JPS61164278A - Temperature compensation for semiconductor magnetic conversion element - Google Patents

Temperature compensation for semiconductor magnetic conversion element

Info

Publication number
JPS61164278A
JPS61164278A JP60005594A JP559485A JPS61164278A JP S61164278 A JPS61164278 A JP S61164278A JP 60005594 A JP60005594 A JP 60005594A JP 559485 A JP559485 A JP 559485A JP S61164278 A JPS61164278 A JP S61164278A
Authority
JP
Japan
Prior art keywords
temperature
semiconductor element
voltage
circuit
hall effect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60005594A
Other languages
Japanese (ja)
Inventor
Satoshi Akamatsu
里志 赤松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP60005594A priority Critical patent/JPS61164278A/en
Publication of JPS61164278A publication Critical patent/JPS61164278A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N52/00Hall-effect devices
    • H10N52/80Constructional details

Abstract

PURPOSE:To hold always the temperature of a semiconductor magnetic conver sion element constantly using a simple hall effect device by a method wherein the temperature dependence of residual voltage of the semiconductor element and the temperature dependence of the hall coefficient thereof are compensated by detecting the change of positive electrical resistivity of the resistor on the constraining side and the hall effect device is compensated. CONSTITUTION:A constant current I is conducted to a hall effect semiconductor element 2 from a constant-current circuit 1. The semiconductor element 2 is made to increase its resistivity as well with a temperature rise. The potential e0 of the semiconductor element is made to increase so much as a component of voltage DELTAe0 for a constant-current drive. A residual voltage temperature compensation circuit group 9 makes a component of the increased voltage DELTAe0 connect to an adder 6 through an integration circuit 4 and a reference circuit 4a and the output electromotive voltage of the semiconductor element 2 is connected to the adder 6 through an impedence converter 5. By this way, the temperature dependence only of the residual voltage of the hall effect semi conductor element 2 is compensated.

Description

【発明の詳細な説明】 本発明は、半導体磁気変換素子の残留電圧温度補償とホ
ール係数温度補償に関するものである。半導体磁気変換
素子を用いての低い磁界の磁気量測定は、温度変化が大
きく依存し測定に難易があつた。又、半導体素子全体を
恒温槽で常に一定に一定温度に保つ方式があるがセンサ
ーが大きくなつて測定が不便であつた。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to residual voltage temperature compensation and Hall coefficient temperature compensation of a semiconductor magnetic transducer element. Measuring the magnetic quantity of a low magnetic field using a semiconductor magnetic transducer is difficult because it is largely dependent on temperature changes. Furthermore, there is a method in which the entire semiconductor element is kept at a constant temperature in a constant temperature bath, but the sensor becomes large and measurement is inconvenient.

本方法は、半導体素子の残留電圧温度依存性、ホール係
数温度依存性を制御側抵抗の+(ブラス)の電気抵抗変
化を検出しホール効果装置を補償するものである。
In this method, the residual voltage temperature dependence and Hall coefficient temperature dependence of a semiconductor element are compensated for by detecting a + (brass) electric resistance change of a control side resistance.

本装置の基本的動作原理について説明する。The basic operating principle of this device will be explained.

ホール効果半導体素子のホール起電圧式は、Vout=
RK I・B/d+V(I・B0) (1)式RK:ホ
ール係数。I:励磁電流。B:磁束密度。
The Hall electromotive voltage formula of a Hall effect semiconductor device is Vout=
RK I・B/d+V(I・B0) (1) Formula RK: Hall coefficient. I: Excitation current. B: Magnetic flux density.

d:素子の厚さ。d: Thickness of element.

