JPS6116429B2 - - Google Patents

Info

Publication number
JPS6116429B2
JPS6116429B2 JP10328282A JP10328282A JPS6116429B2 JP S6116429 B2 JPS6116429 B2 JP S6116429B2 JP 10328282 A JP10328282 A JP 10328282A JP 10328282 A JP10328282 A JP 10328282A JP S6116429 B2 JPS6116429 B2 JP S6116429B2
Authority
JP
Japan
Prior art keywords
intermediate layer
thickness
alloy
layer
bath
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10328282A
Other languages
Japanese (ja)
Other versions
JPS58221291A (en
Inventor
Shoji Shiga
Satoshi Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP10328282A priority Critical patent/JPS58221291A/en
Publication of JPS58221291A publication Critical patent/JPS58221291A/en
Publication of JPS6116429B2 publication Critical patent/JPS6116429B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • Manufacture Of Switches (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はCu又はCu合金からなる基体上にAg又
はAg合金を被覆した電気接続用材料、特に各種
腐食環境や高温度において良好な電気接続特性を
長期間保持する銀被覆銅材料に関するものであ
る。 Cu又はCu合金、例えばベリリウム銅、りん青
銅、黄銅、キユプロニツケル等の電気的、機械的
特性と、Ag又はAg合金、例えばAg−Ni、Ag−
In、Ag−Sb等の耐食性及び電気的特性とを経済
的に活用するため、前者を基体とし、その上に後
者を被覆した銀被覆銅材料が電気接続用材料とし
て、コネクター、スイツチ等の接触点、端子等に
用いられている。特に微弱電流の電子機器では、
電気接続部の劣化が致命的欠陥となり易いため、
銀被覆銅材料は不可欠の材料とされている。 Agは貴金属であるため、経済的理由から可及
的に薄く被覆することが要求されており、電気
的、機械的には薄くすることができても、物理
的、化学的には薄さが制約される場合が多い。例
えば基体であるCu又はCu合金とAg被覆層との熱
拡散により、CuがAg表面に露出して酸化し、電
気接続特性を劣化する。このような現象はAg被
覆層が薄くなるにしたがい加速的に増大する。ま
たAg被覆層が薄くなるとピンホールが増加し、
該ピンホールを介して基体であるCuが腐食し、
のの腐食による体積増加によつて腐食物がAg表
面に露出するようになる。このような物理的、化
学的劣化に加えて、電気接続に伴う圧力、特に摺
動による機械的摩耗も加わり、相乗的に電気接続
特性を劣化する。 電気接続用材料には、電気接続特性の外に機械
的加工性、耐熱性、半田付け性等、加工組立て工
程に必要な特性も要求される。電気接続用銀被覆
銅材料について、電気接続特性の劣化を防止し、
加工組立て工程に必要な特性を付与するため、
種々の対策が行なわれている。例えばAg被覆に
代えてAg−Cu、Ag−In等の合金を被覆して耐摩
耗性を改善しているが、前記物理的化学的劣化の
防止には期待できない。また黄銅からなる基体に
対し、Cuの中間層を設けてAgを被覆することに
よりZn分の拡散を防止しているが、Cu自身の拡
散防止には無力である。またCu又はCu合金から
なる基体に対し、Niの中間層を設けてAgを被覆
することにより、基体とAg被覆層相互の拡散を
防止している。これによれば相互拡散を有効に防
止できるところから広く利用されている。しかし
ながらAg中の酸素透過速度が大きいため、高温
工程を経たり、使用中に高温にさらすと、Ag被
覆層を透過した酸素(O2)によりNi中間層の表面
が酸化し、Ag被覆層が剥離し易くなる欠点があ
り、Ag節約のためAg被覆層の厚さを薄くする
と、この傾向が一層顕著になり、電気接続障害の
元になる。 本発明はこれに鑑み種々検討の結果、各種の腐
食的環境や温度において、電気接続特性を長期間
保持することができる電気接続用銀被覆銅材料を
開発したもので、Cu又はCu合金からなる基体上
に、Ag又はAg合金層を設けた電気接続用材料に
おいて、基体上にNi、Co又はその合金からなる
厚さ0.05μ以上の第1中間層を形成し、第1中間
層上にCu、Sn、In、Zn、Cdの内何れか1種又は
その合金からなる第2中間層を、Ag又はAg合金
層の厚さの1%以上の厚さに形成し、第2中間層
上にAg又はAg合金層を設けたことを特徴とする
ものである。 即ち、本発明は第1図に示すように、Cu又は
Cu合金からなる基体1上に、Ni、Co又はその合
金からなる厚さ0.05μ以上の第1中間層2を形成
し、第1中間層2上にCu、Sn、In、Zn、Cdの内
の何れか1種又はその合金からなる第2中間層3
を形成し、第2中間層上にAg又はAg合金層4を
設けたものである。 基体1には目的、用途に応じてCu及び各種Cu
合金の中から選択して使用する。例えばコネクタ
ー、スイツチ等の用途にはりん青銅、黄銅、ベリ
リウム銅等のバネ性の高いものを使用するとよ
い。第1中間層2はNi、Co又はその合金、例え
ばNi、Coの外Ni−Co、Ni−Fe、Ni−P、Ni−Co
−P等の合金からなり、その厚さを0.05μ以上、
望ましくは0.1〜2μとする。第2中間層3は
Cu、Sn、In、Zn、Cdの内の何れか1種又はその
合金、例えばCu−Sn、Cu−Zn、Zn−Cd、Sn−
In、Zn−Ni、Sn−Zn等の合金からなり、その厚
さをAg又はAg合金層4の厚さの1%以上、望ま
しくは5〜20%の厚さとする。またAg又はAg合
金層4はAgの外、各種Ag合金、例えばAg−Ni、
Ag−In、Ag−Cu、Ag−Sb等の合金が用いられ
る。 第1中間層2は基体1からのCu拡散バリヤー
として働くと共に機械的強度及び腐食性が優れて
いるため、電気摺動接点等の耐摩耗性に有効に作
用し、基体1の腐食を防止し、特にAg又はAg合
金層4のピンホールを介して基体1が激しく電食
するのを防止するもので、第1中間層2の厚さを
0.05μ以上としたのは、これ未満の厚さでは前記
効果を十分に発揮することができないためであ
る。 第2中間層3の各元素はAgに可溶で、酸素
(O2)との親和力が大きいため、高温時にAg又は
Ag合金層4を透過する酸素を優先的に補収して
第1中間層2の酸化を防止し、かつ第1中間層2
であるNi、Co又はその合金とも微量ながら固溶
するため、第1中間層とAg又はAg合金層4を強
固に接着し、機械的、熱的な作用に耐え得るよう
になる。また第2中間層3の各元素がAg又はAg
合金層4に固溶するとAg又はAg合金層4の強度
を向上し、導電性や耐食性を過剰に害さない範囲
において、耐摩耗性などの点で電気接続用材料と
しての特性に有利に作用する。 更にAgの最大の弱点の一つである前記の高温
環境での酸素透過による下地Ni層の酸化による
剥離を防止するにも有効である。第2中間層のこ
の作用の原理は必らずしも明らかでないがAg中
に拡散して侵入酸素を補収するためと推される。
更に又、硫化腐食に対してこれを軽減する傾向を
示す。しかして第2中間層3の厚さをAg又はAg
合金層4の厚さの1%以上の厚さとしたのは1%
未満の厚さでは上記効果が得られないためであ
る。尚、使用条件にもよるが、過剰な厚さは導電
性や耐食性を損なう恐れがあり、5〜20%の厚さ
とすることが望ましい。 Ag又はAg合金層4はAgの有する優れた導電性
と耐食性に基づき、電気接続機能を受けもつもの
で、その厚さは用途により異なるが、下及的に薄
くすることが経済的に望まれており、通常1μ程
度であるが本発明によれば0.1〜0.2μの薄層とし
ても、電気接続持を長期間保持することができ
る。 尚、基体上に第1中間層、第2中間層、Ag又
はAg合金層を層状に設けた例について説明した
が、これに限るものではなく、目的、用途に応じ
て基体全面は勿論、必要に応じて部分的、例えば
ストライプ状やスポツト状に設けてもよい。また
基体と第1中間層との間に第1中間層の密着性を
改善するため、下地メツキを利用したり、ろう材
を設けて接着させてもよい。これ等密着性を改善
する層を通して基体元素の拡散、層自体からの拡
散による障害についても、本発明における第1中
間層及び第2中間層は有効に使用するものであ
る。また電気接続用材料は電気接点と共に多くの
場合、半田付けなどによりプリント基板に固定さ
れるが、本発明材料は、かかる半田付けに優れて
いる。 このうな本発明材料は任意の方法により製造す
ることができるが、特に電気メツキ又はスパツタ
リングなどの乾式メツキにより製造することが最
も便利である。 以下、本発明を実施例について説明する。 実施例 1 厚さ0.2mmのベリリウム銅条(Cu−1.7wt%Be
−0.15wt%Ni+Co)を常法により脱脂し、キリ
ンス液で洗浄してから下記A浴を用いてNi−約
10wt%Co合金を0.1μの厚さにメツキして第1中
間層を形成し、その上に下記B浴を用いてCu−
30wt%Zn合金を0.1μの厚さにメツキして第2中
間層を形成した。これに下記C浴を用いてAgス
トライクメツキした後、下記D浴を用いてAgを
1.5μの厚さにメツキし、本発明材料を製造し
た。
The present invention relates to an electrical connection material in which a substrate made of Cu or a Cu alloy is coated with Ag or an Ag alloy, and in particular to a silver-coated copper material that maintains good electrical connection characteristics for a long period of time in various corrosive environments and high temperatures. . The electrical and mechanical properties of Cu or Cu alloys, such as beryllium copper, phosphor bronze, brass, and cypronickel, and Ag or Ag alloys, such as Ag-Ni, Ag-
