JPS6116503B2 - - Google Patents

Info

Publication number
JPS6116503B2
JPS6116503B2 JP53090921A JP9092178A JPS6116503B2 JP S6116503 B2 JPS6116503 B2 JP S6116503B2 JP 53090921 A JP53090921 A JP 53090921A JP 9092178 A JP9092178 A JP 9092178A JP S6116503 B2 JPS6116503 B2 JP S6116503B2
Authority
JP
Japan
Prior art keywords
gas
copper
purification
cylinder
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53090921A
Other languages
Japanese (ja)
Other versions
JPS5518911A (en
Inventor
Kyoshi Nagai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Sanso Co Ltd
Original Assignee
Taiyo Sanso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Sanso Co Ltd filed Critical Taiyo Sanso Co Ltd
Priority to JP9092178A priority Critical patent/JPS5518911A/en
Publication of JPS5518911A publication Critical patent/JPS5518911A/en
Publication of JPS6116503B2 publication Critical patent/JPS6116503B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、ヘリウムガスやアルゴンガスなど不
活性ガスの精製法に関し、詳しくは、高温ガス炉
に使用するヘリウムガスや高速増殖炉に使用する
アルゴンガスやは半導体製造に用いる不活性ガス
などのガス中の酸素や水素などの不純物を除去す
る精製法に関するものである。 高温ガス炉に使用するヘリウムガス中に水素ガ
スや酸素ガスが存在すると、原子炉の炉芯構造を
形成するグラフアイトと反応し、ハイドロカーボ
ンや炭酸ガスを生成し、グラフアイトを損耗して
著しく原子炉の寿命を縮める。また、高速増殖炉
に使用するアルゴンガス中に酸素ガスが存在する
と、ナトリウムの損耗を生ずるので原子炉の寿命
を縮める。また、半導体製造に用いられる窒素ガ
ス中に酸素が存在すると不要な酸化物を生成し、
半導体製造上好ましくない問題が生じる。これが
ため、ヘリウムガスやアルゴンガスなどの不活性
ガス中のこれら不純物を除く必要がある。 本発明者は、この必要に応ずるため、先に昭和
50年11月29日に「ガス中の酸素又は水素の除去
剤」を発明し、特願昭50−141824号として出願
し、また、昭和52年5月30日に改良された除去剤
を特願昭52−62231号として出願した。しかしな
がら、これら銅系反応剤を酸化・還元して再活性
化する工程において、いきなり高濃度の酸素また
は水素をもつて再活性化しようとすると、反応剤
は激しく反応して自己の反応熱により温度が異常
に上昇し、反応剤自身が溶融する等の事故が生じ
るため、希釈剤としての不活性ガス中に再生用ガ
スの酸素又は水素を添加した混合ガスを使用し
て、温度が異常に上昇しない様に制御しながら再
活性化することが必要であり、また、かかる再活
性化法において希釈剤として使用する不活性ガス
は反応によつて消費せず、単に添加した再生用ガ
スたる酸素又は水素のみが反応によつて消費され
るに過ぎないので、不活性ガスを循環再使用する
再活性化法を創作し、特願昭52−85106号として
出願した。 しかしながら、従来の銅系反応剤による精製で
は、反応能力を失つた銅系反応剤を再活化する際
には、主として窒素ガスなどの不活性ガスで酸素
又は水素を希釈して、これを銅系反応剤に接触せ
しめて酸化又は還元を行つて再活性化を行つてき
たが、再び生成を開始するには、該窒素ガスを再
活性化系内から完全に除去する必要があつた。従
来法では、これがため該ガスをパージする工程を
必要とし、従つてこれに伴う窒素ガスの経済的ロ
スと作業的ロスを避けられなかつた。 本発明者は、かかる経済的ロスと作業工程、作
業時間のロスをなくすことを考えた。銅系反応剤
を再活性化するために生成ガスと同一のガスを希
釈剤として用い、再活性化終了後に再生系内に残
存する再生用ガスと銅系反応剤とを更に反応せし
めて、再生用ガスの残存を無くすることにより、
再活性化後に希釈ガスと再生用ガスの混合ガスを
パージする必要がなく、その時点で直ちに精製を
再開するとができることに着想し、本発明を創作
した。 即ち、本発明は、ヘリウムガスやアルゴンガス
など不活性ガスの銅系反応剤による精製法におい
て、銅系反応剤の再活性化を、第一段階で、被精
製ガスを精製したガスに再生用ガスを添加して再
生用ガスを希釈し、これを循環させて再活性化を
行い、第二段階で、再生用ガスの添加を止め銅系
反応剤の温度を上昇せしめて、精製ガスのみを循
環せしめて循環系内に残存する再生用ガスを更に
銅系反応剤と反応せしめて除去し、次いで、精製
を再開することを特徴とする銅系反応剤によるヘ
リウムガスなどのガス精製法を提供するものであ