ホール起電圧の第1項目は、磁束密度Bに対する出力電
圧、第2項目は無磁界時のホール素子の残留電圧V(I
・B0)である。磁束密度に依存した、起電圧RK・I
・B/d のホール係数RKは負の温度係数(第4図)
を有している。残留電圧に依存した電圧V(I・B0)
は正の温度係数を有している。 本発明は、前記2つの
温度依存性による変化を1次側制御抵抗の温度依存性(
抵抗の温度係数)を検出することにより磁界に依存した
負の温度係数、残留電圧に依存した、正の温度係数を同
時に補償するものである。
The first item of the Hall electromotive voltage is the output voltage with respect to the magnetic flux density B, and the second item is the residual voltage V (I
・B0). Electromotive force RK・I depending on magnetic flux density
・The Hall coefficient RK of B/d is a negative temperature coefficient (Figure 4)
have. Voltage V (I・B0) dependent on residual voltage
has a positive temperature coefficient. The present invention converts the changes due to the two temperature dependencies to the temperature dependence (
By detecting the temperature coefficient of resistance), it simultaneously compensates for the negative temperature coefficient that depends on the magnetic field and the positive temperature coefficient that depends on the residual voltage.

第1図は、本発明の実施例を示す。FIG. 1 shows an embodiment of the invention.

ホール効果半導体素子(2)に定電流回路(1)より一
定電流I を通電する。前記半導体素子(2)は、温度
上昇と ともに抵抗も増加する。 半導体素子のe0の
電位は、定電流駆動のためΔe0増加する。
A constant current I is applied to the Hall effect semiconductor element (2) from the constant current circuit (1). The resistance of the semiconductor element (2) also increases as the temperature rises. The potential of e0 of the semiconductor element increases by Δe0 due to constant current driving.

残留電圧温度補償回路群(9)は、増加電圧Δe0分を
積分回路(4)と基準回路(4a)により加算器(6)
へ、 前記半導体素子(2)の出力起電圧は、インピー
ダンス変換器(5)をかいして加算器(6)へ接続され
る。
The residual voltage temperature compensation circuit group (9) converts the increased voltage Δe0 into an adder (6) using an integrating circuit (4) and a reference circuit (4a).
The output electromotive voltage of the semiconductor element (2) is connected to an adder (6) via an impedance converter (5).

e2=RK・I・B/d+V(I・B0) (2)式e
3=−V(I・B0) (3)式 e2+e3=RK・I・B/d (4)式ゆえに残留電
圧の温度依存性のみ補償される。
e2=RK・I・B/d+V(I・B0) (2) Formula e
3=-V(I·B0) (3) Equation e2+e3=RK·I·B/d (4) Therefore, only the temperature dependence of the residual voltage is compensated.

ホール係数RKの温度依存補償回路群(8)は、前記残
留電圧補償回路群と同様に、半導体素子のe0の増加電
圧Δe0を検出し、積分回路(3) 基準回路(3a)
により温度上昇による、ホール係数RKの減裏量を、増
幅回路(7)利得可変素子(7a)で増加しホール係数
の温度補償をする方法である。
Similarly to the residual voltage compensation circuit group, the Hall coefficient RK temperature-dependent compensation circuit group (8) detects the increased voltage Δe0 of e0 of the semiconductor element, and integrates the integrating circuit (3) and the reference circuit (3a).
This is a method for temperature-compensating the Hall coefficient by increasing the amount of decrease in the Hall coefficient RK due to temperature rise using the amplifier circuit (7) and the variable gain element (7a).

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例、第2図は 無磁界時の残留電圧 Vout(1)=V(I・B0) 第3図は有磁界時の半導体素子の出力電圧Vout(2
)=RK I  B/d+V(I・B0)第4図は半導
体素子の制御側抵抗の温度特性ホール係数RKの温度特
性。 グラフ(1):制御側抵抗 グラフ(2):ホール係数
Fig. 1 shows an embodiment of the present invention, Fig. 2 shows the residual voltage Vout (1) = V (I・B0) in the absence of a magnetic field, and Fig. 3 shows the output voltage Vout (2) of the semiconductor element in the presence of a magnetic field.
)=RK I B/d+V (I・B0) Figure 4 shows the temperature characteristics of the control side resistance of the semiconductor element and the temperature characteristics of the Hall coefficient RK. Graph (1): Control side resistance graph (2): Hall coefficient