In order to economically utilize the corrosion resistance and electrical properties of In, Ag-Sb, etc., silver-coated copper materials made of the former as a base and coated with the latter are used as electrical connection materials for connectors, switches, etc. Used for points, terminals, etc. Especially in electronic devices that use weak currents,
Because deterioration of electrical connections can easily become a fatal defect,
Silver-coated copper material is considered an essential material. Since Ag is a precious metal, it is required to coat it as thinly as possible for economic reasons, and although it is possible to make it thin electrically and mechanically, it is thin physically and chemically. Often restricted. For example, due to thermal diffusion between the base Cu or Cu alloy and the Ag coating layer, Cu is exposed on the Ag surface and oxidized, deteriorating the electrical connection characteristics. Such a phenomenon increases at an accelerating rate as the Ag coating layer becomes thinner. Also, as the Ag coating layer becomes thinner, pinholes increase,
The base Cu is corroded through the pinhole,
As the volume increases due to corrosion, corroded substances become exposed on the Ag surface. In addition to such physical and chemical deterioration, pressure associated with electrical connections, especially mechanical wear due to sliding, is added, synergistically deteriorating the electrical connection characteristics. In addition to electrical connection properties, electrical connection materials are also required to have properties necessary for processing and assembly processes, such as mechanical workability, heat resistance, and solderability. For silver-coated copper materials for electrical connections, we prevent deterioration of electrical connection characteristics,
In order to provide the characteristics necessary for the processing and assembly process,
Various measures are being taken. For example, instead of Ag coating, alloys such as Ag-Cu and Ag-In are coated to improve wear resistance, but this cannot be expected to prevent the physical and chemical deterioration. Furthermore, diffusion of the Zn component is prevented by providing an intermediate layer of Cu on the base made of brass and coating it with Ag, but this method is powerless to prevent the diffusion of Cu itself. Further, by providing a Ni intermediate layer and coating Ag on a base made of Cu or a Cu alloy, mutual diffusion between the base and the Ag coating layer is prevented. This method is widely used because mutual diffusion can be effectively prevented. However, since the oxygen permeation rate in Ag is high, when subjected to high-temperature processes or exposed to high temperatures during use, the surface of the Ni intermediate layer is oxidized by oxygen (O 2 ) that has passed through the Ag coating layer, causing the Ag coating layer to deteriorate. It has the disadvantage of being easily peeled off, and when the thickness of the Ag coating layer is made thinner to save Ag, this tendency becomes more pronounced and becomes a source of electrical connection failure. In view of this, as a result of various studies, the present invention has developed a silver-coated copper material for electrical connections that can maintain electrical connection characteristics for a long period of time in various corrosive environments and temperatures, and is made of Cu or Cu alloy. In an electrical connection material in which a Ag or Ag alloy layer is provided on a substrate, a first intermediate layer with a thickness of 0.05μ or more made of Ni, Co or an alloy thereof is formed on the substrate, and a Cu layer is formed on the first intermediate layer. , Sn, In, Zn, and Cd, or an alloy thereof, is formed to a thickness of 1% or more of the thickness of the Ag or Ag alloy layer, and the second intermediate layer is formed on the second intermediate layer. It is characterized by providing an Ag or Ag alloy layer. That is, as shown in FIG.
A first intermediate layer 2 made of Ni, Co, or an alloy thereof and having a thickness of 0.05μ or more is formed on a substrate 1 made of a Cu alloy, and a first intermediate layer 2 made of Cu, Sn, In, Zn, or Cd is formed on the first intermediate layer 2. A second intermediate layer 3 made of any one of these or an alloy thereof.
is formed, and an Ag or Ag alloy layer 4 is provided on the second intermediate layer. Substrate 1 contains Cu and various types of Cu depending on the purpose and use.
Select and use from alloys. For example, for connectors, switches, etc., materials with high springiness such as phosphor bronze, brass, and beryllium copper are preferably used. The first intermediate layer 2 is made of Ni, Co or an alloy thereof, for example, in addition to Ni and Co, Ni-Co, Ni-Fe, Ni-P, Ni-Co
- Made of an alloy such as P, with a thickness of 0.05 μ or more,
The thickness is desirably 0.1 to 2μ. The second intermediate layer 3 is
Any one of Cu, Sn, In, Zn, Cd or an alloy thereof, such as Cu-Sn, Cu-Zn, Zn-Cd, Sn-
