JPS61164459A - Linear motor - Google Patents

Linear motor

Info

Publication number
JPS61164459A
JPS61164459A JP381385A JP381385A JPS61164459A JP S61164459 A JPS61164459 A JP S61164459A JP 381385 A JP381385 A JP 381385A JP 381385 A JP381385 A JP 381385A JP S61164459 A JPS61164459 A JP S61164459A
Authority
JP
Japan
Prior art keywords
magnets
yoke
center pole
half section
fitted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP381385A
Other languages
Japanese (ja)
Inventor
Shiro Hasegawa
志朗 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SWCC Corp
Original Assignee
Showa Electric Wire and Cable Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Electric Wire and Cable Co filed Critical Showa Electric Wire and Cable Co
Priority to JP381385A priority Critical patent/JPS61164459A/en
Publication of JPS61164459A publication Critical patent/JPS61164459A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/035DC motors; Unipolar motors
    • H02K41/0352Unipolar motors
    • H02K41/0354Lorentz force motors, e.g. voice coil motors
    • H02K41/0356Lorentz force motors, e.g. voice coil motors moving along a straight path

Abstract

PURPOSE:To obtain the miniature linear motor of high thrust, by fitting a plurality of magnets so that mutually opposite polarities may be arranged on the first half section and the second half section on the inner peripheral face of a cylindrical yoke, and by fitting a spacer fitted on a center pole, loosely between the magnets for the first half section and the second half section. CONSTITUTION:A plurality (four units) of magnets 12, 13 at a distance D between them are fitted on the first half section and the second half section on the inner peripheral face of a cylindrical yoke so that the opposite polarities may be arranged. A head 16 is fitted at one end of a center pole 14, and four pieces of reinforcing rib 17 are set on the head 16 at intervals of 90 deg.. Coils 18, 19 wound up in the mutual opposite directions are fitted on the rib 17 at intervals. Four spacers 15 are fitted on the central section of the center pole 14, and are arranged to freely slide on the yoke 11 between the magnets 12, 13. The degree and direction of current flowing through the coils 18, 19 are controlled, and the yoke 11 is moved forward or backward in the axial direction against the center pole 14. In this manner, high thrust is obtained with short diameter.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明はりニアモータ、特にボイスコイル型リニアモー
タ(以下VCM)の改良に係る。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to improvements in linear motors, particularly voice coil linear motors (hereinafter referred to as VCM).

[発明の技術的背景とその問題点] 第5図に従来のVCMの一例を示す。この図から分るよ
うに、従来のVCMは円筒状のヨーク1と、その一端を
閉鎖する形状で設けられたリアヨーク2と、リアヨーク
の中心に立設された円柱状のセンタポール3と、サイド
ヨークの内側にその直径両端に位置して同極同士対向さ
せて配置した1対の磁石4と、センタポール3に係合さ
れたコイル5とを有する。磁石4の表面から出た磁束は
すべてセンタポール3に集中し、リアヨーク2を経由し
てヨーク1、従って磁石4の裏面に戻っている。
[Technical background of the invention and its problems] FIG. 5 shows an example of a conventional VCM. As can be seen from this figure, the conventional VCM includes a cylindrical yoke 1, a rear yoke 2 with one end closed, a cylindrical center pole 3 erected in the center of the rear yoke, and a side The yoke includes a pair of magnets 4 located at both diametrical ends of the yoke with the same poles facing each other, and a coil 5 engaged with the center pole 3. All the magnetic flux emitted from the front surface of the magnet 4 is concentrated on the center pole 3 and returns to the yoke 1 via the rear yoke 2 and, therefore, to the back surface of the magnet 4.

リニアモータの推力Fは F=kBIlで与えられる。The thrust F of the linear motor is It is given by F=kBIl.

ただし、Bは磁界の強度(ガウス)、Iは通電された電
気量(A)、lは磁界内にあるコイルの線長(IIl)
とする。この式から分るように、高推力を得るためには
、磁界の強度を増大させるか、磁界の面積を増加させ、
コイルの巻線長さを増加させるかによることとなる。
Where, B is the strength of the magnetic field (Gauss), I is the amount of electricity passed (A), and l is the wire length of the coil in the magnetic field (IIl).
shall be. As can be seen from this equation, in order to obtain high thrust, either increase the strength of the magnetic field or increase the area of the magnetic field,
It depends on whether the winding length of the coil is increased.

