0.5. 6 points are experimental values, and the solid curve is μw.
= 0.3, and the broken line is the calculated value for μm-0.5. Moreover, the 0 point in FIG. 4 is an experimental value, and the curve is a calculated value.

ところで前述したようにFa>F’vの条件の下に非駆
動垂直圧延は可能となる。従って(1) 、 (2)式
のPMを大きく、Pvを小さくすれば非駆動圧延は可能
となるが、他方μVをそのままにして、Pvを小さくす
ることは垂直圧延の圧下量すなわち断面減少率を小さく
することとなシ、所期の目的に沿わなくなる。しかしP
vに関係なく PHのみ大きくしようとするためには、
(1)式よシみて摩擦係数μ■を大きくすることが有効
であることが判る。又圧延理論から一般に圧下量を変え
ずにPVを小さくするには摩擦係数μVを小さくすれば
よい。従ってμ■を大きくμVを小さくすることによっ
て、非駆動垂直圧延を可能ならしめるだけでなく、その
断面縮少率を上げることができるのである。
By the way, as mentioned above, non-driven vertical rolling is possible under the condition of Fa>F'v. Therefore, non-driven rolling is possible by increasing PM and decreasing Pv in equations (1) and (2), but on the other hand, decreasing Pv while leaving μV unchanged increases the reduction amount of vertical rolling, that is, the area reduction rate. If you make it smaller, it will not meet the intended purpose. However, P
In order to try to increase only PH regardless of v,
From equation (1), it can be seen that it is effective to increase the friction coefficient μ■. Furthermore, according to rolling theory, in order to reduce PV without changing the amount of rolling reduction, it is sufficient to reduce the friction coefficient μV. Therefore, by increasing μ■ and decreasing μV, it is possible to not only enable non-driven vertical rolling but also to increase its cross-sectional reduction ratio.

〔発明の実施例〕[Embodiments of the invention]

以上の手段に応じて、水平圧延機のロールのμ■を大き
くするため、ロール表面にローレット加工又はナーリン
グを施し、あるいはショット加工を行なった。又一方弁
駆動の垂直圧延機のロールのμVを小さくするためには
、熱間潤滑を行なうか、あるいは表面粗度の小さいロー
ルを使用すればよいO この結果熱間圧延における従来の摩擦係数が0.35〜
0.40であるのに対し、μ■は0.5以上に、μVは
0.3以下にすることができた。このため非駆動垂直圧
延における圧下量は著しく増加し、従来0.10〜0.
15であった断面縮少率が0.20〜0.40に増加し
た。第1′図は本発明による非駆動垂直圧延の圧下量の
増大を示す線図である。ロール入口の圧延材寸法は10
0叫幅X100mm高さで、Ra : 200 mXR
v :’1’25 vmの場合のデータでAは本発明に
よる方法、Bは従来の方法によるものである。
In accordance with the above methods, in order to increase μ of the roll of a horizontal rolling mill, the surface of the roll was knurled or knurled, or shot. In addition, in order to reduce the μV of the rolls of a one-sided valve-driven vertical rolling mill, hot lubrication or rolls with small surface roughness can be used.As a result, the conventional friction coefficient in hot rolling 0.35~
While it was 0.40, μ■ could be made to be 0.5 or more, and μV could be made to be 0.3 or less. For this reason, the amount of reduction in non-driven vertical rolling increases significantly, and conventionally 0.10 to 0.
The cross-sectional reduction ratio, which was 15, increased to 0.20 to 0.40. FIG. 1' is a diagram illustrating the increase in reduction in non-driven vertical rolling according to the present invention. The rolled material size at the roll entrance is 10
0 shout width x 100mm height, Ra: 200mXR
v:'1'25 In the data for vm, A is the method according to the present invention, and B is the data according to the conventional method.

〔発明の効果〕 本゛発明は駆動水平圧延機と非駆動垂直圧延機とを連設
して、条鋼、線材の粗圧延を行なうに際し、電動機駆動
の水平圧延においてはロールと圧延材との摩擦係数を大
きく、又非駆動の垂直圧延においてはロールと圧延材と
の摩擦係数が小さくなるようにしてそれぞれの圧延を行
なったので、非駆動垂直圧延における断面縮少率を大き
くすることが可能となり、粗圧延におけるスタンド数を
減少させ、かつブルーム素材より任意の圧延寸法のもの
の製造が可能となるという優れた効果を上げることがで
き、た。
[Effects of the Invention] The present invention provides for rough rolling of long steel and wire rods by connecting a driven horizontal rolling mill and a non-driven vertical rolling mill. Since each rolling was performed with a large coefficient of friction between the roll and the rolled material in non-driven vertical rolling, and a small coefficient of friction between the roll and the rolled material in non-driven vertical rolling, it was possible to increase the cross-sectional reduction ratio in non-driven vertical rolling. , it was possible to reduce the number of stands during rough rolling, and to make it possible to manufacture products with arbitrary rolling dimensions from the bloom material.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の圧延方法による垂直圧延の圧下量を示
す線図、第2図は条鋼・線材の圧延方法を示す構成図、
第6図は駆動圧延の場合の排出力と圧延荷重との関係を
示す線図、第4図は非駆動圧延における押し込み力と圧
延荷重との関係を示す線図である。 図中(1)は屋1駆動水平圧延機(2)、(2)はA1
非駆動垂直圧延機、(3)は扁2駆動水平圧延機、(4
)は洗2非駆動垂直圧延機、(5)は圧延材である。 代理人 弁理士 木 村 三 朗 唖rQM)?   賛ψ ΦΦOC5oC5aΦ 0 0   o  o  9 IO?     F)     へ (山田)  番:Lヨ迩ゴwT愕列誓Aし第4図 FL誂啓菫 (kg) バ@ドV猪づ1ミ饗z ・ 0.5 第3図 斤辿析@  (kQ)
Fig. 1 is a diagram showing the reduction amount of vertical rolling by the rolling method of the present invention, Fig. 2 is a block diagram showing the method of rolling steel bars and wire rods,
FIG. 6 is a diagram showing the relationship between discharge force and rolling load in the case of drive rolling, and FIG. 4 is a diagram showing the relationship between pushing force and rolling load in non-drive rolling. In the figure, (1) is the A1 drive horizontal rolling mill (2), and (2) is the A1
Non-drive vertical rolling mill, (3) flat 2-drive horizontal rolling mill, (4
) is a washing 2 non-drive vertical rolling mill, and (5) is a rolled material. Agent: Patent attorney: Sanro Kimura (QM)? Praise ψ ΦΦOC5oC5aΦ 0 0 o o 9 IO? F) To (Yamada) Number: L Yogo w T Shocking Series A Shi Figure 4 FL 誂Keisumi (kg) Bad @ Do V Boar Zu 1 Mi Meal ・ 0.5 Figure 3 Cataly Trace Analysis @ ( kQ)