It is made of an alloy such as In, Zn-Ni, Sn-Zn, etc., and its thickness is 1% or more, preferably 5 to 20% of the thickness of the Ag or Ag alloy layer 4. In addition to Ag, the Ag or Ag alloy layer 4 may include various Ag alloys, such as Ag-Ni,
Alloys such as Ag-In, Ag-Cu, Ag-Sb, etc. are used. The first intermediate layer 2 acts as a Cu diffusion barrier from the substrate 1 and has excellent mechanical strength and corrosion resistance, so it effectively affects the wear resistance of electric sliding contacts, etc., and prevents corrosion of the substrate 1. , especially to prevent severe electrolytic corrosion of the substrate 1 through pinholes in the Ag or Ag alloy layer 4, and to reduce the thickness of the first intermediate layer 2.
The reason why the thickness is set to 0.05μ or more is because the above-mentioned effects cannot be fully exhibited with a thickness less than this. Each element in the second intermediate layer 3 is soluble in Ag and has a high affinity for oxygen (O 2 ), so Ag or
The first intermediate layer 2 is prevented from being oxidized by preferentially capturing oxygen passing through the Ag alloy layer 4, and the first intermediate layer 2 is
Since it forms a solid solution with Ni, Co, or an alloy thereof, although in a small amount, the first intermediate layer and the Ag or Ag alloy layer 4 are firmly bonded and can withstand mechanical and thermal effects. Further, each element of the second intermediate layer 3 is Ag or Ag.
When solid dissolved in the alloy layer 4, it improves the strength of Ag or the Ag alloy layer 4, and has an advantageous effect on the properties as an electrical connection material in terms of wear resistance, etc., as long as the conductivity and corrosion resistance are not excessively impaired. . Furthermore, it is effective in preventing peeling due to oxidation of the underlying Ni layer due to oxygen permeation in the above-mentioned high temperature environment, which is one of the greatest weaknesses of Ag. The principle of this action of the second intermediate layer is not necessarily clear, but it is thought to be because it diffuses into Ag and captures invading oxygen.
Furthermore, it exhibits a tendency to reduce sulfide corrosion. Therefore, the thickness of the second intermediate layer 3 is set to Ag or Ag.
The thickness is 1% or more of the thickness of alloy layer 4.
This is because the above effects cannot be obtained if the thickness is less than that. Although it depends on the conditions of use, excessive thickness may impair electrical conductivity and corrosion resistance, so a thickness of 5 to 20% is desirable. The Ag or Ag alloy layer 4 has an electrical connection function based on the excellent conductivity and corrosion resistance of Ag, and its thickness varies depending on the application, but it is economically desirable to make it thinner. The thickness is normally about 1 μm, but according to the present invention, electrical connection can be maintained for a long period of time even with a thin layer of 0.1 to 0.2 μm. Although an example has been described in which the first intermediate layer, the second intermediate layer, and Ag or Ag alloy layer are provided in layers on the substrate, the present invention is not limited to this. Depending on the situation, it may be provided partially, for example in the form of stripes or spots. Further, in order to improve the adhesion of the first intermediate layer to the substrate, base plating may be used or a brazing material may be provided to bond the substrate and the first intermediate layer. The first intermediate layer and the second intermediate layer in the present invention are also effectively used to deal with obstacles caused by diffusion of the base element through the layer that improves adhesion and diffusion from the layer itself. Furthermore, electrical connection materials are often fixed to printed circuit boards together with electrical contacts by soldering or the like, and the material of the present invention is excellent in such soldering. Although such a material of the present invention can be produced by any method, it is most convenient to produce it by dry plating such as electroplating or sputtering. Hereinafter, the present invention will be described with reference to examples. Example 1 Beryllium copper strip (Cu-1.7wt%Be
-0.15wt%Ni+Co) was degreased by a conventional method, washed with Kirinsu solution, and then treated with Ni-approx.
A first intermediate layer is formed by plating a 10wt% Co alloy to a thickness of 0.1μ, and then Cu-coated using the B bath shown below.
A second intermediate layer was formed by plating a 30wt% Zn alloy to a thickness of 0.1μ. After applying Ag strike plating to this using the following C bath, Ag was applied using the following D bath.
The material of the present invention was produced by plating to a thickness of 1.5μ.