る。 以下、本発明を図にもとづいて詳細に説明す
る。 本発明の精製法に用いられる装置の一実施例を
示す第2図において、精製筒2は、CuOやCuを
主成分とする銅系反応剤1が充填され、また筒内
上部に加熱器3が内蔵された構造のもので、この
精製筒は必要に応じ複数基設けることがきる。加
熱器3は図例では精製筒内上部に内蔵されている
が、筒外に設置して加熱ガスを筒内に導入するこ
とも可能である。 該精製筒2の筒頭部には、被精製ガスを筒内に
注入するためのガスを送入パイプ4、筒底部に
は、精製されたガスが排出されるためのガス排出
パイプ5が連結されている。また、銅系反応剤1
の再活性化のために希釈された再生用ガスを送入
するためのガス循環パイプ8が、筒頭部と筒底部
とを繋いで連設されている。また、ガス排出パイ
プ5とガス循環パイプ8とは、精製ガスの導入パ
イプ7で連結されている。上記パイプ類には、そ
れぞれ図示せる如くバルブa、バルブb、バルブ
c,バルブd、バルブeとが設けられている。ガ
ス循環パイプ8には、再生用ガスボンベ9が再生
用ガスの注入パイプ12を介して連結し、該パイ
プ12には、バルブfが設けられている。また、
ガス循環パイプ8には、循環ポンプ6、冷却器1
3、ドレンセパレーター14などのガス循環に必
要な機器類が装着されている。 上記装置を用いて精製するには、ヘリウムガス
やアルゴンガスなどの不活性ガスをガス送入パイ
プ4を通して筒2内に送入する。精製せんとする
ガス中に水素ガスが不純物として混入していると
きは、CuOを主成分とする銅系反応剤1を筒内
に充填し、酸素ガスが不純物として混入している
ときは、Cuを主成分とする銅系反応剤1を筒内
に充填して精製する。銅系反応剤1としては、本
発明者の発明に係る特願昭52−62231号明細書に
記載されている除去剤、即ち、酸化銅又は銅の粉
末をバインダーを用いて成形するか、あるいはバ
インダーを用いないで焼結してなる物の表面に、
パラジウムを付着せしめてなる除去剤を用いるこ
とが好ましい。 精製筒2内に送入された被精製ガス中の不純物
は、筒内温度が所定温度、例えば200〜220℃前後
の温度下で、 酸素ガスを除去する場合は 2Cu+O2→2CuO 水素ガスを除去する場合は CuO+H2→Cu+H2O の反応によつて、夫々の銅系反応剤1と反応して
被精製ガス中から除去される。即ち、ガス排出パ
イプ5から、精製されたヘリウムガスやアルゴン
ガス等の不活性ガスが排出される。なお、水素ガ
スを除去する場合は、上記化学式の示す如く水分
も一緒に排出される。 しかし、かかる反応も反応限度があつて、不純
物の一定量を除去すると、銅系反応剤1が反応し
なくなる。この段階でバルブaを閉めてガス送入
パイプ4を通して被精製ガスの筒2内への送入を
停止し、精製を止めて、銅系反応剤1の再活性化
を行う。 銅系反応剤1の再活性化を行うには、第一段階
では、バルブeを開いて精製ガス導入パイプ7か
ら精製ガスをガス循環パイプ8に導入し、この精
製ガスを循環ポンプ6の作動によつてガス循環パ
イプ8内と精製筒2内とを循環せしめるが、筒2
内温度を加熱器3によつて、例えば200〜220℃前
後の所定温度に高めて循環せしめる。筒内温度が
所定温度になつた時から、循環ガス中に再生用ガ
スを混入する。即ち、バルブfを開いて、再生用
ガスボンベ9から再生用ガスの適量を、流量計1
0で計量しつつ、ガス循環パイプ8中の精製ガス
中に送入する。即ち、銅系反応剤を還元する必要
のあるときは、再生用ガスとして水素ガスを、ま
た、銅系反応剤を酸化する必要のときは酸素ガス
を再生用ガスとして精製ガス中に添加する。精製
ガスは、再生用ガスの希釈ガスとなつて、循環が
安全に続けられる。精製ガス中に添加された再生
用ガスは、精製筒2内で、所定温度下で、銅系反
応剤1と反応して酸化又は還元が行われ、再活性
化が進む。かかる酸化還元反応も限界があり、や
がて反応が停止する。即ちその所定温度での反応
が終了する。 しかし、なお、循環ガス中には1%前後の再生
用ガスが残存混在する。循環ガス中に微量でも再
生用ガスが残存する限り、精製工程へ切替えるこ
とができないので、循環ガス中の再生用ガスを除
去する必要がある。 これがため、第二段階で加熱器3によつて、筒
2内温度を更に20〜60℃上昇せしめると共にバル
ブfを閉じて再生用ガスの供給を停止する。かか
る上昇された温度下では、銅系反応剤1と再生用
ガスとの反応が再び行われるので、暫くすると、
循環ガス中の再生用ガスは全く除去され、即ち精
製ガスのみがガス循環パイプ8と精製筒2内とを
循環している状態となる。かかる状況となつたと
きに、精製工程へ切替える。即ち、バルブc、バ
ルブd、バルブeを閉じて再活性化工程を停止し
て、バルブa、バルブbを開き被精製ガスをガス
送入パイプを通して精製筒2内に送入し、精製を
再開する。 かくして精製が再開されて、精製されたヘリウ
ムガスやアルゴンガス等の不活性ガスが、ガス排
出パイプ5から排出される。 こうして精製が続行されるが、銅系反応剤1が
再び再活性化を要する状態となれば、上記の再活
性化工程に切替える。 精製筒2を二基以上併設し、精製と再活性化を
交互に切替え運転すれば、連続して精製を行うこ
とができる。第1図は精製筒を二基併設した場合
の装置の系統図を示す。 また、精製筒2が一基の場合は再活性化を行な
つているときは精製を停止し、ガス排出パイプ5
の下流にある(図示せず)バツフアータンクから
希釈用ガスとしての精製ガスを供給するか、精製
ガスと同一ガスを別に設けたボンベから供給する
ことが可能である。 本発明は、一定温度下で再生用ガスとの反応が
停止した銅系反応剤が、更に高い温度下では、再