ところが、前記のような磁束の流れのため、センタポー
ルの根元に磁束が集中し、この部分で磁気飽和が生じ易
く、V−CMの推力を大きくするには、センタポールの
断面積を増大させる必要があった。従って、VCMの高
さ、直径等に制限のある場合には推力を高くすることは
困難であった。
However, due to the above-mentioned flow of magnetic flux, the magnetic flux concentrates at the base of the center pole, and magnetic saturation tends to occur in this part.In order to increase the thrust of the V-CM, it is necessary to increase the cross-sectional area of the center pole. There was a need. Therefore, it has been difficult to increase the thrust when there are restrictions on the height, diameter, etc. of the VCM.

[発明の目的] 本発明は上記の事情に基きなされたもので、高推力で、
しかも小型に構成し得るVCMを提供することを目的と
している。
[Object of the invention] The present invention has been made based on the above circumstances, and has a high thrust,
Moreover, it is an object of the present invention to provide a VCM that can be constructed in a small size.

〔発明の概要コ 本発明のVCMは、ヨークの軸方向の一半にはヨーク内
周面に一方の極を当接させて複数の磁石を軸方向の間隙
をおいて取付け、他半には前記磁石と同一個数の磁石を
間隙が前記磁石の間隙と合致させると共に他方の極をヨ
ーク内周面に当接させて取付け、軸方向に並んだ磁石間
に位置し前記磁石の間隙に合致する間隙を有するスペー
サにより前記ヨークと同心にセンタポールをヨーク内に
支持させて磁気回路を構成し、前記磁石の軸方向間隙、
スペーサの間隙を貫通する補強リブに前記スペーサの両
側に配置され、軸方向に並んだ磁石の軸方向中央位置間
の距離だけ離間したコイルユニットを固着して可動子コ
イルを構成したことを特徴とする。
[Summary of the Invention] The VCM of the present invention has a plurality of magnets mounted on one half of the yoke in the axial direction with a gap in the axial direction with one pole in contact with the inner peripheral surface of the yoke, and the The same number of magnets as the magnets are installed so that the gap matches the gap between the magnets and the other pole is in contact with the inner peripheral surface of the yoke, and the gap is located between the magnets arranged in the axial direction and matches the gap between the magnets. A magnetic circuit is constructed by supporting a center pole within the yoke concentrically with the yoke by a spacer having an axial gap between the magnets,
The movable coil is configured by fixing coil units arranged on both sides of the spacer and spaced apart by the distance between the axial center positions of the magnets arranged in the axial direction to reinforcing ribs that penetrate the gap between the spacers. do.

[発明の実施例] 第1図は本発明一実施例の可動子コイルの斜視図、第2
図はその磁気回路のカットモデルの斜視図、第3図は前
記実施例の一部を除去して示す横断面図、第4図は前記
実施例の縦断面図である。
[Embodiment of the Invention] Fig. 1 is a perspective view of a mover coil according to an embodiment of the present invention;
The figure is a perspective view of a cut model of the magnetic circuit, FIG. 3 is a cross-sectional view showing the embodiment with a part removed, and FIG. 4 is a longitudinal sectional view of the embodiment.

第2図乃至第4図において、円筒状のヨーク11内には
、その軸方向の一半に円筒面の一部をなす4箇の磁石1
2がヨーク11の中心にN極を向けて配置され、他半に
は同じく4箇の磁513がS極を向けて配置されている
。センタポール14は、その軸方向中央に設けた磁性、
非磁性何れかの金属からなる4箇のスペーサ15によっ
てヨーク11内に支持されている。なお、スペーサ15
の間隙は磁石12相互、磁石13相互の間隙と円周方向
の位置を合致させられている。一方可動子コイル10は
、第1図に示すように、円筒状のヘッド16に90度間
隔で取付けた軸方向の4枚の補強リブ17に互いに逆方
向に巻回された2箇のコイルユニット18.19が間隔
をおいて取付けられている。コイルユニット18.19
の間隔は、軸方向に並んだ磁石12.13の軸方向中央
位置の間隔に等しくしである。
In FIGS. 2 to 4, inside the cylindrical yoke 11, there are four magnets 1 that form part of the cylindrical surface in one half of the axial direction.
2 is arranged with the north pole facing the center of the yoke 11, and four magnets 513 are similarly arranged on the other half with the south pole facing. The center pole 14 has a magnetic pole provided at the center in the axial direction.
It is supported within the yoke 11 by four spacers 15 made of any non-magnetic metal. Note that the spacer 15
The gap is made to match the gap between the magnets 12 and the gap between the magnets 13 in the circumferential direction. On the other hand, as shown in FIG. 1, the mover coil 10 is composed of two coil units wound in opposite directions around four reinforcing ribs 17 in the axial direction attached to a cylindrical head 16 at 90 degree intervals. 18 and 19 are installed at intervals. Coil unit 18.19
The distance between the magnets 12 and 13 is equal to the distance between the axial center positions of the magnets 12 and 13 arranged in the axial direction.