Claims (1)

【特許請求の範囲】[Claims] 電動機駆動の水平圧延機と非駆動の垂直圧延機を連設し
てなる圧延装置を利用して行なう条鋼、線材の粗圧延方
法において、駆動水平圧延機のロール表面の摩擦係数を
大きく、非駆動垂直圧延機のロール表面の摩擦係数を小
さくして行なう条鋼、線材の粗圧延方法。
In a rough rolling method for long steel and wire rods that uses a rolling equipment that is a combination of an electric motor-driven horizontal rolling mill and a non-driven vertical rolling mill, the friction coefficient of the roll surface of the driven horizontal rolling mill is increased and the non-driven A rough rolling method for long steel and wire rods that reduces the coefficient of friction on the roll surface of a vertical rolling mill.
JP416285A 1985-01-16 1985-01-16 Rough rolling method of bar steel and wire rod Granted JPS61165201A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP416285A JPS61165201A (en) 1985-01-16 1985-01-16 Rough rolling method of bar steel and wire rod

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP416285A JPS61165201A (en) 1985-01-16 1985-01-16 Rough rolling method of bar steel and wire rod

Publications (2)

Publication Number Publication Date
JPS61165201A true JPS61165201A (en) 1986-07-25
JPH0142761B2 JPH0142761B2 (en) 1989-09-14

Family

ID=11577043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP416285A Granted JPS61165201A (en) 1985-01-16 1985-01-16 Rough rolling method of bar steel and wire rod

Country Status (1)

Country Link
JP (1) JPS61165201A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010201487A (en) * 2009-03-05 2010-09-16 Kobe Steel Ltd Method and apparatus for hot-caliber-rolling bar steel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010201487A (en) * 2009-03-05 2010-09-16 Kobe Steel Ltd Method and apparatus for hot-caliber-rolling bar steel

Also Published As

Publication number Publication date
JPH0142761B2 (en) 1989-09-14

Similar Documents

Publication Publication Date Title
Saito et al. Novel ultra-high straining process for bulk materials—development of the accumulative roll-bonding (ARB) process
Tsuji et al. ARB (Accumulative Roll‐Bonding) and other new techniques to produce bulk ultrafine grained materials
US4817703A (en) Strip casing unit with downstream multi-stand continuous rolling mill
JP2003039103A (en) Method and apparatus for forming deformed wire rod
US4669293A (en) Continuous rolling method and continuous rolling mill
JPS61165201A (en) Rough rolling method of bar steel and wire rod
EP0826437A4 (en) Cold tandem rolling method and cold tandem rolling mill
EP1287914A3 (en) Rolling system and rolling method
US3837207A (en) Process of continuously hot-forming continuous cast steel stock
JPS58187203A (en) Hot rolling method of steel bar and wire rod
CA2285122A1 (en) Extrusion rolling method and apparatus
JPS61229402A (en) Simultaneous rolling device for plural rods from plate material
Murayama et al. Effect of twinning on the deformation behavior of textured sheets of pure titanium in uniaxial tensile test
JP2642567B2 (en) Stable rolling method for deformed steel sheet
JPS5548414A (en) Screw-down control method of rolling mill
RU2043182C1 (en) Apparatus for transverse-wedge rolling
SU1697917A1 (en) Reverse rolling of large blanks
JPH02207914A (en) Cold extrusion for metallic bar or metallic tube
RU2025153C1 (en) Method of rolling billets from titanium alloys in reversing mill
GB1571752A (en) Method of rolling billets adapted to be rolled into bar sections
JPS61165203A (en) Rough rolling method of steel bar and wire rod
JP3362326B2 (en) Pure titanium sheet for roll forming
RU2203747C2 (en) Method for making hot rolled strip
RU2121404C1 (en) Method of back-tension drawing
JPS61286002A (en) Rough rolling method for steel rod and wire