び反応を開始するとの公知の技術を、筒内での再
活性化工程中に取入れて、循環ガス中に残存する
再生用ガスを除去するために応用したもので、再
活性化工程の終りには、循環ガスを不活性ガスの
みとし、そのまま精製工程へ切替えることが可能
となり、従つて、再活性化工程で希釈剤として用
いる不活性ガスを被精製ガスと同一のガスを用い
れば、再活性化終了後もこれを廃棄する必要がな
い。 本発明の方法によれば、酸素ガスや水素ガスの
不純物が混入したヘリウムガスやアルゴンガス等
の不活性ガスを、純度高く精製することができ、
しかも銅系反応剤の再活性化のための希釈ガスは
精製ガスを使用でき、再活性化後も廃棄すること
なく再使用することができるので、経済的に有利
であり、かつ、ガスパージのための作業やこれに
伴なう危険などなく、作業上も安全度が高いなど
従来法に比し、優れたガス精製法である。 実施例 1 第1図に示す系統図の装置を用いて、水素ガス
の混入したヘリウムガスを精製した。使用した装
置の各部の仕様ならびに運転条件は次のとおりで
ある。 精製筒2の1,2の2 内径 297.9mm 断面積 697.0cm2 反応剤充填層 高さ 400mm 容積 27.88 重量 22.3Kg 銅系反応剤1の1,1の2 特願昭52−62231号明細書に従つて、酸化
銅粉末9重量部とクレー1重量部を直径約
1.6mm、長さ約4mmのペレツトに成形し、パ
ラジウムを含有せしめて400℃で焼成したも
の。 加熱器3の1,3の2 U字形シーズヒーター(最大53KW)を精
製筒頭部に装着した。 再生用ガス充填筒9 7000用酸素ボンベ パイプ4,5,7,8 口径1インチのステンレスのパイプを連結
した。 ガス流量調節弁11 山武ハネウエル社製口径3/8インチの流量
調節弁を使用した。 運転条件 (1) 精製工程(ヘリウムガス中の水素ガスを除去
する運転時) 流体 ヘリウムガス 圧力 40Kg/cm2G 流量 806.4Nm2/Hr 水素添加量 200N/Hr 操作温度 260℃ (2) 再生工程(精製の側の筒出口よりヘリウムを
導入し酸素ガスを混入せしめて銅系反応
剤を再活性化した運転時) 流体 ヘリウムガス 圧力 40Kg/cm2G 流量 40Nm3/Hr 酸素濃度 0.1〜1.0% 操作温度 第一段階220℃ 第二段階240℃ 原子炉模擬装置からの水素の混入したヘリウム
ガスを、当初、注入パイプ4を通して第一の精製
筒2の1に、バルブa1とバルブb1を開いて(バル
ブa2、バルブb2、バルブc1、バルブc2、バルブ
d1、バルブd2は閉じて)送入し、上記(1)精製工程
の運転条件でヘリウムガス中の水素除去を行なつ
た。 ヘリウムガスは精製されて、排出パイプ5から
高純度のヘリウムガスと水が排出された。約4時
間連続運転をしたところ、銅系反応剤1の1の反
応能力が限界に達したので、バルブa2とバルブb2
を開いて被精製ヘリウムガスを第二の精製筒2の
2に送入し、バルブa1とバルブb1を閉じて第一の
精製筒2の1による精製を停止し、第二の精製筒
2の2で精製を続けた。 次いで、バルブc1とバルブa1を開き、バルブe
も開いて循環ポンプ6を作動させパイプ7を通じ
て精製されたヘリウムガスをパイプ8に導入し、
パイプ8を通じて精製ヘリウムガスを第一の精製
筒2の1内に送入した。即ち、循環ポンプ6を運
転して、精製筒2の1内とパイプ8内を循環させ
た。加熱器3の1にて精製筒2の1内の温度を
220℃にまで上昇させ、220℃に上昇した時点か
ら、バルブeを閉じ、パイプ8を循環するヘリウ
ムガスの中に、酸素ボンベ9から酸素の添加を開
始した。酸素濃度は、0.1%から1%の範囲内で
調節した。 かくしてヘリウムガスで希釈された酸素ガスの
循環を続けて、精製筒2の1の反応剤1の1の再
活性化ができた。この間酸素は400がヘリウム
ガス中に混入された。 この様にして銅系反応剤1の1は再活性化でき
たが、精製筒2の1の筒内酸素濃度を分析したと
ころ約1%の酸素が検出された。 ここで、バルブfを閉めて酸素の供給を停止
し、精製されたガスのみの循環を続けたまま、加
熱器3で精製筒2の1の筒内温度を220℃から240
℃へと上昇させて、精製筒内およびパイプ8中の
残存酸素を銅系反応剤1の1に更に反応させた。
約15分間で残余の酸素の濃度を0.4ppmにするこ
とができた。そこでバルブc1、バルブd1を閉じて
再活性化を止めた。 次に第二の精製筒2の2の精製を、第一の精製
筒2の1に切替えた。即ちバルブa1を開きa2を閉
じて(バルブc1、バルブc2は閉じ)またバルブb1
を開きバルブb2を閉じて(バルブd1、バルブd2
閉じ)ヘリウムガスをパイプ4を通して第一の精
製筒2の1に送入し、第一の精製筒2の1での精
製を行ない、次いでこれに並行して、前記の再活
性化の方法と同様にして、第二の精製筒2の2中
の反応剤1の2の再活性化を行なつた。即ちバル
ブc2とバルブd2とを開いて、パイプ8を通して酸
素の混入するヘリウムガスを精製筒2の2内に送
入して、これを循環送入して再活性化を行なつ
た。 即ち、2基の精製筒2の1,2の2を併設する
ことによつて、一方の精製筒が精製を行なつてい
る間に、他方の精製筒では銅系反応剤の再活性化
を行なつた。即ち、交互に精製を行ない、その間
並行して銅系反応剤の再活性化を行なつたが、安
全に行なわれ、かつ、4時間毎の切替え時にパイ
プ5から排出される精製されたヘリウムガス中に
は、酸素濃度は0.4ppm以上は検出されなかつ
た。 実施例 2 第2図に示す系統図の装置を用いて、酸素を混
入したアルゴンガスを精製した。使用した装置の
各部の仕様ならびに運転条件は次のとおりであ