上記構成の本発明のVCMの組立は次のようにして行う
。まず、磁気回路の組立をし、次に可動子コイルのヘッ
ド16に4枚の補強リブ17を取付け、これらに前記ヘ
ッド側のコイルユニット18を取付ける。この状態で補
強リブ17を磁石12の相互の間隙、スペーサ15の相
互の間隙、磁石13の相互の間隙に挿通し乍ら、可動子
コイルを磁気回路内に挿入する。挿入し終ったところで
、他方のコイルユニット19を補強リブに取付は組立を
完了する。
The VCM of the present invention having the above configuration is assembled as follows. First, a magnetic circuit is assembled, then four reinforcing ribs 17 are attached to the head 16 of the mover coil, and the coil unit 18 on the head side is attached to these. In this state, the reinforcing ribs 17 are inserted into the gaps between the magnets 12, the spacers 15, and the magnets 13, and the movable coil is inserted into the magnetic circuit. When the insertion is completed, the assembly is completed by attaching the other coil unit 19 to the reinforcing rib.

上記構成の本発明のVCMにおける磁束の流れは第4図
に矢符で示されている。すなわち、スペーサ15が磁性
、非磁性何れの金属よりなる時も、N極をヨーク11の
中心に向けたヘッド側の磁石12の表面から出た磁束は
、センタポール14に入り、センタポール内を進み、S
極をヨーク11の中心に向けた磁石13の表面から磁石
13に入り、その裏面からヨーク11に入り、ヨーク内
を進んで磁石12の裏面に還流する。
The flow of magnetic flux in the VCM of the present invention having the above configuration is indicated by arrows in FIG. That is, regardless of whether the spacer 15 is made of magnetic or non-magnetic metal, the magnetic flux emitted from the surface of the head-side magnet 12 with its N pole directed toward the center of the yoke 11 enters the center pole 14 and flows inside the center pole. Go ahead, S
It enters the magnet 13 from the front surface of the magnet 13 with its pole facing the center of the yoke 11, enters the yoke 11 from the back surface, travels inside the yoke, and returns to the back surface of the magnet 12.

前記説明したような磁束の流れの中で互いに逆巻のコイ
ルユニット18.19に電流を印加すれば、可動子コイ
ルには電流の向きに従って推力が発生する。
When a current is applied to the coil units 18 and 19 wound oppositely to each other in the flow of magnetic flux as described above, thrust is generated in the movable coil according to the direction of the current.

本発明のVCMは、第4図に示すような磁束の流れであ
るから、従来のVCMのようにセンタポールの根元に磁
束が集中することはなく、センタポールが磁気飽和を起
し難いので、センタポールの断面積を増大させることな
く高推力を得ることができる。
Since the VCM of the present invention has a magnetic flux flow as shown in FIG. 4, the magnetic flux does not concentrate at the base of the center pole unlike in the conventional VCM, and the center pole is less likely to cause magnetic saturation. High thrust can be obtained without increasing the cross-sectional area of the center pole.

また、コイルユニット18.19は逆巻としてあり、そ
れらには逆向きに電流が流れるので、コイルに電流を印
加してた時に生じるアンペアターンの磁界は相殺される
。従って、ビークパワーも従来のVCMより著しく高く
することができる。
Also, the coil units 18 and 19 are counter-wound, and current flows through them in opposite directions, so that the ampere-turn magnetic field that occurs when current is applied to the coils is canceled out. Therefore, the peak power can also be made significantly higher than in conventional VCMs.

なお、本発明は上記実施例のみに限定されない。Note that the present invention is not limited to the above embodiments.