【表】【table】

【表】 実施例 2 実施例1において、B浴に代えて下記浴を用
い、第1中間層上にSnを0.08μの厚さにメツキし
て第2中間層を形成し、その上に実施例1と同様
にしてAgを1.5μの厚さにメツキし、本発明材料
を製造した。
[Table] Example 2 In Example 1, the following bath was used instead of bath B, and the second intermediate layer was formed by plating Sn to a thickness of 0.08μ on the first intermediate layer, and the second intermediate layer was formed on top of the second intermediate layer. A material of the present invention was produced by plating Ag to a thickness of 1.5 μm in the same manner as in Example 1.

【表】 実施例 3 実施例1において、B浴に代えて下記浴を用
い、第1中間層上にInを0.2μの厚さにメツキし
て第2中間層を形成し、その上に実施例1と同様
にしてAgを1.5μの厚さにメツキし、本発明材料
を製造した。
[Table] Example 3 In Example 1, the following bath was used instead of bath B, and In was plated to a thickness of 0.2μ on the first intermediate layer to form a second intermediate layer, and then the second intermediate layer was formed. A material of the present invention was produced by plating Ag to a thickness of 1.5 μm in the same manner as in Example 1.

【表】 実施例 4 実施例1において、B浴に代えて下記浴を用
い、第1中間層上にCd−15wt%Zn合金を0.1μの
厚さにメツキして第2中間層を形成し、その上に
実施例1と同様にしてAgを1.5μの厚さにメツキ
し、本発明材料を製造した。
[Table] Example 4 In Example 1, the following bath was used instead of bath B, and a Cd-15wt%Zn alloy was plated to a thickness of 0.1μ on the first intermediate layer to form a second intermediate layer. , Ag was plated thereon to a thickness of 1.5 μm in the same manner as in Example 1 to produce a material of the present invention.

【表】 実施例 5 実施例1において、B浴に代えて下記浴を用
い、第1中間層上にCu−40wt%Sn合金を0.2μの
厚さにメツキして第2中間層を形成し、その上に
実施例1と同様にしてAgを1.5μの厚さにメツキ
し、本発明材料を製造した。
[Table] Example 5 In Example 1, the following bath was used instead of bath B, and a Cu-40wt%Sn alloy was plated to a thickness of 0.2μ on the first intermediate layer to form a second intermediate layer. , Ag was plated thereon to a thickness of 1.5 μm in the same manner as in Example 1 to produce a material of the present invention.