る。 精製筒 2 内径 150mm 断面積 176.7cm2 反応剤充填層 高さ 400mm 容積 7.1 重量 5.7Kg 銅系反応剤 1 実施例1で用いたものと同じ銅系反応剤を水素
還元処理したもの。 加熱器 3 U字形シーズヒーター(最大1.5KW)を精製
筒頭部内側に装着した。 再生用ガス水素ボンベ9 7000水素ボンベ パイプ4,5,7および8 口径1/2インチのステンレスパイプを連結し
た。 ガス流量調節弁11 富士金属製手動式ニードル弁を1個用いた。 運転条件 (イ) 精製工程(アルゴンガス中の酸素を除去する
精製時) 流体 アルゴンガス 圧力 2Kg/cm2G 流量 10Nm3/Hr 酸素添加量 29N/Hr 操作温度 200℃ (ロ) 再生工程(精製筒の筒底出口より精製アルゴ
ンガスを導入し水素ガスを添加混入し、
銅系反応剤を再活性化した活性化時) 流体 アルゴンガス 圧力 2Kg/cm2G 流量 10Nm3/Hr 水素濃度 0.1〜1% 水素は465をアルゴンガス中に混入した。 操作温度 第一段階で220℃ 第二段階で260℃ 酸素の混入したアルゴンガスを、当初注入パイ
プ4を通じて銅系反応剤1の充填された精製筒2
に送入し、上記(イ)精製工程の運転条件で、アルゴ
ンガス中の酸素除去を行なつた。排出パイプ5か
ら高純度の精製アルゴンガスが排出された。約8
時間連続運転をしたところ、銅系反応剤1の反応
能力が限界に達したので、精製を止めた。即ち、
バルブaを閉じて、パイプ4からの被精製アルゴ
ンガスの送入を止め、バルブbを閉じて精製を止
めた。 次いで、バルブcとバルブdを開き、循環ポン
プ6を作動させ、バルブeを開きパイプ7を通じ
て精製されたアルゴンガスをバツフアータンク
(図示せず)からパイプ8に導入し、精製筒2と
パイプ8とを循環せしめた。加熱器3で精製筒内
温度を220℃にして、この時点からバルブfを開
き水素ボンベ9から流量計10で計量し流量調節
弁11で調節しつつパイプ12を通して、水素ガ
スをパイプ8中に添加した。即ち、アルゴンガス
で希釈された水素ガスを、精製筒2内に送入循環
させ、銅系反応剤1の再活性化を行なつた。 即ち、上記(ロ)再生工程の運転条件で銅系反応剤
の再活性化を行なつた。その間465の水素ガス
が添加された。約8時間ガス循環を続けたとこ
ろ、銅系反応剤1を再生用水素ガスとの反応が終
り、それ以上の反応が見られなくなつた。ガス中
の水素濃度は1%検出された。 そこでバルブfを閉めて水素ガスの添加を止め
ると共にバルブeも閉じた。加熱器3によつて、
精製筒2の筒内温度を220℃から260℃に上昇せし
めて、アルゴンガスの循環を続けて、ガス中に残
存する水素ガスを、銅系反応剤1と更に反応せし
めて除去することを行なつた。約10分間アルゴン
ガスの循環を続けたところ、循環ガス中に残存し
ていた水素ガスは全く除去され、ガス中の水素濃
度は0.4ppm以下となつた。即ち、銅系反応剤1
が還元され再活性化ができた。そこでバルブcと
バルブdを閉じて再活性化のためのアルゴンガス
の循環を止めた。次いで、バルブaとバルブbを
開き、被精製アルゴンガスを精製筒2内に送り、
上記(イ)精製工程の運転条件で再び精製を再開し
た。パイプ5からは酸素濃度0.4ppm以下の高度
に精製されたアルゴンガスが排出され、所期の精
製を続けることができた。 かかる精製工程と再活性化工程を繰返して切替
え運転することができた。
The present invention relates to a method for purifying inert gases such as helium gas and argon gas, and specifically relates to a method for purifying inert gases such as helium gas used in high-temperature gas reactors, argon gas used in fast breeder reactors, and inert gases used in semiconductor manufacturing. This relates to a purification method that removes impurities such as oxygen and hydrogen from the inside. If hydrogen gas or oxygen gas is present in the helium gas used in a high-temperature gas reactor, it will react with the graphite that forms the core structure of the reactor, producing hydrocarbons and carbon dioxide gas, causing significant wear and tear on the graphite. Shorten the life of the nuclear reactor. Furthermore, the presence of oxygen gas in the argon gas used in fast breeder reactors causes loss of sodium and shortens the life of the reactor. Additionally, the presence of oxygen in the nitrogen gas used in semiconductor manufacturing produces unnecessary oxides.