例えば、磁気回路の形状は多角形断面であってもよいし
、角形であってもよい。ざらに、補強リブをイミド系材
料、テフロン混入材料のような摺動摩耗に強い材料によ
って構成し、これをスペーサまたはセンタポールに摺動
させる自己支持型としてもよい。このような構成とした
ものは、鉛直方向作動に好適である。また、第4図に破
線で示すようにヨークにフロントプレート20.リアプ
レート21を取付ければ、同程度の大きさの従来のVC
Mに比し約4倍の出力とすることができる。
For example, the shape of the magnetic circuit may be a polygonal cross section or a rectangular shape. Alternatively, the reinforcing rib may be made of a material that is resistant to sliding wear, such as an imide material or a material containing Teflon, and may be of a self-supporting type in which the reinforcing rib is slid on the spacer or center pole. This configuration is suitable for vertical operation. Also, as shown by the broken line in FIG. 4, a front plate 20 is attached to the yoke. If you install the rear plate 21, you can use a conventional VC of the same size.
The output can be approximately four times that of M.

[発明の効果] 本発明VCMは前記したようにセンタポールの断面積を
大きくしなくても高推力のものとすることができるので
、その高さ、直径を制限され小型で高推力の要求される
用途のVCMとして最適である。
[Effects of the Invention] As described above, the VCM of the present invention can have high thrust without increasing the cross-sectional area of the center pole, so it can be used without limiting its height and diameter and requiring small size and high thrust. It is ideal as a VCM for applications such as

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明一実施例の可動子コイルの斜視図、第2
図は前記実施例の磁気回路のカットモデルの斜視図、第
3図は前記実施例の要部の横断面図、第4図前記実施例
の縦断面図、第5図は従来のVCMの縦断面図である。 1o・・・可動子コイル  11・・・ヨーク12.1
3・・・磁石  14・・・センタポール15・・・ス
ペーサ  16・・・ヘッド17・・・補強リブ 18.19・・・コイルユニット 出願代理人
FIG. 1 is a perspective view of a mover coil according to an embodiment of the present invention, and FIG.
The figure is a perspective view of a cut model of the magnetic circuit of the embodiment, FIG. 3 is a cross-sectional view of the main parts of the embodiment, FIG. 4 is a longitudinal sectional view of the embodiment, and FIG. 5 is a longitudinal section of a conventional VCM. It is a front view. 1o...Mover coil 11...Yoke 12.1
3... Magnet 14... Center pole 15... Spacer 16... Head 17... Reinforcement rib 18.19... Coil unit application agent

Claims (1)

【特許請求の範囲】[Claims] ヨークの軸方向の一半にはヨーク内周面に一方の極を当
接させて複数の磁石を軸方向の間隙をおいて取付け、他
半には前記磁石と同一個数の磁石を間隙が前記磁石の間
隙と合致させると共に他方の極をヨーク内周面に当接さ
せて取付け、軸方向に並んだ磁石間に位置し前記磁石の
間隙に合致する間隙を有するスペーサにより前記ヨーク
と同心にセンタポールをヨーク内に支持させて磁気回路
を構成し、前記磁石の軸方向間隙、スペーサの間隙を貫
通する補強リブに前記スペーサの両側に配置され、軸方
向に並んだ磁石の軸方向中央位置間の距離だけ離間した
コイルユニットを固着して可動子コイルを構成したこと
を特徴とするリニアモータ。
On one half of the yoke in the axial direction, a plurality of magnets are attached with gaps in the axial direction with one pole in contact with the inner peripheral surface of the yoke, and on the other half, the same number of magnets as the magnets are attached with the gaps between the magnets. The center pole is mounted concentrically with the yoke by a spacer that is positioned between the magnets aligned in the axial direction and has a gap that matches the gap between the magnets. is supported in a yoke to form a magnetic circuit, and reinforcement ribs that penetrate the axial gap between the magnets and the spacer gap are arranged on both sides of the spacer, and between the axial center positions of the axially aligned magnets. A linear motor characterized in that a movable coil is constructed by fixing coil units separated by a distance.
JP381385A 1985-01-11 1985-01-11 Linear motor Pending JPS61164459A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP381385A JPS61164459A (en) 1985-01-11 1985-01-11 Linear motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP381385A JPS61164459A (en) 1985-01-11 1985-01-11 Linear motor