【表】【table】

【表】 比較例 1 実施例1において、A浴及びB浴によるメツキ
を省略し、第1中間層及び第2中間層を形成する
ことなく、ベリリウム銅条上に直接C浴とD浴を
用いてAgを1.5μの厚さにメツキし、銀被覆銅材
料を製造した。 比較例 2 実施例1において、B浴によるメツキを省略
し、第1中間層上に直接C浴とD浴を用いてAg
を1.5μの厚さにメツキし、銀被覆銅材料を製造
した。 比較例 3 実施例2において、B浴によるメツキ時間を短
縮し、第1中間層上にSnを0.01μの厚さにメツキ
して第2中間層を形成し、その上に実施例2と同
様にしてAgを1.5μの厚さにメツキし、銀被覆銅
材料を製造した。 このようにして製造した各銀被覆銅材料をプレ
ス加工により、最小内径3.2mmのバルクヘツド型
コネクター(リセプタクル)に成型し、これを時
効処理(280℃の温度で2時間加熱)して所定の
バネ特性とし、これに黄銅製模凝コネクターピン
(直径3.35mm)を100回挿入出した後、温度40℃、
相対湿度90%の雰囲気中に72時間放置し、これに
前記コネクターピンを挿入してコネクター部の電
気抵抗を測定した。これをプレス成型直後の電気
抵抗と比較して第1表に示す。 尚、時効処理は少量の空気が残留(1mmHg以
下)する減圧炉内で行なつた。
[Table] Comparative Example 1 In Example 1, plating with A bath and B bath was omitted, and C bath and D bath were used directly on the beryllium copper strip without forming the first intermediate layer and the second intermediate layer. A silver-coated copper material was produced by plating Ag to a thickness of 1.5μ. Comparative Example 2 In Example 1, plating with B bath was omitted, and Ag was coated directly on the first intermediate layer using C bath and D bath.
was plated to a thickness of 1.5μ to produce a silver-coated copper material. Comparative Example 3 In Example 2, the plating time using the B bath was shortened, and Sn was plated to a thickness of 0.01μ on the first intermediate layer to form a second intermediate layer, and the same as in Example 2 was formed on the second intermediate layer. A silver-coated copper material was produced by plating Ag to a thickness of 1.5μ. Each of the silver-coated copper materials produced in this way is molded into a bulkhead type connector (receptacle) with a minimum inner diameter of 3.2 mm by press processing, and this is aged (heated at a temperature of 280°C for 2 hours) to form a predetermined spring. After inserting and pulling out a brass imitation connector pin (diameter 3.35 mm) 100 times, the temperature was 40℃.
The connector pin was left in an atmosphere of 90% relative humidity for 72 hours, and the electrical resistance of the connector portion was measured by inserting the connector pin. This is shown in Table 1 in comparison with the electrical resistance immediately after press molding. The aging treatment was carried out in a reduced pressure furnace in which a small amount of air remained (1 mmHg or less).

【表】【table】

【表】 第1表から明らかなように本発明材料はコネク
ターピンを100回挿入出後、加湿雰囲気中に放置
しても低い抵抗値に留まり、外観上も異常なく、
特に実施例2のSnを第2中間層として用いた材
料は最小の抵抗値を示し、第2中間層にはSnが
最適であることが判る。この傾向は実施例5の
Cu−40wt%Sn合金を第2中間層として用いた材
料にも見られる。 これに対し比較例1の材料では時効処理により
既に褐色点状の変色が起り、高い抵抗値を示し
た。また比較例2、3の材料は外観上異常はなか
つたがコネクターピン挿入出により、部分的に
Agの摩耗が生じ、基体上に形成したNi−Co合金
層の露出が見られ、加湿雰囲気中に放置後は高い
抵抗値を示した。特に比較例3のように第1中間
層と第2中間層を形成した材料でも、第2中間層
の厚さがAg被覆層の厚さの1%以下では充分な
効果が得られないことが判る。 実施例 6 厚さ0.32mmのりん青銅条(Cu−7.5wt%Sn−
0.05wt%P)を常法により脱脂、酸洗してから下
記A′浴を用いてNiを0.3μの厚さにメツキし、第
1中間層を形成し、その上に下記B′浴を用いて
Snを0.1μの厚さにメツキして第2中間層を形成
した。これに実施例1と同様にしてAgを2μの
厚さにメツキし、本発明材料を製造した。
[Table] As is clear from Table 1, the material of the present invention maintains a low resistance value even when left in a humidified atmosphere after inserting and extracting the connector pin 100 times, and there are no abnormalities in appearance.
In particular, the material of Example 2 in which Sn was used as the second intermediate layer showed the lowest resistance value, indicating that Sn is optimal for the second intermediate layer. This tendency is similar to that of Example 5.
This can also be seen in materials using a Cu-40wt%Sn alloy as the second intermediate layer. On the other hand, in the material of Comparative Example 1, discoloration in the form of brown dots had already occurred due to the aging treatment, and a high resistance value was exhibited. In addition, the materials of Comparative Examples 2 and 3 had no abnormality in appearance, but some parts were damaged due to the insertion and removal of the connector pins.
Ag wear occurred, and the Ni-Co alloy layer formed on the substrate was exposed, and after being left in a humid atmosphere, a high resistance value was exhibited. In particular, even with the material in which the first intermediate layer and the second intermediate layer are formed as in Comparative Example 3, sufficient effects may not be obtained if the thickness of the second intermediate layer is less than 1% of the thickness of the Ag coating layer. I understand. Example 6 Phosphor bronze strip with a thickness of 0.32 mm (Cu−7.5wt%Sn−
0.05wt%P) was degreased and pickled using a conventional method, and then plated with Ni to a thickness of 0.3μ using the following A' bath to form the first intermediate layer, and on top of that, the following B' bath was applied. make use of
A second intermediate layer was formed by plating Sn to a thickness of 0.1 μm. This was plated with Ag to a thickness of 2 μm in the same manner as in Example 1 to produce a material of the present invention.