Unfavorable problems arise in semiconductor manufacturing. Therefore, it is necessary to remove these impurities from an inert gas such as helium gas or argon gas. In order to meet this need, the present inventor first developed a
On November 29, 1970, he invented a "removal agent for oxygen or hydrogen in gas" and filed a patent application as Japanese Patent Application No. 141824-1972. The application was filed as Application No. 52-62231. However, in the process of reactivating these copper-based reactants by oxidizing and reducing them, if you suddenly try to reactivate them with a high concentration of oxygen or hydrogen, the reactants will react violently and the temperature will rise due to their own reaction heat. If the temperature rises abnormally, accidents such as melting of the reactant itself may occur, so use a mixed gas in which oxygen or hydrogen, which is a regeneration gas, is added to an inert gas as a diluent. It is necessary to carry out reactivation while controlling the reactivation process so that the inert gas used as a diluent in such a reactivation method is not consumed in the reaction, but is simply added as a regeneration gas such as oxygen or Since only hydrogen was consumed in the reaction, a reactivation method was created in which the inert gas was recycled and reused, and was filed as Japanese Patent Application No. 1985-85106. However, in conventional purification using copper-based reactants, when reactivating a copper-based reactant that has lost its reaction ability, oxygen or hydrogen is mainly diluted with an inert gas such as nitrogen gas, and the copper-based reactant is Reactivation has been carried out by bringing it into contact with a reactant and performing oxidation or reduction, but in order to restart production, it was necessary to completely remove the nitrogen gas from the reactivation system. In the conventional method, therefore, a step of purging the gas is required, and the economic loss of nitrogen gas and operational loss associated with this cannot be avoided. The inventor of the present invention considered eliminating such economic loss, work process, and work time loss. In order to reactivate the copper-based reactant, the same gas as the produced gas is used as a diluent, and after the reactivation is completed, the regeneration gas remaining in the regeneration system is further reacted with the copper-based reactant, resulting in regeneration. By eliminating residual gas,
The present invention was created based on the idea that there is no need to purge the mixed gas of dilution gas and regeneration gas after reactivation, and purification can be restarted immediately at that point. That is, in a method for purifying an inert gas such as helium gas or argon gas using a copper-based reactant, the present invention reactivates the copper-based reactant in the first step by converting the gas to be purified into a purified gas for regeneration. Gas is added to dilute the regeneration gas, which is then circulated for reactivation. In the second stage, the addition of regeneration gas is stopped and the temperature of the copper-based reactant is raised to produce only purified gas. Provided is a method for purifying gas such as helium gas using a copper-based reactant, characterized in that the regeneration gas remaining in the circulating system is further reacted with a copper-based reactant to be removed, and then purification is restarted. It is something to do. Hereinafter, the present invention will be explained in detail based on the drawings. In FIG. 2 showing an embodiment of the apparatus used in the purification method of the present invention, a refining cylinder 2 is filled with a copper-based reactant 1 containing CuO or Cu as a main component, and a heater 3 is placed in the upper part of the cylinder. It has a built-in structure, and multiple purification cylinders can be installed as needed. Although the heater 3 is built in the upper part of the refining cylinder in the illustrated example, it is also possible to install it outside the cylinder and introduce heating gas into the cylinder. A gas supply pipe 4 for injecting the gas to be purified into the cylinder is connected to the cylinder head of the purification cylinder 2, and a gas discharge pipe 5 for discharging the purified gas is connected to the cylinder bottom. has been done. In addition, copper-based reactant 1
A gas circulation pipe 8 for feeding diluted regeneration gas for reactivation is connected to connect the cylinder head and cylinder bottom. Further, the gas discharge pipe 5 and the gas circulation pipe 8 are connected by a purified gas introduction pipe 7. The above-mentioned pipes are provided with valves a, valve b, valve c, valve d, and valve e, respectively, as shown in the figure. A regeneration gas cylinder 9 is connected to the gas circulation pipe 8 via a regeneration gas injection pipe 12, and the pipe 12 is provided with a valve f. Also,
The gas circulation pipe 8 includes a circulation pump 6 and a cooler 1.
3. Equipment necessary for gas circulation such as a drain separator 14 is installed. To perform purification using the above apparatus, an inert gas such as helium gas or argon gas is fed into the cylinder 2 through the gas feed pipe 4. When hydrogen gas is mixed as an impurity in the gas to be purified, the cylinder is filled with copper-based reactant 1 containing CuO as the main component, and when oxygen gas is mixed as an impurity, Cu A copper-based reactant 1 containing as a main component is charged into a cylinder and purified. As the copper-based reactant 1, the remover described in Japanese Patent Application No. 1983-62231, which is the invention of the present inventor, is used, that is, copper oxide or copper powder is molded using a binder, or On the surface of a product sintered without using a binder,
It is preferable to use a removal agent to which palladium is attached. Impurities in the gas to be purified that is sent into the purification cylinder 2 are removed at a predetermined internal temperature, for example around 200 to 220℃, and when removing oxygen gas, 2Cu + O 2 → 2CuO hydrogen gas is removed. In the case of CuO+H 2 →Cu+H 2 O, it reacts with each copper-based reactant 1 and is removed from the gas to be purified. That is, purified inert gas such as helium gas or argon gas is discharged from the gas discharge pipe 5. Note that when hydrogen gas is removed, water is also discharged together as shown in the above chemical formula. However, such a reaction also has a reaction limit, and when a certain amount of impurities is removed, the copper-based reactant 1 no longer reacts. At this stage, the valve a is closed to stop the supply of the gas to be purified into the cylinder 2 through the gas supply pipe 4, the purification is stopped, and the copper-based reactant 1 is reactivated. To reactivate the copper-based reactant 1, in the first step, valve e is opened to introduce purified gas from the purified gas introduction pipe 7 into the gas circulation pipe 8, and this purified gas is activated by the circulation pump 6. The gas circulation pipe 8 and the refining cylinder 2 are circulated by the cylinder 2.
The internal temperature is raised to a predetermined temperature of, for example, around 200 to 220°C by the heater 3 and circulated. When the cylinder temperature reaches a predetermined temperature, regeneration gas is mixed into the circulating gas. That is, by opening the valve f, an appropriate amount of regeneration gas is supplied from the regeneration gas cylinder 9 to the flowmeter 1.