Claims (1)

【特許請求の範囲】 1、半導体磁気変換素子に一定電流を通電する定電流回
路、基準電圧回路、積分回路と加算器からなる残留電圧
温度補償回路群と 2、半導体磁気変換素子のホール係数補償の基準電圧回
路、積分回路と利得可変回路からなるホール係数温度補
償回路群からなる補償方法。
[Claims] 1. Residual voltage temperature compensation circuit group consisting of a constant current circuit, a reference voltage circuit, an integrating circuit, and an adder that supply a constant current to the semiconductor magnetic transducer; and 2. Hall coefficient compensation of the semiconductor magnetic transducer. A compensation method consisting of a Hall coefficient temperature compensation circuit group consisting of a reference voltage circuit, an integrating circuit and a variable gain circuit.
JP60005594A 1985-01-16 1985-01-16 Temperature compensation for semiconductor magnetic conversion element Pending JPS61164278A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60005594A JPS61164278A (en) 1985-01-16 1985-01-16 Temperature compensation for semiconductor magnetic conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60005594A JPS61164278A (en) 1985-01-16 1985-01-16 Temperature compensation for semiconductor magnetic conversion element

Publications (1)

Publication Number Publication Date
JPS61164278A true JPS61164278A (en) 1986-07-24

Family

ID=11615553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60005594A Pending JPS61164278A (en) 1985-01-16 1985-01-16 Temperature compensation for semiconductor magnetic conversion element

Country Status (1)

Country Link
JP (1) JPS61164278A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104459580A (en) * 2014-12-11 2015-03-25 重庆地质仪器厂 Temperature compensation system
CN106019180A (en) * 2016-07-18 2016-10-12 北京航空航天大学 Alkali metal atomic magnetometer air chamber electric heating magnetic field measurement method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104459580A (en) * 2014-12-11 2015-03-25 重庆地质仪器厂 Temperature compensation system
CN106019180A (en) * 2016-07-18 2016-10-12 北京航空航天大学 Alkali metal atomic magnetometer air chamber electric heating magnetic field measurement method
CN106019180B (en) * 2016-07-18 2019-01-29 北京航空航天大学 A kind of alkali metal atom magnetometer gas chamber electric heating Measurement Method for Magnetic Field

Similar Documents

Publication Publication Date Title
JPH0476412B2 (en)
DE69832368D1 (en) MAGNETIC SENSOR
MY123086A (en) Electronic magnetoresistive sensor biasing
CA2244692A1 (en) Temperature compensated current measurement device
JPS6022726B2 (en) displacement detector
EP0136144B1 (en) Engine air/fuel ratio sensing device
JPS61164278A (en) Temperature compensation for semiconductor magnetic conversion element
JPS6468662A (en) Temperature compensating circuit for accelerometer
JPH03172719A (en) Level sensor
JPS5619209A (en) Wave detecting circuit
KR101175533B1 (en) Closed loop type current sensor performing temperature compensation
JP2774100B2 (en) Oxygen concentration detector
JP2521330Y2 (en) DC current detector
JPS6122766B2 (en)
JPH053989Y2 (en)
JPH087465Y2 (en) Highly stable constant current power supply
JP2000249683A (en) Gas-detecting apparatus
SU1636815A1 (en) Hall effect emf meter
JPS5816073Y2 (en) Resistance/electrical signal converter
SU1559322A1 (en) Device for measuring magnetic field induction
JPS5953230U (en) electromagnetic flow meter
JPS6111779Y2 (en)
SU847327A1 (en) Device for multiplying electric signals
JPH09292413A (en) Current sensor
JPH0614974U (en) Current sensor