【表】 実施例 7 実施例6において、B′浴に代えて下記浴を用
い、第1中間層上にCuを0.1μの厚さにメツキし
て第2中間層を形成し、その上に実施例1と同様
にしてAgを2μの厚さにメツキし、本発明材料
を製造した。
[Table] Example 7 In Example 6, the following bath was used instead of B' bath, and Cu was plated to a thickness of 0.1μ on the first intermediate layer to form a second intermediate layer. A material of the present invention was produced by plating Ag to a thickness of 2 μm in the same manner as in Example 1.

【表】 実施例 8 実施例6において、B′浴に代えて下記浴を用
い、第1中間層上にZnを0.1μの厚さにメツキし
て第2中間層を形成し、その上に実施例1と同様
にしてAgを2μの厚さにメツキし、本発明材料
を製造した。
[Table] Example 8 In Example 6, using the following bath instead of B' bath, Zn was plated to a thickness of 0.1μ on the first intermediate layer to form a second intermediate layer, and on top of that, Zn was plated to a thickness of 0.1μ. A material of the present invention was produced by plating Ag to a thickness of 2 μm in the same manner as in Example 1.

【表】 実施例 9 実施例6において、B′浴に代えて下記浴を用
い、第1中間層上にCu−10wt%Sn合金を0.1μの
厚さにメツキして第2中間層を形成し、その上に
実施例1と同様にしてAgを2μの厚さにメツキ
し、本発明材料を製造した。
[Table] Example 9 In Example 6, the following bath was used instead of B' bath, and a Cu-10wt%Sn alloy was plated to a thickness of 0.1μ on the first intermediate layer to form a second intermediate layer. Then, in the same manner as in Example 1, Ag was plated to a thickness of 2 μm to produce a material of the present invention.

【表】 比較例 4 実施例6において、A′浴とB′浴によるメツキ
を省略し、第1中間層と第2中間層を形成するこ
となく、りん青銅上に直接Agを2μの厚さにメ
ツキして銀被覆銅材料を製造した。 比較例 5 実施例6において、B′浴によるメツキを省略
し、第1中間層上にAgを2μの厚さにメツキし
て銀被覆銅材料を製造した。 比較例 6 実施例6において、A′浴によるメツキを省略
し、りん青銅上に直接Snを0.1μの厚さにメツキ
し、その上にAgを2μの厚さにメツキして銀被
覆銅材料を製造した。 比較例 7 実施例7において、A′浴によるメツキを省略
して銀被覆銅材料を製造した。 比較例 8 実施例8において、A′浴によるメツキを省略
して銀被覆銅材料を製造した。 比較例 9 実施例9において、A′浴によるメツキを省略
して銀被覆銅材料を製造した。 比較例 10 実施例6において、第2中間層のメツキ時間を
短縮し、第2中間層の厚さを0.01μとして銀被覆
銅材料を製造した。 比較例 11 実施例7において、第2中間層のメツキ時間を
短縮し、第2中間層の厚さを0.01μとして銀被覆
銅材料を製造した。 比較例 12 比較例4において、Agを5μの厚さにメツキ
して銀被覆銅材料を製造した。 このようにして製造した各銀被覆銅材料を弱電
リレー接点に成型加工し、樹脂成型とリレー使用
の長期間の特性を保証するため、200℃の温度で
12時間加熱処理し、これを温度40℃、相対湿度90
%の雰囲気中に144時間放置してから電気接触抵
抗と半田付け性を試験した。また180゜密着曲げ
試験を行なつて被覆層の剥離状態を観察した。こ
れ等の結果を第2表に示す。 尚、接触抵抗は、直径8mmのAg棒を100gの何
重で押し当てて1Aの電流を流して測定した。ま
た半田付け性は235℃の温度に保持した共晶半田
浴中に3秒間浸漬して半田の漏れ面積を求めた。
[Table] Comparative Example 4 In Example 6, plating with baths A' and B' was omitted, and Ag was deposited directly on the phosphor bronze to a thickness of 2 μm without forming the first intermediate layer and the second intermediate layer. A silver-coated copper material was produced by plating. Comparative Example 5 In Example 6, the plating using the B' bath was omitted, and Ag was plated to a thickness of 2 μm on the first intermediate layer to produce a silver-coated copper material. Comparative Example 6 In Example 6, the plating with A' bath was omitted, and Sn was plated directly on the phosphor bronze to a thickness of 0.1μ, and then Ag was plated to a thickness of 2μ to produce a silver-coated copper material. was manufactured. Comparative Example 7 In Example 7, a silver-coated copper material was produced by omitting the plating using bath A'. Comparative Example 8 In Example 8, a silver-coated copper material was produced by omitting the plating using bath A'. Comparative Example 9 In Example 9, a silver-coated copper material was produced by omitting the plating using bath A'. Comparative Example 10 In Example 6, a silver-coated copper material was produced by shortening the plating time of the second intermediate layer and setting the thickness of the second intermediate layer to 0.01 μm. Comparative Example 11 In Example 7, a silver-coated copper material was produced by shortening the plating time of the second intermediate layer and setting the thickness of the second intermediate layer to 0.01 μm. Comparative Example 12 In Comparative Example 4, a silver-coated copper material was produced by plating Ag to a thickness of 5 μm. Each silver-coated copper material produced in this way is molded into a low-current relay contact, and in order to guarantee the long-term characteristics of resin molding and relay use, it is molded at a temperature of 200℃.
Heat treated for 12 hours at a temperature of 40℃ and a relative humidity of 90℃.
% atmosphere for 144 hours and then tested for electrical contact resistance and solderability. A 180° close bending test was also conducted to observe the state of peeling of the coating layer. These results are shown in Table 2. The contact resistance was measured by pressing an 8 mm diameter Ag rod with several layers of 100 g and applying a current of 1 A. Furthermore, solderability was determined by immersing the sample in a eutectic solder bath maintained at a temperature of 235° C. for 3 seconds to determine the solder leakage area.