While metering at zero, the purified gas is introduced into the gas circulation pipe 8. That is, when it is necessary to reduce the copper-based reactant, hydrogen gas is added to the purified gas as a regeneration gas, and when it is necessary to oxidize the copper-based reactant, oxygen gas is added to the purified gas as the regeneration gas. The purified gas serves as a dilution gas for the regeneration gas and continues to be safely circulated. The regeneration gas added to the purified gas reacts with the copper-based reactant 1 at a predetermined temperature in the purification cylinder 2 to be oxidized or reduced, and reactivation progresses. Such a redox reaction also has a limit, and the reaction eventually stops. That is, the reaction at the predetermined temperature is completed. However, approximately 1% of the regeneration gas remains in the circulating gas. As long as even a trace amount of regeneration gas remains in the circulating gas, it is not possible to switch to the purification process, so it is necessary to remove the regeneration gas from the circulating gas. Therefore, in the second stage, the temperature inside the cylinder 2 is further increased by 20 to 60°C by the heater 3, and the valve f is closed to stop the supply of the regeneration gas. Under such elevated temperature, the reaction between the copper-based reactant 1 and the regeneration gas occurs again, so after a while,
The regeneration gas in the circulating gas is completely removed, that is, only the purified gas is circulating in the gas circulation pipe 8 and the purification cylinder 2. When such a situation occurs, the process is switched to the purification process. That is, valve c, valve d, and valve e are closed to stop the reactivation process, valve a and valve b are opened, and the gas to be purified is fed into the purification cylinder 2 through the gas feed pipe, and the purification is restarted. do. Purification is thus restarted, and purified inert gas such as helium gas or argon gas is discharged from the gas discharge pipe 5. The purification continues in this manner, but if the copper-based reactant 1 becomes in a state that requires reactivation again, the process is switched to the above-mentioned reactivation step. If two or more purification cylinders 2 are installed together and the purification and reactivation are alternately operated, purification can be performed continuously. Figure 1 shows a system diagram of an apparatus in which two refining cylinders are installed together. In addition, if there is only one refining pipe 2, refining is stopped during reactivation, and the gas discharge pipe 5
It is possible to supply purified gas as a dilution gas from a buffer tank (not shown) located downstream of the purification gas, or to supply the same gas as the purified gas from a separate cylinder. The present invention utilizes a known technique in which a copper-based reactant that has stopped reacting with the regeneration gas at a certain temperature starts reacting again at an even higher temperature during the in-cylinder reactivation process. This is applied to remove the regeneration gas remaining in the circulating gas, and at the end of the reactivation process, the circulating gas can be changed to only inert gas and the process can be directly switched to the purification process. Therefore, if the same inert gas as the gas to be purified is used as the diluent in the reactivation step, there is no need to discard it even after the reactivation is completed. According to the method of the present invention, an inert gas such as helium gas or argon gas mixed with impurities such as oxygen gas or hydrogen gas can be purified to a high degree of purity.
Furthermore, purified gas can be used as the diluent gas for reactivating the copper-based reactant, and it can be reused without being discarded even after reactivation, which is economically advantageous. It is a superior gas purification method compared to conventional methods, as there is no work involved or the dangers associated with it, and the work is highly safe. Example 1 Helium gas mixed with hydrogen gas was purified using the apparatus shown in the system diagram shown in FIG. The specifications and operating conditions of each part of the equipment used are as follows. Purification cylinder 2-1, 2-2 Inner diameter 297.9mm Cross-sectional area 697.0cm 2 Reactant packed bed Height 400mm Volume 27.88 Weight 22.3Kg Copper-based reactant 1-1, 1-2 In the specification of Japanese Patent Application No. 1982-62231 Therefore, 9 parts by weight of copper oxide powder and 1 part by weight of clay were mixed into a diameter of approximately
Formed into pellets of 1.6mm and approximately 4mm in length, loaded with palladium and fired at 400℃. Heater 3-1, 3-2 U-shaped sheathed heaters (maximum 53KW) were attached to the head of the refining cylinder. Regeneration gas filling cylinder 9 Oxygen cylinder pipes for 7000 4, 5, 7, 8 Stainless steel pipes with a diameter of 1 inch were connected. Gas flow control valve 11 A flow control valve with a diameter of 3/8 inch manufactured by Yamatake Honeywell was used. Operating conditions (1) Purification process (during operation to remove hydrogen gas from helium gas) Fluid Helium gas Pressure 40Kg/cm 2 G Flow rate 806.4Nm 2 /Hr Hydrogen addition amount 200N/Hr Operating temperature 260℃ (2) Regeneration process (During operation when helium is introduced from the outlet on the refining side and mixed with oxygen gas to reactivate the copper-based reactant) Fluid Helium gas Pressure 40Kg/cm 2 G Flow rate 40Nm 3 /Hr Oxygen concentration 0.1 to 1.0% Operating temperature 1st stage 220°C 2nd stage 240°C Helium gas mixed with hydrogen from the reactor simulator is initially passed through the injection pipe 4 to 1 of the first purification cylinder 2, and the valves A 1 and B 1 are open (valve a 2 , valve b 2 , valve c 1 , valve c 2 , valve
d 1 and valve d 2 were closed), and hydrogen was removed from the helium gas under the operating conditions of the purification step (1) above. The helium gas was purified, and highly purified helium gas and water were discharged from the discharge pipe 5. After continuous operation for about 4 hours, the reaction capacity of copper-based reactant 1 reached its limit, so valves A 2 and B 2
The helium gas to be purified is sent to 2 of the second purification cylinder 2 by opening, and the purification by 1 of the first purification cylinder 2 is stopped by closing the valve a 1 and valve b 1 . Purification was continued in step 2 of 2. Next, open valve c1 and valve a1 , and open valve e.
is opened, the circulation pump 6 is activated, and purified helium gas is introduced into the pipe 8 through the pipe 7.
Purified helium gas was introduced into the first purification cylinder 2 through the pipe 8 . That is, the circulation pump 6 was operated to circulate the inside of the refining cylinder 2 and the inside of the pipe 8. The temperature inside 1 of purification cylinder 2 is controlled by 1 of heater 3.