Publications (1)

Publication Number Publication Date
JPS61164459A true JPS61164459A (en) 1986-07-25

Family

ID=11567627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP381385A Pending JPS61164459A (en) 1985-01-11 1985-01-11 Linear motor

Country Status (1)

Country Link
JP (1) JPS61164459A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0197394A2 (en) * 1985-04-02 1986-10-15 International Business Machines Corporation Electromagnetic actuator and magnetic disk file employing same
JPS6447575U (en) * 1987-09-18 1989-03-23
JPH02111251A (en) * 1988-08-31 1990-04-24 Aura Syst Inc Electromagnetic actuator
EP0574574A1 (en) * 1992-01-03 1993-12-22 Harman Int Ind Actuator for active vibration control.
FR2721150A1 (en) * 1994-06-08 1995-12-15 Metravib Sa Multipolar electrodynamic vibration generator for vibration characteristic measurement
EP0779698A1 (en) 1995-12-11 1997-06-18 METRAVIB R.D.S. Société Anonyme Multipolar dynamoelectric vibration generator
EP0887813A2 (en) * 1997-06-23 1998-12-30 Systems, Machines, Automation Components Corporation Double coil actuator

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5249406A (en) * 1975-10-17 1977-04-20 Hitachi Ltd Voice coil motor
JPS5923286B2 (en) * 1976-09-01 1984-06-01 株式会社資生堂 Production method of oil-based colorant

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5249406A (en) * 1975-10-17 1977-04-20 Hitachi Ltd Voice coil motor
JPS5923286B2 (en) * 1976-09-01 1984-06-01 株式会社資生堂 Production method of oil-based colorant

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0197394A2 (en) * 1985-04-02 1986-10-15 International Business Machines Corporation Electromagnetic actuator and magnetic disk file employing same
EP0197394A3 (en) * 1985-04-02 1988-11-02 International Business Machines Corporation Electromagnetic actuator and magnetic disk file employing same
JPS6447575U (en) * 1987-09-18 1989-03-23
JPH02111251A (en) * 1988-08-31 1990-04-24 Aura Syst Inc Electromagnetic actuator
EP0574574A1 (en) * 1992-01-03 1993-12-22 Harman Int Ind Actuator for active vibration control.
EP0574574A4 (en) * 1992-01-03 1995-03-29 Harman Int Ind Actuator for active vibration control.
FR2721150A1 (en) * 1994-06-08 1995-12-15 Metravib Sa Multipolar electrodynamic vibration generator for vibration characteristic measurement
EP0779698A1 (en) 1995-12-11 1997-06-18 METRAVIB R.D.S. Société Anonyme Multipolar dynamoelectric vibration generator
EP0887813A2 (en) * 1997-06-23 1998-12-30 Systems, Machines, Automation Components Corporation Double coil actuator
EP0887813A3 (en) * 1997-06-23 1999-08-18 Systems, Machines, Automation Components Corporation Double coil actuator

Similar Documents

Publication Publication Date Title
US4306164A (en) Pulse motor
KR100674286B1 (en) Rotary electric motor having at least two axially air gaps separating stator and rotor segments
EP0411563A1 (en) Same polarity induction generator
EP0237639B1 (en) Permanent magnet type linear electromagnetic actuator
US4322648A (en) Permanent magnet motor armature
JPH01194854A (en) Linear motor
US20050104456A1 (en) Electromagnetic actuator
US3659124A (en) Linear motion motor with rectangular coil construction
EP0291638A3 (en) Linear actuator
JPS61164459A (en) Linear motor
JP2000083364A (en) Movable core linear motor
US5008578A (en) Permanent magnet motor having diverting magnets
JPS62118755A (en) Ac rectilinear moving type motor
JPS6336225B2 (en)
JPS55106074A (en) Moving-coil type linear motor
JP2576443B2 (en) Electromagnet device
JP3473639B2 (en) Voice coil type linear motor
JPS609357A (en) Linear motor
GB1206429A (en) Improvements in or relating to electric stepping motors
JP2000116105A (en) Linear motor
KR950008391B1 (en) Coilless motor
JPH0644385U (en) Movable magnet type actuator
JPH0116384Y2 (en)
KR200161508Y1 (en) Linear motor
JPS5926791Y2 (en) linear motor