【表】【table】

【表】 第2表から明らかなよに本発明の実施例6、
7、8、9による材料は何れもAg被覆層の厚さ
が3倍である比較例12の材料と同等の電気接続特
性を示し、中でも第2中間層にSn又はSn合金を
用いた実施例6、9の材料では特に優れているこ
とが判る。 これに対し、第1中間層又は/及び第2中間層
を省略した比較例4、5、6、7、8、9の材料
では特性の劣化が著しく、第1中間層及び第2中
間層を形成したものでも、第2中間層の厚さが
Ag被覆層の厚さの1%以下である比較例10、11
の材料では特性の劣化を防止することができない
ことが判る。 尚、電気メツキ法により製造した銀被覆銅材料
について説明したが、これに限るものではなく、
イオンプレーテイングやスパツタリング等の乾式
法又は機械的クラツド法により製造したものでも
同様の効果が得られるものである。 このように本発明材料は、電気接続性が優れ、
かつ各種腐食環境や高温度において特性が劣化す
ることがなく、高価なAgの使用量を節約するこ
ともできる等顕著な効果を奏するものである。
[Table] As is clear from Table 2, Example 6 of the present invention,
All of the materials according to Examples 7, 8, and 9 exhibited electrical connection characteristics equivalent to those of Comparative Example 12, in which the thickness of the Ag coating layer was three times that of the material of Comparative Example 12, and among them, the examples in which Sn or Sn alloy was used for the second intermediate layer It can be seen that materials Nos. 6 and 9 are particularly excellent. On the other hand, in the materials of Comparative Examples 4, 5, 6, 7, 8, and 9 in which the first intermediate layer and/or the second intermediate layer were omitted, the characteristics deteriorated significantly, and the first intermediate layer and the second intermediate layer were omitted. Even if the thickness of the second intermediate layer is
Comparative Examples 10 and 11 where the thickness is 1% or less of the Ag coating layer thickness
It can be seen that it is not possible to prevent the deterioration of characteristics with the material. In addition, although the silver-coated copper material manufactured by the electroplating method has been described, it is not limited to this.
Similar effects can be obtained even when the material is manufactured by a dry method such as ion plating or sputtering, or by a mechanical cladding method. In this way, the material of the present invention has excellent electrical connectivity and
In addition, the properties do not deteriorate in various corrosive environments or at high temperatures, and the amount of expensive Ag used can be saved, resulting in remarkable effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明材料の一例を示す説明図であ
る。 1……基体、2……第1中間層、3……第2中
間層、4……Ag被覆層。
FIG. 1 is an explanatory diagram showing an example of the material of the present invention. DESCRIPTION OF SYMBOLS 1... Base body, 2... First intermediate layer, 3... Second intermediate layer, 4... Ag coating layer.