The temperature was raised to 220°C, and from the time the temperature rose to 220°C, the valve e was closed and the addition of oxygen from the oxygen cylinder 9 to the helium gas circulating through the pipe 8 was started. Oxygen concentration was adjusted within the range of 0.1% to 1%. By continuing to circulate the oxygen gas diluted with helium gas in this way, the reactivation of the reactant 1 in the refining column 2 was completed. During this time, 400% of oxygen was mixed into the helium gas. In this way, copper-based reactant 1 1 could be reactivated, but when the oxygen concentration inside purification column 2 1 was analyzed, about 1% oxygen was detected. Here, close the valve f to stop the supply of oxygen, and while continuing to circulate only the purified gas, use the heater 3 to raise the temperature inside the cylinder 1 of the purification cylinder 2 from 220°C to 240°C.
The temperature was raised to 0.degree. C., and residual oxygen in the purification cylinder and pipe 8 was further reacted with copper-based reactant 1.
The remaining oxygen concentration was reduced to 0.4 ppm in about 15 minutes. Therefore, valve c 1 and valve d 1 were closed to stop reactivation. Next, purification in 2 of the second purification column 2 was switched to 1 in the first purification column 2. That is, open valve a 1 , close valve a 2 (valve c 1 and valve c 2 are closed), and open valve b 1
Open the valve b 2 and close the valve b 2 (valve d 1 and valve d 2 are closed) to send helium gas through the pipe 4 to the 1 of the first purification cylinder 2 and purify it in the 1 of the first purification cylinder 2. Then, in parallel with this, reactivation of reactant 1-2 in second purification column 2-2 was carried out in the same manner as the reactivation method described above. That is, the valves c 2 and d 2 were opened, and helium gas mixed with oxygen was fed into the refining column 2 through the pipe 8, and this was circulated and reactivated. That is, by installing two purification columns 1 and 2 in parallel, while one purification column is performing purification, the other purification column is reactivating the copper-based reactant. I did it. That is, the purification was carried out alternately, during which the reactivation of the copper-based reactant was carried out in parallel, but this was done safely and the purified helium gas discharged from the pipe 5 at the time of switching every 4 hours. Inside, no oxygen concentration was detected above 0.4 ppm. Example 2 Argon gas mixed with oxygen was purified using the system diagram shown in FIG. The specifications and operating conditions of each part of the equipment used are as follows. Purification cylinder 2 Inner diameter 150mm Cross-sectional area 176.7cm 2 Reactant packed bed Height 400mm Volume 7.1 Weight 5.7Kg Copper-based reactant 1 The same copper-based reactant used in Example 1 was treated with hydrogen reduction. Heater 3 A U-shaped sheathed heater (maximum 1.5KW) was installed inside the refining cylinder head. Regeneration gas hydrogen cylinder 9 7000 Hydrogen cylinder pipes 4, 5, 7 and 8 Stainless steel pipes with a diameter of 1/2 inch were connected. Gas flow rate control valve 11 One manual needle valve manufactured by Fuji Metals was used. Operating conditions (a) Purification process (purification to remove oxygen from argon gas) Fluid Argon gas Pressure 2Kg/cm 2 G Flow rate 10Nm 3 /Hr Oxygen addition amount 29N/Hr Operating temperature 200℃ (B) Regeneration process (purification Purified argon gas is introduced from the bottom outlet of the cylinder, hydrogen gas is added and mixed,
During activation when the copper-based reactant was reactivated) Fluid: Argon gas Pressure: 2 Kg/cm 2 G Flow rate: 10 Nm 3 /Hr Hydrogen concentration: 0.1 to 1% Hydrogen 465 was mixed into argon gas. Operating temperature 220°C in the first stage 260°C in the second stage Argon gas mixed with oxygen is initially passed through the injection pipe 4 to the purification cylinder 2 filled with the copper-based reactant 1.
The oxygen in the argon gas was removed under the operating conditions of the purification step (a) above. Highly purified purified argon gas was discharged from the discharge pipe 5. Approximately 8
After continuous operation for hours, the reaction capacity of copper-based reactant 1 reached its limit, so purification was stopped. That is,
Valve a was closed to stop the supply of argon gas to be purified from pipe 4, and valve b was closed to stop purification. Next, valves c and d are opened, circulation pump 6 is operated, valve e is opened, and purified argon gas is introduced from a buffer tank (not shown) into pipe 8 through pipe 7, and the purified argon gas is introduced into pipe 8 from the buffer tank (not shown). 8 was circulated. The internal temperature of the refining cylinder is set to 220°C using the heater 3, and from this point on, the valve f is opened to allow hydrogen gas to flow from the hydrogen cylinder 9 into the pipe 8 through the pipe 12 while being measured using the flow meter 10 and being adjusted using the flow control valve 11. Added. That is, hydrogen gas diluted with argon gas was fed and circulated into the refining column 2 to reactivate the copper-based reactant 1. That is, the copper-based reactant was reactivated under the operating conditions of the regeneration step (b) above. During that time, 465 hydrogen gas was added. When gas circulation was continued for about 8 hours, the reaction between the copper-based reactant 1 and the hydrogen gas for regeneration was completed, and no further reaction was observed. Hydrogen concentration in the gas was detected at 1%. Therefore, valve f was closed to stop the addition of hydrogen gas, and valve e was also closed. By the heater 3,
The internal temperature of the refining cylinder 2 was raised from 220°C to 260°C, argon gas was continued to be circulated, and hydrogen gas remaining in the gas was further reacted with the copper-based reactant 1 to be removed. Summer. When argon gas was continued to be circulated for about 10 minutes, any hydrogen gas remaining in the circulating gas was completely removed, and the hydrogen concentration in the gas became 0.4 ppm or less. That is, copper-based reactant 1
was reduced and reactivated. Therefore, valves c and d were closed to stop the circulation of argon gas for reactivation. Next, valve a and valve b are opened, and the argon gas to be purified is sent into the purification cylinder 2.
Refining was restarted under the operating conditions of the refining step (a) above. Highly purified argon gas with an oxygen concentration of 0.4 ppm or less was discharged from pipe 5, allowing the intended purification to continue. It was possible to repeat the purification process and the reactivation process and perform switching operations.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の1実施態様として、併設さ
れた2基の精製筒を有する装置の系統図である。
第2図は、本発明の他の実施態様として、精製筒
が1基の装置の系統図である。図示された要部と
符号との対応は次のとおりである。 1…銅系反応剤、2…精製筒、3…加熱器、4
…ガス送入パイプ、5…ガス排出パイプ、6…循
環ポンプ、7…ガス導入パイプ、8…ガス循環パ
イプ、9…再生用ガスボンベ、10…流量計、1
1…流量調節弁、12…ガス注入パイプ、113
…冷却器、14…ドレンセパレーター、15…温
度計、a,b,c,d,e,f…バルブ。
FIG. 1 is a system diagram of an apparatus having two refining cylinders installed side by side as one embodiment of the present invention.
FIG. 2 is a system diagram of an apparatus having one refining column as another embodiment of the present invention. The correspondence between the main parts illustrated and the symbols is as follows. 1... Copper-based reactant, 2... Purification column, 3... Heater, 4
...Gas feed pipe, 5...Gas discharge pipe, 6...Circulation pump, 7...Gas introduction pipe, 8...Gas circulation pipe, 9...Regeneration gas cylinder, 10...Flow meter, 1
1...Flow control valve, 12...Gas injection pipe, 113
...Cooler, 14...Drain separator, 15...Thermometer, a, b, c, d, e, f...Valve.

Claims (1)

【特許請求の範囲】[Claims] 1 ヘリウムガスやアルゴンガスなど不活性ガス
の銅系反応剤による精製法において、銅系反応剤
の再活性化を、第一段階で、被精製ガスを精製し
たガスに再生用ガスを添加して再生用ガスを希釈
し、これを循環させて再活性化を行ない、第二段
階で、再生用ガスの添加を止め銅系反応剤の温度
を上昇せしめて、精製ガスのみを循環せしめて循
環系内に残存する再生用ガスを更に銅系反応剤と
反応せしめて除去し、次いで、精製を再開するこ
とを特徴とする銅系反応剤によるヘリウムガスな
どのガス精製法。
1 In the purification method using a copper-based reactant for an inert gas such as helium gas or argon gas, the copper-based reactant is reactivated in the first step by adding regeneration gas to the purified gas. The regeneration gas is diluted and reactivated by circulation. In the second stage, the addition of the regeneration gas is stopped and the temperature of the copper-based reactant is raised, and only the purified gas is circulated to complete the circulation system. A method for purifying gases such as helium gas using a copper-based reactant, characterized in that the regeneration gas remaining in the gas is further reacted with a copper-based reactant to be removed, and then the purification is restarted.
JP9092178A 1978-07-27 1978-07-27 Method of purifying gas such as helium Granted JPS5518911A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9092178A JPS5518911A (en) 1978-07-27 1978-07-27 Method of purifying gas such as helium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9092178A JPS5518911A (en) 1978-07-27 1978-07-27 Method of purifying gas such as helium

Publications (2)

Publication Number Publication Date
JPS5518911A JPS5518911A (en) 1980-02-09
JPS6116503B2 true JPS6116503B2 (en) 1986-04-30

Family

ID=14011882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9092178A Granted JPS5518911A (en) 1978-07-27 1978-07-27 Method of purifying gas such as helium

Country Status (1)

Country Link
JP (1) JPS5518911A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5858589A (en) * 1981-10-01 1983-04-07 セイコーインスツルメンツ株式会社 Display
JPS61107919A (en) * 1984-10-30 1986-05-26 Taiyo Sanso Kk Gas refining device
JP5074433B2 (en) * 2009-02-20 2012-11-14 大陽日酸株式会社 Hydrogen removal device

Also Published As

Publication number Publication date
JPS5518911A (en) 1980-02-09

Similar Documents

Publication Publication Date Title
CN1202985C (en) Preparing hydrogen and CO
US4224140A (en) Process for producing cracked distillate and hydrogen from heavy oil
EP0775738A1 (en) Process for producing low-boiling oil from waste plastics containing phthalic polyester and/or polyvinyl chloride
JPS6057371B2 (en) Method and apparatus for regenerating a catalyst for hydroconversion of hydrocarbons
CN101314569A (en) Reaction system and preparation method for nitrous alkyl ester
JPS6019350B2 (en) Coke oven gas desulfurization method
US4988431A (en) Process for performing catalytic reactions
CN112023923B (en) Copper-based catalyst activation method for hydrogen production by methanol pyrolysis
US4880458A (en) Start-up method for a direct reduction process without an external reformer
JPS6116503B2 (en)
CN112138728A (en) Activation method of copper-based catalyst for hydrogen production by methanol-water reforming reaction
JPH1029809A (en) Production method of nitric acid and plant therefor
US7556787B2 (en) Method and apparatus for treating exhaust gases containing fluorine-containing compounds
CN108554159B (en) Method and system for removing oxygen in oxygen-containing low-concentration combustible gas
KR101807343B1 (en) Process and apparatus for treating a gas stream
EP1129030A1 (en) Process and converter for the preparation of ammonia
US3107148A (en) Recovery of hydrogen fluoride from its azeotrope with water
CN211712639U (en) Continuous online recovery unit of single crystal growing furnace tail gas
CA2417591A1 (en) Carbon monoxide hydrogenation
JP7463364B2 (en) Purified gas production method and purified gas production apparatus
JP3782311B2 (en) Chemical reactor
JPS5943401B2 (en) How to recombine oxygen and hydrogen
JPS5939701A (en) Method for reforming methanol with steam
RU2190022C2 (en) Method and device for production of iron by direct reduction
CN107469615A (en) A kind of oxidizing cyclohexanone tail gas clean-up and method of comprehensive utilization and system