Claims (1)

【特許請求の範囲】 1 Cu又はCu合金からなる基体上に、Ag又は
Ag合金層を設けた電気接続用材料において、基
体上にNi、Co又はその合金からなる厚さ0.05μ
以上の第1中間層を形成し、第1中間層上に
Cu、Sn、In、Zn、Cdの内何れか1種又はその合
金からなる第2中間層をAg又はAg合金層の厚さ
の1%以上の厚さに形成し、第2中間層上にAg
又はAg合金層を設けたことを特徴とする電気接
続用銀被覆銅材料。 2 第1中間層上にSn又はSn合金からなる第2
中間層を形成する特許請求の範囲第1項記載の電
気接続用銀被覆銅材料。
[Claims] 1. On a substrate made of Cu or Cu alloy, Ag or
In electrical connection materials provided with an Ag alloy layer, a thickness of 0.05μ made of Ni, Co or their alloys on the substrate.
Forming the above first intermediate layer, and forming the first intermediate layer on the first intermediate layer.
A second intermediate layer made of any one of Cu, Sn, In, Zn, and Cd or an alloy thereof is formed to have a thickness of 1% or more of the thickness of the Ag or Ag alloy layer, and is placed on the second intermediate layer. Ag
Or a silver-coated copper material for electrical connection, characterized by being provided with an Ag alloy layer. 2 A second intermediate layer made of Sn or Sn alloy is formed on the first intermediate layer.
A silver-coated copper material for electrical connection according to claim 1, which forms an intermediate layer.
JP10328282A 1982-06-16 1982-06-16 Silver coated copper material for electrical connection Granted JPS58221291A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10328282A JPS58221291A (en) 1982-06-16 1982-06-16 Silver coated copper material for electrical connection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10328282A JPS58221291A (en) 1982-06-16 1982-06-16 Silver coated copper material for electrical connection

Publications (2)

Publication Number Publication Date
JPS58221291A JPS58221291A (en) 1983-12-22
JPS6116429B2 true JPS6116429B2 (en) 1986-04-30

Family

ID=14349972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10328282A Granted JPS58221291A (en) 1982-06-16 1982-06-16 Silver coated copper material for electrical connection

Country Status (1)

Country Link
JP (1) JPS58221291A (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009079250A (en) * 2007-09-26 2009-04-16 Dowa Metaltech Kk Copper or copper alloy member having silver alloy layer formed as outermost surface layer, and manufacturing method therefor
JP5854574B2 (en) * 2008-03-12 2016-02-09 古河電気工業株式会社 Metal materials for electrical contact parts
JP5391214B2 (en) * 2011-01-31 2014-01-15 古河電気工業株式会社 Silver coated stainless steel strip for movable contacts and switch using the same
JP6046406B2 (en) * 2011-07-26 2016-12-14 ローム アンド ハース エレクトロニック マテリアルズ エルエルシーRohm and Haas Electronic Materials LLC High temperature resistant silver coated substrate
JP6438643B2 (en) * 2013-02-28 2018-12-19 株式会社神戸製鋼所 Electrode member and manufacturing method thereof
JP2014237883A (en) * 2013-06-10 2014-12-18 オリエンタル鍍金株式会社 Method of manufacturing plated laminate and plated laminate
JP6990240B2 (en) * 2016-10-24 2022-01-12 アトテック・ドイチュラント・ゲーエムベーハー A method for coating a metal substrate with a tin layer and use of a structure comprising a nickel / phosphorus alloy lower layer and the tin layer according to the above method.
JP7121881B2 (en) * 2017-08-08 2022-08-19 三菱マテリアル株式会社 Terminal material with silver film and terminal with silver film
WO2019031549A1 (en) * 2017-08-08 2019-02-14 三菱マテリアル株式会社 Terminal material with silver coating film, and terminal with silver coating film
JP7162341B2 (en) * 2018-01-11 2022-10-28 オリエンタル鍍金株式会社 Method for manufacturing plated laminate and plated laminate
JP7302364B2 (en) * 2019-08-05 2023-07-04 三菱マテリアル株式会社 Connector terminal materials and connector terminals
JP7395389B2 (en) * 2020-03-09 2023-12-11 Dowaメタルテック株式会社 Silver plating material and its manufacturing method

Also Published As

Publication number Publication date
JPS58221291A (en) 1983-12-22

Similar Documents

Publication Publication Date Title
JP5667152B2 (en) Surface treatment plating material, method for producing the same, and electronic component
JP2726434B2 (en) Sn or Sn alloy coating material
US20040038072A1 (en) Terminal with ruthenium layer and part having the same
JPS6116429B2 (en)
JP2009084616A (en) REFLOW Sn PLATED MATERIAL AND ELECTRONIC COMPONENT USING THE SAME
US5957736A (en) Electronic part
JP3467527B2 (en) Contact material and method of manufacturing the same
JP3998731B2 (en) Manufacturing method of current-carrying member
JP2670348B2 (en) Sn or Sn alloy coating material
JPS61124597A (en) Silver-coated electric material
JP2014139345A (en) Surface treatment plated material and production method of the same, and electronic component
JPH01283780A (en) Covering material of sn or sn alloy
JPH048883B2 (en)
JPH0373962B2 (en)
JP3402228B2 (en) Semiconductor device having lead-free tin-based solder coating
JP2000030558A (en) Electric contact material and its manufacture
JP3155139B2 (en) Tin or tin alloy plated material having excellent oxidation resistance and method for producing the same
JPS59180908A (en) Silver-coated conductor and method of producing same
JPS61256579A (en) Connector
JP2628749B2 (en) Sn or Sn alloy coating material with excellent heat resistance for electronic and electrical parts
KR910000841B1 (en) Silver coated material and making method
JPS60217693A (en) Lead wire for electronic part
JPS6151038B2 (en)
JPS6153434B2 (en)
JPS6150160B2 (en)